Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 411
Filtrar
1.
J Transl Med ; 22(1): 337, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589873

RESUMO

BACKGROUND: The mesenchymal subtype of colorectal cancer (CRC), associated with poor prognosis, is characterized by abundant expression of the cellular prion protein PrPC, which represents a candidate therapeutic target. How PrPC is induced in CRC remains elusive. This study aims to elucidate the signaling pathways governing PrPC expression and to shed light on the gene regulatory networks linked to PrPC. METHODS: We performed in silico analyses on diverse datasets of in vitro, ex vivo and in vivo models of mouse CRC and patient cohorts. We mined ChIPseq studies and performed promoter analysis. CRC cell lines were manipulated through genetic and pharmacological approaches. We created mice combining conditional inactivation of Apc in intestinal epithelial cells and overexpression of the human prion protein gene PRNP. Bio-informatic analyses were carried out in two randomized control trials totalizing over 3000 CRC patients. RESULTS: In silico analyses combined with cell-based assays identified the Wnt-ß-catenin and glucocorticoid pathways as upstream regulators of PRNP expression, with subtle differences between mouse and human. We uncover multiple feedback loops between PrPC and these two pathways, which translate into an aggravation of CRC pathogenesis in mouse. In stage III CRC patients, the signature defined by PRNP-CTNNB1-NR3C1, encoding PrPC, ß-catenin and the glucocorticoid receptor respectively, is overrepresented in the poor-prognosis, mesenchymal subtype and associates with reduced time to recurrence. CONCLUSIONS: An unleashed PrPC-dependent vicious circle is pathognomonic of poor prognosis, mesenchymal CRC. Patients from this aggressive subtype of CRC may benefit from therapies targeting the PRNP-CTNNB1-NR3C1 axis.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Camundongos , Animais , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , beta Catenina/metabolismo , Glucocorticoides , Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Fenótipo , Prognóstico , Via de Sinalização Wnt , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
2.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570188

RESUMO

Mistargeting of secretory proteins in the cytosol can trigger their aggregation and subsequent proteostasis decline. We have identified a VCP/p97-dependent pathway that directs non-ER-imported prion protein (PrP) into the nucleus to prevent the formation of toxic aggregates in the cytosol. Upon impaired translocation into the ER, PrP interacts with VCP/p97, which facilitates nuclear import mediated by importin-ß. Notably, the cytosolic interaction of PrP with VCP/p97 and its nuclear import are independent of ubiquitination. In vitro experiments revealed that VCP/p97 binds non-ubiquitinated PrP and prevents its aggregation. Inhibiting binding of PrP to VCP/p97, or transient proteotoxic stress, promotes the formation of self-perpetuating and partially proteinase resistant PrP aggregates in the cytosol, which compromised cellular proteostasis and disrupted further nuclear targeting of PrP. In the nucleus, RNAs keep PrP in a soluble and non-toxic conformation. Our study revealed a novel ubiquitin-independent role of VCP/p97 in the nuclear targeting of non-imported secretory proteins and highlights the impact of the chemical milieu in triggering protein misfolding.


Assuntos
Proteínas Priônicas , Príons , Proteínas Priônicas/metabolismo , Proteína com Valosina/metabolismo , Adenosina Trifosfatases/metabolismo , Proteostase , Ubiquitina/metabolismo , Príons/metabolismo
3.
Sci Rep ; 14(1): 6294, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491063

RESUMO

Real-time quaking-induced conversion assay (RT-QuIC) exploits templating activity of pathogenic prion protein for ultrasensitive detection of prions. We have utilized second generation RT-QuIC assay to analyze matching post-mortem cerebrospinal fluid and skin samples of 38 prion disease patients and of 30 deceased neurological controls. The analysis of cerebrospinal fluid samples led to 100% sensitivity and 100% specificity, but some samples had to be diluted before the analysis to alleviate the effect of present RT-QuIC inhibitors. The analysis of the corresponding skin samples provided 89.5% sensitivity and 100% specificity. The median seeding dose present in the skin was one order of magnitude higher than in the cerebrospinal fluid, despite the overall fluorescent signal of the skin samples was comparatively lower. Our data support the use of post-mortem cerebrospinal fluid for confirmation of prion disease diagnosis and encourage further studies of the potential of skin biopsy samples for intra-vitam prion diseases´ diagnostics.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Príons , Humanos , Príons/metabolismo , Doenças Priônicas/diagnóstico , Pele/metabolismo , Proteínas Priônicas , Bioensaio , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquidiano
4.
BMC Genomics ; 25(1): 177, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355406

RESUMO

BACKGROUND: Prion diseases, also known as transmissible spongiform encephalopathies (TSEs) remain one of the deleterious disorders, which have affected several animal species. Polymorphism of the prion protein (PRNP) gene majorly determines the susceptibility of animals to TSEs. However, only limited studies have examined the variation in PRNP gene in different Nigerian livestock species. Thus, this study aimed to identify the polymorphism of PRNP gene in Nigerian livestock species (including camel, dog, horse, goat, and sheep). We sequenced the open reading frame (ORF) of 65 camels, 31 village dogs and 12 horses from Nigeria and compared with PRNP sequences of 886 individuals retrieved from public databases. RESULTS: All the 994 individuals were assigned into 162 haplotypes. The sheep had the highest number of haplotypes (n = 54), and the camel had the lowest (n = 7). Phylogenetic tree further confirmed clustering of Nigerian individuals into their various species. We detected five non-synonymous SNPs of PRNP comprising of G9A, G10A, C11G, G12C, and T669C shared by all Nigerian livestock species and were in Hardy-Weinberg Equilibrium (HWE). The amino acid changes in these five non-synonymous SNP were all "benign" via Polyphen-2 program. Three SNPs G34C, T699C, and C738G occurred only in Nigerian dogs while C16G, G502A, G503A, and C681A in Nigerian horse. In addition, C50T was detected only in goats and sheep. CONCLUSION: Our study serves as the first to simultaneously investigate the polymorphism of PRNP gene in Nigerian livestock species and provides relevant information that could be adopted in programs targeted at breeding for prion diseases resistance.


Assuntos
Doenças Priônicas , Príons , Scrapie , Animais , Cavalos/genética , Ovinos/genética , Cães , Príons/genética , Príons/metabolismo , Proteínas Priônicas/genética , Polimorfismo de Nucleotídeo Único , Gado/genética , Fases de Leitura Aberta , Filogenia , Camelus/genética , Doenças Priônicas/genética , Doenças Priônicas/veterinária , Cabras/genética , Cabras/metabolismo , Scrapie/genética
5.
BMC Cancer ; 24(1): 199, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347462

RESUMO

BACKGROUND: Glioblastoma (GBM) is an aggressive brain tumor that exhibits resistance to current treatment, making the identification of novel therapeutic targets essential. In this context, cellular prion protein (PrPC) stands out as a potential candidate for new therapies. Encoded by the PRNP gene, PrPC can present increased expression levels in GBM, impacting cell proliferation, growth, migration, invasion and stemness. Nevertheless, the exact molecular mechanisms through which PRNP/PrPC modulates key aspects of GBM biology remain elusive. METHODS: To elucidate the implications of PRNP/PrPC in the biology of this cancer, we analyzed publicly available RNA sequencing (RNA-seq) data of patient-derived GBMs from four independent studies. First, we ranked samples profiled by bulk RNA-seq as PRNPhigh and PRNPlow and compared their transcriptomic landscape. Then, we analyzed PRNP+ and PRNP- GBM cells profiled by single-cell RNA-seq to further understand the molecular context within which PRNP/PrPC might function in this tumor. We explored an additional proteomics dataset, applying similar comparative approaches, to corroborate our findings. RESULTS: Functional profiling revealed that vesicular dynamics signatures are strongly correlated with PRNP/PrPC levels in GBM. We found a panel of 73 genes, enriched in vesicle-related pathways, whose expression levels are increased in PRNPhigh/PRNP+ cells across all RNA-seq datasets. Vesicle-associated genes, ANXA1, RAB31, DSTN and SYPL1, were found to be upregulated in vitro in an in-house collection of patient-derived GBM. Moreover, proteome analysis of patient-derived samples reinforces the findings of enhanced vesicle biogenesis, processing and trafficking in PRNPhigh/PRNP+ GBM cells. CONCLUSIONS: Together, our findings shed light on a novel role for PrPC as a potential modulator of vesicle biology in GBM, which is pivotal for intercellular communication and cancer maintenance. We also introduce GBMdiscovery, a novel user-friendly tool that allows the investigation of specific genes in GBM biology.


Assuntos
Glioblastoma , Príons , Humanos , Expressão Gênica , Perfilação da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Príons/genética , Príons/metabolismo , Proteínas rab de Ligação ao GTP/genética , Sinaptofisina/metabolismo
6.
ACS Chem Neurosci ; 15(4): 716-723, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38235697

RESUMO

The self-assembly of peptides and proteins into ß-sheet rich amyloid fibrils is linked to both functional and pathological states. In this study, the growth of fibrillar structures of the short peptide GNNQQNY, a fragment from the yeast prion Sup35 protein, was examined. Molecular dynamics simulations were used to study alternative mechanisms of fibril growth, including elongation through binding of monomers as well as fibril self-assembly into larger, more mature structures. It was found that after binding, monomers diffused along preformed fibrils toward the ends, supporting the mechanism of fibril growth via elongation. Lateral assembly of protofibrils was found to occur readily, suggesting that this could be the key to transitioning from isolated fibrils to mature multilayer structures. Overall, the work provides mechanistic insights into the competitive pathways that govern amyloid fibril growth.


Assuntos
Amiloide , Príons , Amiloide/química , Peptídeos , Proteínas Priônicas , Saccharomyces cerevisiae/metabolismo , Peptídeos beta-Amiloides/metabolismo
7.
Mol Carcinog ; 63(2): 224-237, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37861356

RESUMO

The majority of patients with advanced colorectal cancer have chemoresistance to oxaliplatin, and studies on oxaliplatin resistance are limited. Our research showed that RNA-binding motif single-stranded interacting protein 1 (RBMS1) caused ferroptosis resistance in tumor cells, leading to oxaliplatin resistance. We employed bioinformatics to evaluate publically accessible data sets and discovered that RBMS1 was significantly upregulated in oxaliplatin-resistant colorectal cancer cells, in tandem with ferroptosis suppression. In vivo and in vitro studies revealed that inhibiting RBMS1 expression caused ferroptosis in colorectal cancer cells, restoring tumor cell sensitivity to oxaliplatin. Mechanistically, this is due to RBMS1 inducing prion protein translation, resulting in ferroptosis resistance in tumor cells. Validation of clinical specimens revealed that RBMS1 is similarly linked to tumor development and a poor prognosis. Overall, RBMS1 is a potential therapeutic target with clinical translational potential, particularly for oxaliplatin chemoresistance in colorectal cancer.


Assuntos
Neoplasias Colorretais , Ferroptose , Humanos , Oxaliplatina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA , Proteínas Priônicas/metabolismo
8.
Biochim Biophys Acta Proteins Proteom ; 1872(1): 140965, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739110

RESUMO

The pathogenesis of the various prion diseases is based on the conformational conversion of the prion protein from its physiological cellular form to the insoluble scrapie isoform. Several chaperones, including the Hsp60 family of group I chaperonins, are known to contribute to this transformation, but data on their effects are scarce and conflicting. In this work, two GroEL-like phage chaperonins, the single-ring OBP and the double-ring EL, were found to stimulate monomeric prion protein fibrillation in an ATP-dependent manner. The resulting fibrils were characterised by thioflavin T fluorescence, electron microscopy, proteinase K digestion assay and other methods. In the presence of ATP, chaperonins were found to promote the conversion of prion protein monomers into short amyloid fibrils with their further aggregation into less toxic large clusters. Fibrils generated with the assistance of phage chaperonins differ in morphology and properties from those formed spontaneously from monomeric prion in the presence of denaturants at acidic pH.


Assuntos
Bacteriófagos , Príons , Animais , Proteínas Priônicas/química , Bacteriófagos/metabolismo , Príons/química , Chaperonina 60/química , Trifosfato de Adenosina
9.
Anal Chem ; 95(50): 18595-18602, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38048047

RESUMO

Cellular prion protein (PrPC) is highly expressed in a variety of tumor cells and plays a crucial role in neurodegenerative diseases. Its N-terminal domain contains a conserved octapeptide (PHGGGWGQ) repeat sequence. The number of repeats has been correlated with the species as well as the development of associated diseases. Herein, PrPC was identified to be the molecular target of a high-affinity DNA aptamer HA5-68 obtained by cell-SELEX. Aptamer HA5-68 was further optimized to two short sequences (HA5-40-1 and HA5-40-2), and its binding site to PrPC was identified to be located in the loop-stem-loop region of the head of its secondary structure. HA5 series aptamers were demonstrated to bind the octapeptide repeat region of PrPC, as well as the synthesized peptides containing different numbers of octapeptide repeats. The PrPC expression on 42 cell lines was measured by using aptamer HA5-68 as a molecular probe. The clear understanding of the molecular structure and binding mechanism of this set of aptamers will provide information for the design of diagnostic methods and therapeutic drugs targeting PrPC.


Assuntos
Aptâmeros de Nucleotídeos , Doenças Priônicas , Príons , Humanos , Proteínas Priônicas , Aptâmeros de Nucleotídeos/química , Ligação Proteica , Príons/genética , Sítios de Ligação , Doenças Priônicas/metabolismo
10.
Cell Transplant ; 32: 9636897231211067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078417

RESUMO

BACKGROUND: We tested the hypothesis that overexpression of cellular-prion-protein in adipose-derived mesenchymal stem cells (PrPCOE-ADMSCs) effectively protected the kidney against ischemia-reperfusion (IR) injury in rat. METHODS: Part I of cell culture was categorized into A1(ADMSCs)/A2(ADMSCs+p-Cresol)/A3(PrPCOE in ADMSCs)/A4 (PrPCOE in ADMSCs+p-Cresol). Part II of cell culture was divided into B1(ADMSCs)/B2[ADMSCs+lipopolysaccharide (LPS)]/B3(PrPCOE in ADMSCs)/B4(PrPCOE in ADMSCs+LPS). Sprague-Dawley (SD) rats (n = 50) were equally categorized into groups 1 (sham-operated-control)/2 (IR)/3 (IR+ADMSCs/6.0 × 105 equally divided into bilateral-renal arteries and 6.0 × 105 intravenous administration by 1 h after IR)/4 [IR+PrPCOE-ADMSCs (identical dosage administered as group 3)]/5 [IR+silencing PRNP -ADMSCs (identical dosage administered as group 3)], and kidneys were harvested post-day 3 IR injury. RESULTS: Part I results demonstrated that the cell viability at 24/48/72 h, BrdU uptake/number of mitDNA/APT concentration/mitochondrial-cytochrome-C+ cells and the protein expressions of ki67/PrPC at 72 h-cell culturing were significantly higher in PrPCOE-ADMSCs than in ADMSCs (all P < 0.001). The protein expressions of oxidative-stress (NOX-1/NOX2/NOX4/oxidized protein)/mitochondrial-damaged (p22-phox/cytosolic-cytochrome-C)/inflammatory (p-NF-κB/IL-1ß/TNF-α/IL-6)/apoptotic (cleaved caspase-3/cleaved-PARP) biomarkers were lowest in A1/A3 and significantly higher in A2 than in A4 (all P < 0.001). Part II result showed that the protein expressions of inflammatory (p-NF-κB/IL-1ß/TNF-α/IL-6)/apoptotic (cleaved caspase-3/cleaved-PARP) biomarkers exhibited an identical pattern of part I among the groups (all P < 0.001). The protein expressions of inflammatory (p-NF-κB/IL-1ß/TNF-α/MMP-9)/oxidative-stress (NOX-1/NOX-2/oxidized-protein)/mitochondrial-damaged (cytosolic-cytochrome-C/p22-phox)/apoptotic (cleaved caspase-3/cleaved-PARP/mitochondrial-Bx)/autophagic (beclin-1/ratio of LC3B-II/LC3B-I)/fibrotic (Smad3/TGF-ß) biomarkers and kidney-injury-score/creatinine level were lowest in group 1, highest in group 2, significantly higher in group 5 than in groups 3/4 (all P < 0.0001). CONCLUSION: PrPCOE in ADMSCs rejuvenated these cells and played a cardinal role on protecting the kidney against IR injury.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Príons , Traumatismo por Reperfusão , Ratos , Animais , Ratos Sprague-Dawley , Proteínas Priônicas/metabolismo , Caspase 3/metabolismo , Roedores , Príons/metabolismo , Príons/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos , NF-kappa B/metabolismo , Biogênese de Organelas , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Rejuvenescimento , Transplante de Células-Tronco Mesenquimais/métodos , Rim/metabolismo , Traumatismo por Reperfusão/metabolismo , Biomarcadores/metabolismo , Proliferação de Células , Citocromos/metabolismo , Citocromos/uso terapêutico , Trifosfato de Adenosina/metabolismo
11.
Virus Res ; 338: 199249, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37858731

RESUMO

Flaviviruses are a major cause of viral diseases worldwide, for which effective treatments have yet to be discovered. The prion protein (PrPc) is abundantly expressed in brain cells and has been shown to play a variety of roles, including neuroprotection, cell homeostasis, and regulation of cellular signaling. However, it is still unclear whether PrPc can protect against flaviviruses. In this study, we investigated the role of PrPc in regulating autophagy flux and its potential antiviral activity during Japanese encephalitis virus (JEV) infection. Our in vivo experiment showed that JEV was more lethal to the PrPc knocked out mice which was further supported by histological analysis, western blot and rtPCR results from infected mice brain samples. Role of PrPc against viral propagation in vitro was verified through cell survival study, protein expression and RNA replication analysis, and adenoviral vector assay by overexpressing PrPc. Further analysis indicated that after virus entry, PrPc inhibited autophagic flux that prevented JEV replication inside the host cell. Our results from in vivo and in vitro investigations demonstrate that prion protein effectively inhibited JEV propagation by regulating autophagy flux which is used by JEV to release its genetic material and replication after entering the host cell, suggesting that prion protein may be a promising therapeutic target for flavivirus infection.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Animais , Camundongos , Proteínas Priônicas/genética , Proteínas Priônicas/farmacologia , Linhagem Celular , Antivirais/farmacologia , Antivirais/uso terapêutico , Replicação Viral
12.
BMB Rep ; 56(12): 645-650, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37817440

RESUMO

Numerous studies have investigated the cellular prion protein (PrPC) since its discovery. These investigations have explained that its structure is predominantly composed of alpha helices and short beta sheet segments, and when its abnormal scrapie isoform (PrPSc) is infected, PrPSc transforms the PrPC, leading to prion diseases, including Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy in cattle. Given its ubiquitous distribution across a variety of cellular types, the PrPC manifests a diverse range of biological functions, including cell-cell adhesion, neuroprotection, signalings, and oxidative stress response. PrPC is also expressed in immune tissues, and its functions in these tissues include the activation of immune cells and the formation of secondary lymphoid tissues, such as the spleen and lymph nodes. Moreover, high expression of PrPC in immune cells plays a crucial role in the pathogenesis of prion diseases. In addition, it affects inflammation and the development and progression of cancer via various mechanisms. In this review, we discuss the studies on the role of PrPC from various immunological perspectives. [BMB Reports 2023; 56(12): 645-650].


Assuntos
Encefalopatia Espongiforme Bovina , Doenças Priônicas , Príons , Humanos , Animais , Bovinos , Proteínas Priônicas/química , Proteínas Priônicas/metabolismo , Doenças Priônicas/patologia , Doenças Priônicas/prevenção & controle , Encefalopatia Espongiforme Bovina/metabolismo , Encefalopatia Espongiforme Bovina/prevenção & controle , Sistema Imunitário/metabolismo
13.
J Biol Chem ; 299(11): 105319, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37802314

RESUMO

Mis-folding of the prion protein (PrP) is known to cause neurodegenerative disease; however, the native function of this protein remains poorly defined. PrP has been linked with many cellular functions, including cellular proliferation and senescence. It is also known to influence epidermal growth factor receptor (EGFR) signaling, a pathway that is itself linked with both cell growth and senescence. Adult neural stem cells (NSCs) persist at low levels in the brain throughout life and retain the ability to proliferate and differentiate into new neural lineage cells. KO of PrP has previously been shown to reduce NSC proliferative capacity. We used PrP KO and WT NSCs from adult mouse brain to examine the influence of PrP on cellular senescence, EGFR signaling, and the downstream cellular processes. PrP KO NSCs showed decreased cell proliferation and increased senescence in in vitro cultures. Expression of EGFR was decreased in PrP KO NSCs compared with WT NSCs and additional supplementation of EGF was sufficient to reduce senescence. RNA-seq analysis confirmed that significant changes were occurring at the mRNA level within the EGFR signaling pathway and these were associated with reduced expression of mitochondrial components and correspondingly reduced mitochondrial function. Metabolomic analysis of cellular energy pathways showed that blockages were occurring at critical sites for production of energy and biomass, including catabolism of pyruvate. We conclude that, in the absence of PrP, NSC growth pathways are downregulated as a consequence of insufficient energy and growth intermediates.


Assuntos
Células-Tronco Neurais , Doenças Neurodegenerativas , Príons , Animais , Camundongos , Proliferação de Células , Senescência Celular , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células-Tronco Neurais/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Príons/metabolismo , Transdução de Sinais/genética , Camundongos Endogâmicos C57BL
14.
Vet Res ; 54(1): 94, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848924

RESUMO

Prion diseases are fatal neurodegenerative disorders in which the main pathogenic event is the conversion of the cellular prion protein (PrPC) into an abnormal and misfolded isoform known as PrPSc. Most prion diseases and their susceptibility and pathogenesis are mainly modulated by the PRNP gene that codes for PrP. Mutations and polymorphisms in the PRNP gene can alter PrPC amino acid sequence, leading to a change in transmission efficiency depending on the place where it occurs. Horses are animals that are considered to be highly resistant to prions. Several studies have attempted to identify polymorphisms in the PRNP gene that explain the reason for this high resistance. In this study, we have analysed 207 horses from 20 different breeds, discovering 3 novel PRNP polymorphisms. By using computer programmes such as PolyPhen-2, PROVEAN, PANTHER, Meta-SNP and PredictSNP, we have predicted the possible impact that these new polymorphisms would have on the horse prion protein. In addition, we measured the propensity for amyloid aggregation using AMYCO and analysed the lack of hydrogen bridges that these changes would entail together with their electrostatic potentials using Swiss-PdbViewer software, showing that an increased amyloid propensity could be due to changes at the level of electrostatic potentials.


Assuntos
Doenças dos Cavalos , Doenças Priônicas , Príons , Animais , Sequência de Aminoácidos , Doenças dos Cavalos/genética , Cavalos/genética , Polimorfismo Genético , Doenças Priônicas/genética , Doenças Priônicas/veterinária , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Príons/genética
15.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37834279

RESUMO

Sporadic Creutzfeldt-Jakob disease (CJD) is a major human prion disease worldwide. CJD is a fatal neurodegenerative disease caused by an abnormal prion protein (PrPSc). To date, the exact etiology of sporadic CJD has not been fully elucidated. We investigated the E200K and V203I somatic mutations of the prion protein gene (PRNP) in sporadic CJD patients and matched healthy controls using pyrosequencing. In addition, we estimated the impact of somatic mutations on the human prion protein (PrP) using PolyPhen-2, PANTHER and PROVEAN. Furthermore, we evaluated the 3D structure and electrostatic potential of the human PrP according to somatic mutations using DeepView. The rates of PRNP K200 somatic mutation were significantly increased in the frontal cortex and hippocampus of sporadic CJD patients compared to the matched controls. In addition, the electrostatic potential of the human PrP was significantly changed by the K200 somatic mutation of the PRNP gene. To the best of our knowledge, this is the first report on an association of the PRNP K200 somatic mutation with sporadic CJD.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Neurodegenerativas , Príons , Humanos , Príons/genética , Príons/metabolismo , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/metabolismo , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Encéfalo/metabolismo , Mutação
16.
Brain Pathol ; 33(5): e13197, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37525413

RESUMO

Genetic Creutzfeldt-Jakob disease (gCJD) with V180I prion protein gene (PRNP) mutation shows weaker prion protein (PrP) deposition histologically compared with sporadic CJD, and it is more difficult to detect protease-resistant prion protein in immunoblotting. However, we previously reported the autopsy case of a patient with V180I gCJD who was treated with pentosan polysulfate sodium (PPS); this case had increased protease-resistant PrP deposition. It has been suggested that PPS might reduce protease-resistant PrP; however, the detailed pharmacological and histopathological effects of PPS in humans remain unknown. We examined autopsied human brain tissue from four cases with V180I gCJD that were added to our archives between 2011 and 2021: two cases treated with PPS and two cases without PPS. We conducted a neuropathological assessment, including immunohistochemistry for PrP. We also performed immunoblotting for PrP on homogenate samples from each brain to detect protease-resistant PrP using both a conventional procedure and size-exclusion gel chromatography for the purification of oligomeric PrP. Both PPS-treated cases showed long survival time over 5 years from onset and increased PrP deposition with a characteristic pattern of coarse granular depositions and congophilic PrP microspheres, whereas the cases without PPS showed around 1-year survival from onset and relatively mild neuronal loss and synaptic PrP deposition. Although cortical gliosis seemed similar among all cases, aquaporin 4-expression as a hallmark of astrocytic function was increased predominantly in PPS cases. Immunoblotting of non-PPS cases revealed protease-resistant PrP in the oligomeric fraction only, whereas the PPS-treated cases showed clear signals using conventional procedures and in the oligomeric fraction. These unique biochemical and histopathological changes may reflect the progression of V180I gCJD and its modification by PPS, suggesting the possible existence of toxic PrP-oligomer in the pathophysiology of V180I gCJD and beneficial effects of PPS toward the aggregation and detoxication of toxic PrP-oligomer.


Assuntos
Síndrome de Creutzfeldt-Jakob , Príons , Humanos , Síndrome de Creutzfeldt-Jakob/tratamento farmacológico , Síndrome de Creutzfeldt-Jakob/genética , Príons/genética , Proteínas Priônicas/genética , Poliéster Sulfúrico de Pentosana/farmacologia , Poliéster Sulfúrico de Pentosana/uso terapêutico , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/uso terapêutico , Mutação/genética
17.
PLoS One ; 18(8): e0288091, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37535656

RESUMO

Breast cancer (BRCA) is one of the most common cancers in women. Copper (Cu) is an essential trace element implicated in many physiological processes and human diseases, including BRCA. In this study, we performed bioinformatics analysis and experiments to determine differentially expressed copper homeostasis-associated genes in BRCA. Based on two Gene Expression Omnibus (GEO) datasets, the copper homeostasis-associated gene, prion protein (PRNP), a highly conserved ubiquitous glycoprotein, was significantly down-regulated in BRCA compared to normal tissues. Moreover, PRNP expression predicted a better prognosis in BRCA patients. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that PRNP was potentially linked with several cancer-associated signaling pathways, including regulation of inflammatory response and oxidative phosphorylation. To validate the biological functions of PRNP, we overexpressed PRNP in BRCA cell lines, MDA-MB-231 and BT-549. CCK8 assay showed that PRNP overexpression significantly increased the sensitivity of gefitinib in BRCA cells. Overexpression of PRNP resulted in increased reactive oxygen species (ROS) production upon gefitinib treatment and ferroptosis selective inhibitor, ferrostatin-1 attenuated the enhanced ROS production effect of PRNP in BRCA cells. PRNP expression was positively correlated with macrophages, Th1 cells, neutrophils, and B cells, while negatively correlated with NK CD56 bright cells and Th17 cells in BRCA. Single-cell analysis showed that PRNP was highly expressed in M1 phenotype macrophages, essential tumor-suppressing cells in the tumor stroma. Therefore, our findings suggest that PRNP may participate in ROS-mediated ferroptosis and is a potential novel therapeutic target of chemotherapy and immunotherapy in BRCA.


Assuntos
Neoplasias da Mama , Ferroptose , Príons , Humanos , Feminino , Proteínas Priônicas/genética , Neoplasias da Mama/genética , Cobre , Ferroptose/genética , Gefitinibe , Espécies Reativas de Oxigênio , Homeostase
18.
Cell Mol Life Sci ; 80(8): 207, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37452879

RESUMO

The cellular prion protein (PrPC) is well-known for its involvement, under its pathogenic protease-resistant form (PrPSc), in a group of neurodegenerative diseases, known as prion diseases. PrPC is expressed in nervous system, as well as in other peripheral organs, and has been found overexpressed in several types of solid tumors. Notwithstanding, studies in recent years have disclosed an emerging role for PrPC in various cancer associated processes. PrPC has high binding affinity for 37/67 kDa laminin receptor (RPSA), a molecule that acts as a key player in tumorigenesis, affecting cell growth, adhesion, migration, invasion and cell death processes. Recently, we have characterized at cellular level, small molecules able to antagonize the direct PrPC binding to RPSA and their intracellular trafficking. These findings are very crucial considering that the main function of RPSA is to modulate key events in the metastasis cascade. Elucidation of the role played by PrPC/RPSA interaction in regulating tumor development, progression and response to treatment, represents a very promising challenge to gain pathogenetic information and discover novel specific biomarkers and/or therapeutic targets to be exploited in clinical settings. This review attempts to convey a detailed description of the complexity surrounding these multifaceted proteins from the perspective of cancer hallmarks, but with a specific focus on the role of their interaction in the control of proliferation, migration and invasion, genome instability and mutation, as well as resistance to cell death controlled by autophagic pathway.


Assuntos
Neoplasias , Proteínas PrPC , Doenças Priônicas , Príons , Humanos , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Doenças Priônicas/metabolismo , Receptores de Laminina/genética , Receptores de Laminina/metabolismo , Neoplasias/genética , Biologia , Proteínas PrPC/genética , Proteínas PrPC/metabolismo
19.
Vet Res ; 54(1): 48, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328789

RESUMO

Prion diseases are fatal and malignant infectious encephalopathies induced by the pathogenic form of prion protein (PrPSc) originating from benign prion protein (PrPC). A previous study reported that the M132L single nucleotide polymorphism (SNP) of the prion protein gene (PRNP) is associated with susceptibility to chronic wasting disease (CWD) in elk. However, a recent meta-analysis integrated previous studies that did not find an association between the M132L SNP and susceptibility to CWD. Thus, there is controversy about the effect of M132L SNP on susceptibility to CWD. In the present study, we investigated novel risk factors for CWD in elk. We investigated genetic polymorphisms of the PRNP gene by amplicon sequencing and compared genotype, allele, and haplotype frequencies between CWD-positive and CWD-negative elk. In addition, we performed a linkage disequilibrium (LD) analysis by the Haploview version 4.2 program. Furthermore, we evaluated the 3D structure and electrostatic potential of elk prion protein (PrP) according to the S100G SNP using AlphaFold and the Swiss-PdbViewer 4.1 program. Finally, we analyzed the free energy change of elk PrP according to the S100G SNP using I-mutant 3.0 and CUPSAT. We identified 23 novel SNP of the elk PRNP gene in 248 elk. We found a strong association between PRNP SNP and susceptibility to CWD in elk. Among those SNP, S100G is the only non-synonymous SNP. We identified that S100G is predicted to change the electrostatic potential and free energy of elk PrP. To the best of our knowledge, this was the first report of a novel risk factor, the S100G SNP, for CWD.


Assuntos
Cervos , Príons , Doença de Emaciação Crônica , Animais , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Príons/genética , Doença de Emaciação Crônica/genética , Doença de Emaciação Crônica/patologia , Polimorfismo de Nucleotídeo Único , Cervos/genética , Fatores de Risco
20.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298227

RESUMO

Protein aggregation into amyloid fibrils is associated with several amyloidoses, including neurodegenerative Alzheimer's and Parkinson's diseases. Despite years of research and numerous studies, the process is still not fully understood, which significantly impedes the search for cures of amyloid-related disorders. Recently, there has been an increase in reports of amyloidogenic protein cross-interactions during the fibril formation process, which further complicates the already intricate process of amyloid aggregation. One of these reports displayed an interaction involving Tau and prion proteins, which prompted a need for further investigation into the matter. In this work, we generated five populations of conformationally distinct prion protein amyloid fibrils and examined their interaction with Tau proteins. We observed that there was a conformation-specific association between Tau monomers and prion protein fibrils, which increased the aggregate self-association and amyloidophilic dye binding capacity. We also determined that the interaction did not induce the formation of Tau protein amyloid aggregates, but rather caused their electrostatic adsorption to the prion protein fibril surface.


Assuntos
Amiloidose , Príons , Humanos , Amiloide/metabolismo , Proteínas Priônicas/metabolismo , Proteínas tau/metabolismo , Amiloidose/metabolismo , Proteínas Amiloidogênicas , Agregados Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA