Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Mol Cell ; 79(3): 504-520.e9, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32707033

RESUMO

Protein kinases are essential for signal transduction and control of most cellular processes, including metabolism, membrane transport, motility, and cell cycle. Despite the critical role of kinases in cells and their strong association with diseases, good coverage of their interactions is available for only a fraction of the 535 human kinases. Here, we present a comprehensive mass-spectrometry-based analysis of a human kinase interaction network covering more than 300 kinases. The interaction dataset is a high-quality resource with more than 5,000 previously unreported interactions. We extensively characterized the obtained network and were able to identify previously described, as well as predict new, kinase functional associations, including those of the less well-studied kinases PIM3 and protein O-mannose kinase (POMK). Importantly, the presented interaction map is a valuable resource for assisting biomedical studies. We uncover dozens of kinase-disease associations spanning from genetic disorders to complex diseases, including cancer.


Assuntos
Redes Reguladoras de Genes , Doenças Genéticas Inatas/genética , Neoplasias/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Biologia Computacional/métodos , Conjuntos de Dados como Assunto , Regulação da Expressão Gênica , Ontologia Genética , Doenças Genéticas Inatas/enzimologia , Doenças Genéticas Inatas/patologia , Humanos , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Distrofias Musculares/enzimologia , Distrofias Musculares/genética , Distrofias Musculares/patologia , Neoplasias/enzimologia , Neoplasias/patologia , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Mapeamento de Interação de Proteínas/métodos , Proteínas Quinases/química , Proteínas Quinases/classificação , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais
2.
Trends Pharmacol Sci ; 40(11): 818-832, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31677919

RESUMO

Kinases are attractive anticancer targets due to their central role in the growth, survival, and therapy resistance of tumor cells. This review explores the two primary kinase classes, the eukaryotic protein kinases (ePKs) and the atypical protein kinases (aPKs), and provides a structure-centered comparison of their sequences, structures, hydrophobic spines, mutation and SNP hotspots, and inhibitor interaction patterns. Despite the limited sequence similarity between these two classes, atypical kinases commonly share the archetypical kinase fold but lack conserved eukaryotic kinase motifs and possess altered hydrophobic spines. Furthermore, atypical kinase inhibitors explore only a limited number of binding modes both inside and outside the orthosteric binding site. The distribution of genetic variations in both classes shows multiple ways they can interfere with kinase inhibitor binding. This multilayered review provides a research framework bridging the eukaryotic and atypical kinase classes.


Assuntos
Neoplasias/enzimologia , Proteínas Quinases/classificação , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Antineoplásicos/química , Antineoplásicos/farmacologia , Sítios de Ligação , Humanos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Conformação Proteica em Folha beta , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/química , Proteínas Quinases/genética , Relação Estrutura-Atividade
4.
J Proteome Res ; 18(5): 2279-2286, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30908912

RESUMO

Kinases are among the most important families of enzymes involved in cell signaling. In this study, we employed a recently developed parallel-reaction monitoring (PRM)-based targeted proteomic method to examine the reprogramming of the human kinome during colorectal cancer (CRC) metastasis. We were able to quantify the relative expression of 299 kinase proteins in a pair of matched primary/metastatic CRC cell lines. We also found that, among the differentially expressed kinases, phosphoribosyl pyrophosphate synthetase 2 (PRPS2) promotes the migration and invasion of cultured CRC cells through regulating the activity of matrix metalloproteinase 9 (MMP-9) and the expression of E-cadherin. Moreover, we found that the up-regulation of PRPS2 in metastatic CRC cells could be induced by the MYC proto-oncogene. Together, our unbiased kinome profiling approach led to the identification, for the first time, of PRPS2 as a promoter for CRC metastasis.


Assuntos
Antígenos CD/genética , Caderinas/genética , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Metaloproteinase 9 da Matriz/genética , Proteínas Quinases/genética , Ribose-Fosfato Pirofosfoquinase/genética , Antígenos CD/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Perfilação da Expressão Gênica , Humanos , Metástase Linfática , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica , Proteínas Quinases/classificação , Proteínas Quinases/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ribose-Fosfato Pirofosfoquinase/antagonistas & inibidores , Ribose-Fosfato Pirofosfoquinase/metabolismo , Células Tumorais Cultivadas
5.
Commun Biol ; 2: 56, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30775457

RESUMO

Large protein families are a prominent feature of plant genomes and their size variation is a key element for adaptation. However, gene and genome duplications pose difficulties for functional characterization and translational research. Here we infer the evolutionary history of the DOMAIN OF UNKNOWN FUNCTION (DUF) 26-containing proteins. The DUF26 emerged in secreted proteins. Domain duplications and rearrangements led to the appearance of CYSTEINE-RICH RECEPTOR-LIKE PROTEIN KINASES (CRKs) and PLASMODESMATA-LOCALIZED PROTEINS (PDLPs). The DUF26 is land plant-specific but structural analyses of PDLP ectodomains revealed strong similarity to fungal lectins and thus may constitute a group of plant carbohydrate-binding proteins. CRKs expanded through tandem duplications and preferential retention of duplicates following whole genome duplications, whereas PDLPs evolved according to the dosage balance hypothesis. We propose that new gene families mainly expand through small-scale duplications, while fractionation and genetic drift after whole genome multiplications drive families towards dosage balance.


Assuntos
Proteínas de Ligação a DNA/genética , Embriófitas/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Plantas/genética , Proteínas de Ligação a DNA/classificação , Proteínas de Ligação a DNA/metabolismo , Embriófitas/classificação , Embriófitas/metabolismo , Dosagem de Genes , Duplicação Gênica , Ontologia Genética , Deriva Genética , Peptídeos e Proteínas de Sinalização Intracelular/classificação , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Anotação de Sequência Molecular , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Proteínas Quinases/classificação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
6.
Mol Biol (Mosk) ; 51(4): 696-703, 2017.
Artigo em Russo | MEDLINE | ID: mdl-28900089

RESUMO

Epithelial-mesenchymal transition (EMT) and its reverse process mesenchymal-epithelial transition (MET) programs are involced in the metastatic process. More and more evidence confirms that EMT is vital for the initiation and dissemination of cancer cells whereas MET is critical for successful metastatic colonization of a secondary organ. The regulating mechanism of EMT mediated cancer progression and metastasis has been deeply investigated. However, what processes are dependent on MET in metastatic cascades remains unclear. Here, we created a cell based high-content siRNA screen using the breast cancer cell line 4TO7 to search for kinases that were involved in Git2-induced MET. Our results revealed that 58 kinases including transferase, phosphorylation regulators, ATP/nucleotide partners potentially participate in Git2-induced MET. Our preliminary data is expected to facilitate elucidation of the mechanism on how MET is initiated during cancer metastasis.


Assuntos
Proteínas de Ciclo Celular/farmacologia , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Fosfoproteínas/farmacologia , Proteínas Quinases/genética , Animais , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/genética , Feminino , Proteínas Ativadoras de GTPase , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Camundongos , Proteínas Quinases/classificação , Proteínas Quinases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
7.
Plant Mol Biol ; 95(3): 227-242, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28918554

RESUMO

KEY MESSAGE: In this study we systematically identified and classified PKs in Triticum aestivum, Triticum urartu and Aegilops tauschii. Domain distribution and exon-intron structure analyses of PKs were performed, and we found conserved exon-intron structures within the exon phases in the kinase domain. Collinearity events were determined, and we identified various T. aestivum PKs from polyploidizations and tandem duplication events. Global expression pattern analysis of T. aestivum PKs revealed that some PKs might participate in the signaling pathways of stress response and developmental processes. QRT-PCR of 15 selected PKs were performed under drought treatment and with infection of Fusarium graminearum to validate the prediction of microarray. The protein kinase (PK) gene superfamily is one of the largest families in plants and participates in various plant processes, including growth, development, and stress response. To better understand wheat PKs, we conducted genome-wide identification, classification, evolutionary analysis and expression profiles of wheat and Ae. tauschii PKs. We identified 3269, 1213 and 1448 typical PK genes in T. aestivum, T. urartu and Ae. tauschii, respectively, and classified them into major groups and subfamilies. Domain distributions and gene structures were analyzed and visualized. Some conserved intron-exon structures within the conserved kinase domain were found in T. aestivum, T. urartu and Ae. tauschii, as well as the primitive land plants Selaginella moellendorffii and Physcomitrella patens, revealing the important roles and conserved evolutionary history of these PKs. We analyzed the collinearity events of T. aestivum PKs and identified PKs from polyploidizations and tandem duplication events. Global expression pattern analysis of T. aestivum PKs revealed tissue-specific and stress-specific expression profiles, hinting that some wheat PKs may regulate abiotic and biotic stress response signaling pathways. QRT-PCR of 15 selected PKs were performed under drought treatment and with infection of F. graminearum to validate the prediction of microarray. Our results will provide the foundational information for further studies on the molecular functions of wheat PKs.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Poaceae/genética , Proteínas Quinases/genética , Triticum/genética , Adaptação Fisiológica/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Secas , Evolução Molecular , Fusarium/fisiologia , Genes de Plantas/genética , Interações Hospedeiro-Patógeno , Família Multigênica , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Poaceae/enzimologia , Poaceae/microbiologia , Proteínas Quinases/classificação , Especificidade da Espécie , Estresse Fisiológico , Triticum/enzimologia , Triticum/microbiologia
8.
Sci Rep ; 7(1): 8441, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28814803

RESUMO

Plants have evolved different abilities to adapt to the ever-fluctuating environments for sessility. Calcium-dependent protein kinase (CDPK) is believed to play a pivotal role in abiotic stress signaling. So far, study on the specific substrates that CDPK recognized in response to adversity is limited. In the present study, we revealed a potential interaction between CDPK and a bHLH transcription factor under salt stress in Chenopodium glaucum. First, we identified a CgCDPK, which was up-regulated under salt and drought stress; then by Y2H screening, CgCDPK was detected to be involved in interaction with a bHLH TF (named as CgbHLH001), which also positively respond to salt and drought stress. Further computational prediction and experiments including GST-pulldown and BiFC assays revealed that potential interaction existed between CgCDPK and CgbHLH001, and they might interact on the plasma membrane. In addition, CgCDPK-overexpressed transgenic tobacco line could significantly accumulate transcripts of NtbHLH (a homolog of CgbHLH001 in N. tabacum), which provided another evidence of correlation between CgCDPK and CgbHLH001. Our results suggest that CgbHLH001 can interact with CgCDPK in signal transduction pathway in response to abiotic stress, which should provide new evidence for further understanding of the substrate specificity of plant CDPK signaling pathway.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Chenopodium/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/classificação , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Membrana Celular/metabolismo , Chenopodium/genética , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Ligação Proteica , Proteínas Quinases/classificação , Proteínas Quinases/genética , Homologia de Sequência de Aminoácidos , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Técnicas do Sistema de Duplo-Híbrido
9.
Proteins ; 85(4): 682-693, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28097693

RESUMO

The genome annotation and identification of gene function depends on conserved biochemical activity. However, in the cell, proteins with the same biochemical function can participate in different cellular pathways and cannot complement one another. Similarly, two proteins of very different biochemical functions are put in the same class of cellular function; for example, the classification of a gene as an oncogene or a tumour suppressor gene is not related to its biochemical function, but is related to its cellular function. We have taken an approach to identify peptide signatures for cellular function in proteins with known biochemical function. ATPases as a test case, we classified ATPases (2360 proteins) and kinases (517 proteins) from the human genome into different cellular function categories such as transcriptional, replicative, and chromatin remodelling proteins. Using publicly available tool, MEME, we identify peptide signatures shared among the members of a given category but not between cellular functional categories; for example, no motif sharing is seen between chromatin remodelling and transporter ATPases, similarly between receptor Serine/Threonine Kinase and Receptor Tyrosine Kinase. There are motifs shared within each category with significant E value and high occurrence. This concept of signature for cellular function was applied to developmental regulators, the polycomb and trithorax proteins which led to the prediction of the role of INO80, a chromatin remodelling protein, in development. This has been experimentally validated earlier for its role in homeotic gene regulation and its interaction with regulatory complexes like the Polycomb and Trithorax complex. Proteins 2017; 85:682-693. © 2016 Wiley Periodicals, Inc.


Assuntos
Adenosina Trifosfatases/genética , DNA Helicases/genética , Genoma Humano , Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas do Grupo Polycomb/genética , Proteínas Quinases/genética , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/classificação , Adenosina Trifosfatases/metabolismo , Motivos de Aminoácidos , Transporte Biológico/genética , Cromatina/química , Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Proteínas de Ligação a DNA , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Anotação de Sequência Molecular , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Proteínas Quinases/classificação , Proteínas Quinases/metabolismo
10.
PLoS One ; 11(11): e0165737, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27828998

RESUMO

The human kinome is one of the most productive classes of drug target, and there is emerging necessity for treating complex diseases by means of polypharmacology (multi-target drugs and combination products). However, the advantages of the multi-target drugs and the combination products are still under debate. A comparative analysis between FDA approved multi-target drugs and combination products, targeting the human kinome, was conducted by mapping targets onto the phylogenetic tree of the human kinome. The approach of network medicine illustrating the drug-target interactions was applied to identify popular targets of multi-target drugs and combination products. As identified, the multi-target drugs tended to inhibit target pairs in the human kinome, especially the receptor tyrosine kinase family, while the combination products were able to against targets of distant homology relationship. This finding asked for choosing the combination products as a better solution for designing drugs aiming at targets of distant homology relationship. Moreover, sub-networks of drug-target interactions in specific disease were generated, and mechanisms shared by multi-target drugs and combination products were identified. In conclusion, this study performed an analysis between approved multi-target drugs and combination products against the human kinome, which could assist the discovery of next generation polypharmacology.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Leucemia/tratamento farmacológico , Linfoma/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases/genética , Sequência de Aminoácidos , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Aprovação de Drogas/legislação & jurisprudência , Combinação de Medicamentos , Interações Medicamentosas , Feminino , Expressão Gênica , Humanos , Leucemia/enzimologia , Leucemia/genética , Leucemia/patologia , Linfoma/enzimologia , Linfoma/genética , Linfoma/patologia , Masculino , Terapia de Alvo Molecular , Filogenia , Polifarmacologia , Proteínas Quinases/classificação , Proteínas Quinases/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Estados Unidos , United States Food and Drug Administration/legislação & jurisprudência
11.
Cancer Treat Rev ; 43: 8-18, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26827688

RESUMO

Sarcomas are a group of cancers that arise from transformed cells of mesenchymal origin. They can be classified into over 50 subtypes, accounting for approximately 1% of adult and 15% of pediatric cancers. Wide surgical resection, radiotherapy, and chemotherapy are the most common treatments for the majority of sarcomas. Among these therapies, chemotherapy can palliate symptoms and prolong life for some sarcoma patients. However, sarcoma cells can have intrinsic or acquired resistance after treatment with chemotherapeutics drugs, leading to the development of multidrug resistance (MDR). MDR attenuates the efficacy of anticancer drugs and results in treatment failure for sarcomas. Therefore, overcoming MDR is an unmet need for sarcoma therapy. Certain protein kinases demonstrate aberrant expression and/or activity in sarcoma cells, which have been found to be involved in the regulation of sarcoma cell progression, such as cell cycle, apoptosis, and survival. Inhibiting these protein kinases may not only decrease the proliferation and growth of sarcoma cells, but also reverse their resistance to chemotherapeutic drugs to subsequently reduce the doses of anticancer drugs and decrease drug side-effects. The discovery of novel strategies targeting protein kinases opens a door to a new area of sarcoma research and provides insight into the mechanisms of MDR in chemotherapy. This review will focus on the recent studies in targeting protein kinase to reverse chemotherapeutic drug resistance in sarcoma.


Assuntos
Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas Quinases , Sarcoma , Terapia Combinada , Humanos , Terapia de Alvo Molecular/métodos , Proteínas Quinases/classificação , Proteínas Quinases/metabolismo , Sarcoma/tratamento farmacológico , Sarcoma/metabolismo , Sarcoma/patologia
12.
Plant J ; 84(6): 1073-86, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26485342

RESUMO

Plant immunity against pathogens is achieved through rapid activation of defense responses that occur upon sensing of microbe- or damage-associated molecular patterns, respectively referred to as MAMPs and DAMPs. Oligogalacturonides (OGs), linear fragments derived from homogalacturonan hydrolysis by pathogen-secreted cell wall-degrading enzymes, and flg22, a 22-amino acid peptide derived from the bacterial flagellin, represent prototypical DAMPs and MAMPs, respectively. Both types of molecules induce protection against infections. In plants, like in animals, calcium is a second messenger that mediates responses to biotic stresses by activating calcium-binding proteins. Here we show that simultaneous loss of calcium-dependent protein kinases CPK5, CPK6 and CPK11 affects Arabidopsis thaliana basal as well as elicitor- induced resistance to the necrotroph Botrytis cinerea, by affecting pathogen-induced ethylene production and accumulation of the ethylene biosynthetic enzymes 1-aminocyclopropane-1-carboxylic acid (ACC) synthase 2 (ACS2) and 6 (ACS6). Moreover, ethylene signaling contributes to OG-triggered immunity activation, and lack of CPK5, CPK6 and CPK11 affects the duration of OG- and flg22-induced gene expression, indicating that these kinases are shared elements of both DAMP and MAMP signaling pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Botrytis/metabolismo , Etilenos/biossíntese , Doenças das Plantas/microbiologia , Proteínas Quinases/metabolismo , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Mutação , Doenças das Plantas/imunologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas Quinases/classificação , Proteínas Quinases/genética , Plântula , Transdução de Sinais/fisiologia
13.
Biochem J ; 465(2): 195-211, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25559089

RESUMO

Protein phosphorylation lies at the heart of cell signalling, and somatic mutation(s) in kinases drives and sustains a multitude of human diseases, including cancer. The human protein kinase superfamily (the kinome) encodes approximately 50 'pseudokinases', which were initially predicted to be incapable of dynamic cell signalling when compared with canonical enzymatically active kinases. This assumption was supported by bioinformatics, which showed that amino acid changes at one or more key loci, making up the nucleotide-binding site or phosphotransferase machinery, were conserved in multiple vertebrate and non-vertebrate pseudokinase homologues. Protein kinases are highly attractive targets for drug discovery, as evidenced by the approval of almost 30 kinase inhibitors in oncology, and the successful development of the dual JAK1/2 (Janus kinase 1/2) inhibitor ruxolitinib for inflammatory indications. However, for such a large (>550) protein family, a remarkable number have still not been analysed at the molecular level, and only a surprisingly small percentage of kinases have been successfully targeted clinically. This is despite evidence that many are potential candidates for the development of new therapeutics. Indeed, several recent reports confirm that disease-associated pseudokinases can bind to nucleotide co-factors at concentrations achievable in the cell. Together, these findings suggest that drug targeting using either ATP-site or unbiased ligand-discovery approaches should now be attempted using the validation technology currently employed to evaluate their classic protein kinase counterparts. In the present review, we discuss members of the human pseudokinome repertoire, and catalogue somatic amino acid pseudokinase mutations that are emerging as the depth and clinical coverage of the human cancer pseudokinome expand.


Assuntos
Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Proteínas Quinases/metabolismo , Proteoma/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Loci Gênicos , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/classificação , Proteínas de Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Nitrilas , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases/classificação , Proteínas Quinases/genética , Proteoma/antagonistas & inibidores , Proteoma/classificação , Proteoma/genética , Pirazóis/uso terapêutico , Pirimidinas
14.
J Med Chem ; 58(1): 30-40, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25051177

RESUMO

Publicly available kinase inhibitors have been analyzed in detail. Nearly 19000 inhibitors have been identified with activity against 266 different kinases. Thus, about half of the human kinome is currently covered with active small molecules. The distribution of inhibitors across the kinome is uneven. Most available kinase inhibitors are likely to be type I inhibitors. By contrast, type II inhibitors are rare but usually have high potency. Kinase inhibitors generally display high scaffold diversity. Activity cliffs with an at least 100-fold difference in potency are only found for inhibitors of 106 kinases, which is partly due to only small numbers of compounds available for many kinases, in addition to scaffold diversity. Moreover, kinase inhibitors are less promiscuous than often thought. More than 70% of available inhibitors are only annotated with a single kinase activity, and only ∼1% of the inhibitors are active against five or more kinases.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Proteoma/antagonistas & inibidores , Proteoma/metabolismo , Antineoplásicos/química , Antineoplásicos/classificação , Antineoplásicos/farmacologia , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/classificação , Proteínas Quinases/classificação , Proteômica/métodos
15.
Int J Mol Sci ; 15(9): 16331-50, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25226540

RESUMO

The gaseous plant hormone ethylene regulates many aspects of plant growth, development and responses to the environment. Constitutive triple response 1 (CTR1) is a central regulator involved in the ethylene signal transduction pathway. To obtain a better understanding of this particular pathway in cucumber, the cDNA-encoding CTR1 (designated CsCTR1) was isolated from cucumber. A sequence alignment and phylogenetic analyses revealed that CsCTR1 has a high degree of homology with other plant CTR1 proteins. The ectopic expression of CsCTR1 in the Arabidopsis ctr1-1 mutant attenuates constitutive ethylene signaling of this mutant, suggesting that CsCTR1 indeed performs its function as negative regulator of the ethylene signaling pathway. CsCTR1 is constitutively expressed in all of the examined cucumber organs, including roots, stems, leaves, shoot apices, mature male and female flowers, as well as young fruits. CsCTR1 expression gradually declined during male flower development and increased during female flower development. Additionally, our results indicate that CsCTR1 can be induced in the roots, leaves and shoot apices by external ethylene. In conclusion, this study provides a basis for further studies on the role of CTR1 in the biological processes of cucumber and on the molecular mechanism of the cucumber ethylene signaling pathway.


Assuntos
Arabidopsis/metabolismo , Cucumis sativus/metabolismo , Etilenos/farmacologia , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Dados de Sequência Molecular , Fenótipo , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas Quinases/classificação , Proteínas Quinases/genética , Alinhamento de Sequência
16.
BMC Bioinformatics ; 14: 345, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24289158

RESUMO

BACKGROUND: Protein kinases are involved in relevant physiological functions and a broad number of mutations in this superfamily have been reported in the literature to affect protein function and stability. Unfortunately, the exploration of the consequences on the phenotypes of each individual mutation remains a considerable challenge. RESULTS: The wKinMut web-server offers direct prediction of the potential pathogenicity of the mutations from a number of methods, including our recently developed prediction method based on the combination of information from a range of diverse sources, including physicochemical properties and functional annotations from FireDB and Swissprot and kinase-specific characteristics such as the membership to specific kinase groups, the annotation with disease-associated GO terms or the occurrence of the mutation in PFAM domains, and the relevance of the residues in determining kinase subfamily specificity from S3Det. This predictor yields interesting results that compare favourably with other methods in the field when applied to protein kinases.Together with the predictions, wKinMut offers a number of integrated services for the analysis of mutations. These include: the classification of the kinase, information about associations of the kinase with other proteins extracted from iHop, the mapping of the mutations onto PDB structures, pathogenicity records from a number of databases and the classification of mutations in large-scale cancer studies. Importantly, wKinMut is connected with the SNP2L system that extracts mentions of mutations directly from the literature, and therefore increases the possibilities of finding interesting functional information associated to the studied mutations. CONCLUSIONS: wKinMut facilitates the exploration of the information available about individual mutations by integrating prediction approaches with the automatic extraction of information from the literature (text mining) and several state-of-the-art databases.wKinMut has been used during the last year for the analysis of the consequences of mutations in the context of a number of cancer genome projects, including the recent analysis of Chronic Lymphocytic Leukemia cases and is publicly available at http://wkinmut.bioinfo.cnio.es.


Assuntos
Biologia Computacional/métodos , Leucemia Linfocítica Crônica de Células B/enzimologia , Leucemia Linfocítica Crônica de Células B/genética , Mutação/genética , Proteínas Quinases/química , Bases de Dados de Proteínas/tendências , Receptores ErbB/genética , Humanos , Armazenamento e Recuperação da Informação/métodos , Leucemia Linfocítica Crônica de Células B/etiologia , Fenótipo , Valor Preditivo dos Testes , Proteínas Quinases/classificação , Proteínas Quinases/genética , Estabilidade Proteica
17.
PLoS One ; 8(12): e80818, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24324631

RESUMO

Calcium-dependent protein kinases (CDPKs) are molecular switches that bind Ca(2+), ATP, and protein substrates, acting as sensor relays and responders that convert Ca(2+) signals, created by developmental processes and environmental stresses, into phosphorylation events. The precise functions of the CDPKs in grapevine (Vitis vinifera) are largely unknown. We therefore investigated the phylogenetic relationships and expression profiles of the 17 CDPK genes identified in the 12x grapevine genome sequence, resolving them into four subfamilies based on phylogenetic tree topology and gene structures. The origins of the CDPKs during grapevine evolution were characterized, involving 13 expansion events. Transcriptomic analysis using 54 tissues and developmental stages revealed three types of CDPK gene expression profiles: constitutive (housekeeping CDPKs), partitioned functions, and prevalent in pollen/stamen. We identified two duplicated CDPK genes that had evolved from housekeeping to pollen-prevalent functions and whose origin correlated with that of seed plants, suggesting neofunctionalization with an important role in pollen development and also potential value in the breeding of seedless varieties. We also found that CDPKs were involved in three abiotic stress signaling pathways and could therefore be used to investigate the crosstalk between stress responses.


Assuntos
Evolução Biológica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Plantas/genética , Pólen/genética , Proteínas Quinases/genética , Vitis/genética , Adaptação Fisiológica/genética , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Duplicação Gênica , Perfilação da Expressão Gênica , Genes Essenciais , Isoenzimas/classificação , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Família Multigênica , Fosforilação , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Pólen/enzimologia , Proteínas Quinases/classificação , Proteínas Quinases/metabolismo , Transdução de Sinais , Estresse Fisiológico/genética , Vitis/enzimologia
18.
Bioinformatics ; 29(19): 2387-94, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23904509

RESUMO

MOTIVATION: Kinases of the eukaryotic protein kinase superfamily are key regulators of most aspects eukaryotic cellular behavior and have provided several drug targets including kinases dysregulated in cancers. The rapid increase in the number of genomic sequences has created an acute need to identify and classify members of this important class of enzymes efficiently and accurately. RESULTS: Kinannote produces a draft kinome and comparative analyses for a predicted proteome using a single line command, and it is currently the only tool that automatically classifies protein kinases using the controlled vocabulary of Hanks and Hunter [Hanks and Hunter (1995)]. A hidden Markov model in combination with a position-specific scoring matrix is used by Kinannote to identify kinases, which are subsequently classified using a BLAST comparison with a local version of KinBase, the curated protein kinase dataset from www.kinase.com. Kinannote was tested on the predicted proteomes from four divergent species. The average sensitivity and precision for kinome retrieval from the test species are 94.4 and 96.8%. The ability of Kinannote to classify identified kinases was also evaluated, and the average sensitivity and precision for full classification of conserved kinases are 71.5 and 82.5%, respectively. Kinannote has had a significant impact on eukaryotic genome annotation, providing protein kinase annotations for 36 genomes made public by the Broad Institute in the period spanning 2009 to the present. AVAILABILITY: Kinannote is freely available at http://sourceforge.net/projects/kinannote.


Assuntos
Células Eucarióticas/enzimologia , Proteínas Quinases/classificação , Algoritmos , Genoma , Internet , Matrizes de Pontuação de Posição Específica , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteoma/genética , Design de Software
19.
Biochim Biophys Acta ; 1834(7): 1302-21, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23524293

RESUMO

The group of AGC protein kinases includes more than 60 protein kinases in the human genome, classified into 14 families: PDK1, AKT/PKB, SGK, PKA, PKG, PKC, PKN/PRK, RSK, NDR, MAST, YANK, DMPK, GRK and SGK494. This group is also widely represented in other eukaryotes, including causative organisms of human infectious diseases. AGC kinases are involved in diverse cellular functions and are potential targets for the treatment of human diseases such as cancer, diabetes, obesity, neurological disorders, inflammation and viral infections. Small molecule inhibitors of AGC kinases may also have potential as novel therapeutic approaches against infectious organisms. Fundamental in the regulation of many AGC kinases is a regulatory site termed the "PIF-pocket" that serves as a docking site for substrates of PDK1. This site is also essential to the mechanism of activation of AGC kinases by phosphorylation and is involved in the allosteric regulation of N-terminal domains of several AGC kinases, such as PKN/PRKs and atypical PKCs. In addition, the C-terminal tail and its interaction with the PIF-pocket are involved in the dimerization of the DMPK family of kinases and may explain the molecular mechanism of allosteric activation of GRKs by GPCR substrates. In this review, we briefly introduce the AGC kinases and their known roles in physiology and disease and the discovery of the PIF-pocket as a regulatory site in AGC kinases. Finally, we summarize the current status and future therapeutic potential of small molecules directed to the PIF-pocket; these molecules can allosterically activate or inhibit the kinase as well as act as substrate-selective inhibitors. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).


Assuntos
Modelos Moleculares , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Regulação Alostérica , Candida albicans/efeitos dos fármacos , Candida albicans/enzimologia , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/classificação
20.
Genes Cells ; 18(2): 110-22, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23279183

RESUMO

The specificities of nine approved tyrosine kinase inhibitors (imatinib, dasatinib, nilotinib, gefitinib, erlotinib, lapatinib, sorafenib, sunitinib, and pazopanib) were determined by activity-based kinase profiling using a large panel of human recombinant active kinases. This panel consisted of 79 tyrosine kinases, 199 serine/threonine kinases, three lipid kinases, and 29 disease-relevant mutant kinases. Many potential targets of each inhibitor were identified by kinase profiling at the K(m) for ATP. In addition, profiling at a physiological ATP concentration (1 mm) was carried out, and the IC(50) values of the inhibitors against each kinase were compared with the estimated plasma-free concentration (calculated from published pharmacokinetic parameters of plasma C(trough) and C(max) values). This analysis revealed that the approved kinase inhibitors were well optimized for their target kinases. This profiling also implicates activity at particular off-target kinases in drug side effects. Thus, large-scale kinase profiling at both K(m) and physiological ATP concentrations could be useful in characterizing the targets and off-targets of kinase inhibitors.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Proteoma , Trifosfato de Adenosina/metabolismo , Ativação Enzimática/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Concentração Inibidora 50 , Cinética , Mutação , Filogenia , Ligação Proteica , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Quinases/classificação , Proteínas Quinases/genética , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA