Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.786
Filtrar
1.
J Agric Food Chem ; 72(15): 8476-8490, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38588403

RESUMO

Melosira nummuloides is a microalga with a nutritionally favorable polyunsaturated fatty acid profile. In the present study, M. nummuloides ethanol extract (MNE) was administered to chronic-binge alcohol-fed mice and alcohol-treated HepG2 cells, and its hepatoprotective effects and underlying mechanisms were investigated. MNE administration reduced triglyceride (TG), total cholesterol (T-CHO), and liver injury markers, including aspartate transaminase (AST) and alanine transaminase (ALT), in the serum of chronic-binge alcohol-fed mice. However, MNE administration increased the levels of phosphorylated adenosine monophosphate-activated protein kinase (P-AMPK/AMPK) and PPARα, which was accompanied by a decrease in SREBP-1; this indicates that MNE can inhibit adipogenesis and improve fatty acid oxidation. Moreover, MNE administration upregulated the expression of antioxidant enzymes, including SOD, NAD(P)H quinone dehydrogenase 1, and GPX, and ameliorated alcohol-induced inflammation by repressing the Akt/NFκB/COX-2 pathway. Metabolomic analysis revealed that MNE treatment modulated many lipid metabolites in alcohol-treated HepG2 cells. Our study findings provide evidence for the efficacy and mechanisms of MNE in ameliorating alcohol-induced liver injury.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Etanol , Camundongos , Animais , Etanol/efeitos adversos , Etanol/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Fígado/metabolismo , Metabolismo dos Lipídeos , Redes e Vias Metabólicas , Camundongos Endogâmicos C57BL
2.
J Agric Food Chem ; 72(18): 10391-10405, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38669300

RESUMO

Metabolic-associated fatty liver disease (MAFLD) is witnessing a global surge; however, it still lacks effective pharmacological interventions. Fucoxanthin, a natural bioactive metabolite derived from marine brown algae, exhibits promising pharmacological functions, particularly in ameliorating metabolic disorders. However, the mechanisms underlying its therapeutic efficacy in addressing MAFLD remain elusive. Our present findings indicated that fucoxanthin significantly alleviated palmitic acid (PA)-induced hepatic lipid deposition in vitro and obesity-induced hepatic steatosis in ob/ob mice. Moreover, at both the protein and transcriptional levels, fucoxanthin effectively increased the expression of PPARα and CPT1 (involved in fatty acid oxidation) and suppressed FASN and SREBP1c (associated with lipogenesis) in both PA-induced HepG2 cells and hepatic tissues in ob/ob mice. This modulation was accompanied by the activation of AMPK. The capacity of fucoxanthin to improve hepatic lipid deposition was significantly attenuated when utilizing the AMPK inhibitor or siRNA-mediated AMPK silencing. Mechanistically, fucoxanthin activates AMPK, subsequently regulating the KEAP1/Nrf2/ARE signaling pathway to exert antioxidative effects and stimulating the PGC1α/NRF1 axis to enhance mitochondrial biogenesis. These collective actions contribute to fucoxanthin's amelioration of hepatic steatosis induced by metabolic perturbations. These findings offer valuable insights into the prospective utilization of fucoxanthin as a therapeutic strategy for managing MAFLD.


Assuntos
Fígado , Camundongos Endogâmicos C57BL , Xantofilas , Xantofilas/farmacologia , Animais , Humanos , Camundongos , Masculino , Fígado/metabolismo , Fígado/efeitos dos fármacos , Células Hep G2 , Metabolismo dos Lipídeos/efeitos dos fármacos , PPAR alfa/metabolismo , PPAR alfa/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/genética , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Obesidade/genética , Lipogênese/efeitos dos fármacos , Camundongos Obesos
3.
J Agric Food Chem ; 72(17): 10065-10075, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634532

RESUMO

Aflatoxins (AFs), highly carcinogenic natural products, are produced by the secondary metabolism of fungi such as Aspergillus flavus. Essential for the fungi to respond to environmental changes and aflatoxin synthesis, the pheromone mitogen-activated protein kinase (MAPK) is a potential regulator of aflatoxin biosynthesis. However, the mechanism by which pheromone MAPK regulates aflatoxin biosynthesis is not clear. Here, we showed Gal83, a new target of Fus3, and identified the pheromone Fus3-MAPK signaling pathway as a regulator of the Snf1/AMPK energy-sensing pathway modulating aflatoxins synthesis substrates. The screening for Fus3 target proteins identified the ß subunit of Snf1/AMPK complexes using tandem affinity purification and multiomics. This subunit physically interacted with Fus3 both in vivo and in vitro and received phosphorylation from Fus3. Although the transcript levels of aflatoxin synthesis genes were not noticeably downregulated in both gal83 and fus3 deletion mutant strains, the levels of aflatoxin B1 and its synthesis substrates and gene expression levels of primary metabolizing enzymes were significantly reduced. This suggests that both the Fus3-MAPK and Snf1/AMPK pathways respond to energy signals. In conclusion, all the evidence unlocks a novel pathway of Fus3-MAPK to regulate AFs synthesis substrates by cross-talking with the Snf1/AMPK complexes.


Assuntos
Aspergillus flavus , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno , Aspergillus flavus/metabolismo , Aspergillus flavus/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Metabolismo Secundário , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Fosforilação , Aflatoxinas/metabolismo , Ligação Proteica , Transdução de Sinais
4.
Biochem J ; 481(8): 587-599, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38592738

RESUMO

The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status. When activated by increases in ADP:ATP and/or AMP:ATP ratios (signalling energy deficit), AMPK acts to restore energy balance. Binding of AMP to one or more of three CBS repeats (CBS1, CBS3, CBS4) on the AMPK-γ subunit activates the kinase complex by three complementary mechanisms: (i) promoting α-subunit Thr172 phosphorylation by the upstream kinase LKB1; (ii) protecting against Thr172 dephosphorylation; (iii) allosteric activation. Surprisingly, binding of ADP has been reported to mimic the first two effects, but not the third. We now show that at physiologically relevant concentrations of Mg.ATP2- (above those used in the standard assay) ADP binding does cause allosteric activation. However, ADP causes only a modest activation because (unlike AMP), at concentrations just above those where activation becomes evident, ADP starts to cause competitive inhibition at the catalytic site. Our results cast doubt on the physiological relevance of the effects of ADP and suggest that AMP is the primary activator in vivo. We have also made mutations to hydrophobic residues involved in binding adenine nucleotides at each of the three γ subunit CBS repeats of the human α2ß2γ1 complex and examined their effects on regulation by AMP and ADP. Mutation of the CBS3 site has the largest effects on all three mechanisms of AMP activation, especially at lower ATP concentrations, while mutation of CBS4 reduces the sensitivity to AMP. All three sites appear to be required for allosteric activation by ADP.


Assuntos
Proteínas Quinases Ativadas por AMP , Difosfato de Adenosina , Monofosfato de Adenosina , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Humanos , Regulação Alostérica , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/química , Ligantes , Fosforilação , Trifosfato de Adenosina/metabolismo , Ativação Enzimática , Ligação Proteica
6.
BMC Genomics ; 25(1): 294, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504177

RESUMO

BACKGROUND: Muscle growth post-birth relies on muscle fiber number and size. Myofibre number, metabolic and contractile capacities are established pre-birth during prenatal myogenesis. The aim of this study was to identify genes involved in skeletal muscle development in cattle, sheep, and pigs - livestock. RESULTS: The cattle analysis showed significant differences in 5043 genes during the 135-280 dpc period. In sheep, 444 genes differed significantly during the 70-120 dpc period. Pigs had 905 significantly different genes for the 63-91 dpc period.The biological processes and KEGG pathway enrichment results in each species individually indicated that DEGs in cattle were significantly enriched in regulation of cell proliferation, cell division, focal adhesion, ECM-receptor interaction, and signaling pathways (PI3K-Akt, PPAR, MAPK, AMPK, Ras, Rap1); in sheep - positive regulation of fibroblast proliferation, negative regulation of endothelial cell proliferation, focal adhesion, ECM-receptor interaction, insulin resistance, and signaling pathways (PI3K-Akt, HIF-1, prolactin, Rap1, PPAR); in pigs - regulation of striated muscle tissue development, collagen fibril organization, positive regulation of insulin secretion, focal adhesion, ECM-receptor interaction, and signaling pathways (PPAR, FoxO, HIF-1, AMPK). Among the DEGs common for studied animal species, 45 common genes were identified. Based on these, a protein-protein interaction network was created and three significant modules critical for skeletal muscle myogenesis were found, with the most significant module A containing four recognized hub genes - EGFR, VEGFA, CDH1, and CAV1. Using the miRWALK and TF2DNA databases, miRNAs (bta-miR-2374 and bta-miR-744) and transcription factors (CEBPB, KLF15, RELA, ZNF143, ZBTB48, and REST) associated with hub genes were detected. Analysis of GO term and KEGG pathways showed that such processes are related to myogenesis and associated with module A: positive regulation of MAP kinase activity, vascular endothelial growth factor receptor, insulin-like growth factor binding, focal adhesion, and signaling pathways (PI3K-Akt, HIF-1, Rap1, Ras, MAPK). CONCLUSIONS: The identified genes, common to the prenatal developmental period of skeletal muscle in livestock, are critical for later muscle development, including its growth by hypertrophy. They regulate valuable economic characteristics. Enhancing and breeding animals according to the recognized genes seems essential for breeders to achieve superior gains in high-quality muscle mass.


Assuntos
Perfilação da Expressão Gênica , MicroRNAs , Suínos/genética , Animais , Bovinos , Ovinos/genética , Perfilação da Expressão Gênica/métodos , Gado/genética , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Receptores Ativados por Proliferador de Peroxissomo/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Músculo Esquelético/metabolismo , MicroRNAs/genética , Desenvolvimento Muscular/genética
7.
Transl Vis Sci Technol ; 13(3): 19, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517447

RESUMO

Purpose: The regulation of mitophagy by Sirt3 has rarely been studied in ocular diseases. In the present study, we determined the effects of Sirt3 on AMPK/mTOR/ULK1 signaling pathway-mediated mitophagy in retinal pigment epithelial (RPE) cells in a high glucose environment. Methods: The mRNA expression levels of Sirt3, AMPK, mTOR, ULK1, and LC3B in RPE cells under varying glucose conditions were measured by real-time polymerase chain reaction (RT-PCR). The expressions of Sirt3, mitophagy protein, and AMPK/mTOR/ULK1 signaling pathway-related proteins were detected by Western blotting. Lentivirus (LV) transfection mediated the stable overexpression of Sirt3 in cell lines. The experimental groups were NG (5.5 mM glucose), hypertonic, HG (30 mM glucose), HG + LV-GFP, and HG + LV-Sirt3. Western blotting was performed to detect the expressions of mitophagy proteins and AMPK/mTOR/ULK1-related proteins in a high glucose environment during the overexpression of Sirt3. Reactive oxygen species (ROS) production in a high glucose environment was measured by DCFH-DA staining. Mitophagy was detected by labeling mitochondria and lysosomes with MitoTracker and LysoTracker probes, respectively. Apoptosis was detected by flow cytometry. Results: Sirt3 expression was reduced in the high glucose group, inhibiting the AMPK/mTOR/ULK1 pathway, with diminished mitophagy and increased intracellular ROS production. The overexpression of Sirt3, increased expression of p-AMPK/AMPK and p-ULK1/ULK1, and decreased expression of p-mTOR/mTOR inhibited cell apoptosis and enhanced mitophagy. Conclusions: Sirt3 protected RPE cells from high glucose-induced injury by activating the AMPK/mTOR/ULK1 signaling pathway. Translational Relevance: By identifying new targets of action, we aimed to establish effective therapeutic targets for diabetic retinopathy treatment.


Assuntos
Retinopatia Diabética , Mitofagia , Sirtuína 3 , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Retinopatia Diabética/metabolismo , Células Epiteliais/metabolismo , Glucose/toxicidade , Mitofagia/genética , Espécies Reativas de Oxigênio/metabolismo , Retina/metabolismo , Retina/patologia , Sirtuína 3/genética , Sirtuína 3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Humanos
8.
Food Chem Toxicol ; 186: 114587, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461953

RESUMO

Hepatocellular carcinoma (HCC) is the third most lethal cancer in the world. Recent studies have shown that suppression of autophagy plays an important role in the development of HCC. Ginsenoside Rk1 is a protopanaxadiol saponin isolated from ginseng and has a significant anti-tumor effect, but its role and mechanism in HCC are still unclear. In this study, a mouse liver cancer model induced by diethylnitrosamine and carbon tetrachloride (DEN + CCl4) was employed to investigate the inhibitory effect of Rk1 on HCC. The results demonstrate that ginsenoside Rk1 effectively inhibits liver injury, liver fibrosis, and cirrhosis during HCC progression. Transcriptome data analysis of mouse liver tissue reveals that ginsenoside Rk1 significantly regulates the AMPK/mTOR signaling pathway, autophagy pathway, and apoptosis pathway. Subsequent studies show that ginsenoside Rk1 induces AMPK protein activation, upregulates the expression of autophagy marker LC3-II protein to promote autophagy, and then downregulates the expression of Bcl2 protein to trigger a caspase cascade reaction, activating AMPK/mTOR-induced toxic autophagy to promote cells death. Importantly, co-treatment of ginsenoside Rk1 with autophagy inhibitors can inhibit apoptosis of HCC cells, once again demonstrating the ability of ginsenoside Rk1 to promote autophagy-dependent apoptosis. In conclusion, our study demonstrates that ginsenoside Rk1 inhibits the development of primary HCC by activating toxic autophagy to promote apoptosis through the AMPK/mTOR pathway. These findings confirm that ginsenoside Rk1 is a promising new strategy for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Ginsenosídeos , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Autofagia
9.
Food Chem Toxicol ; 186: 114538, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387523

RESUMO

Arsenic exposure is a significant risk factor for folate-resistant neural tube defects (NTDs), but the potential mechanism is unclear. In this study, a mouse model of arsenic-induced NTDs was established to investigate how arsenic affects early neurogenesis leading to malformations. The results showed that in utero exposure to arsenic caused a decline in the normal embryos, an elevated embryo resorption, and a higher incidence of malformed embryos. Cranial and spinal deformities were the main malformation phenotypes observed. Meanwhile, arsenic-induced NTDs were accompanied by an oxidant/antioxidant imbalance manifested by elevated levels of reactive oxygen species (ROS) and decreased antioxidant activities. In addition, changes in the expression of autophagy-related genes and proteins (ULK1, Atg5, LC3B, p62) as well as an increase in autophagosomes were observed in arsenic-induced aberrant brain vesicles. Also, the components of the upstream pathway regulating autophagy (AMPK, PKB, mTOR, Raptor) were altered accordingly after arsenic exposure. Collectively, our findings propose a mechanism for arsenic-induced NTDs involving AMPK/PKB-mTORC1-mediated autophagy. Blocking autophagic cell death due to excessive autophagy provides a novel strategy for the prevention of folate-resistant NTDs, especially for arsenic-exposed populations.


Assuntos
Arsênio , Defeitos do Tubo Neural , Camundongos , Animais , Arsênio/toxicidade , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Antioxidantes , Tubo Neural/metabolismo , Autofagia/fisiologia , Ácido Fólico/efeitos adversos , Defeitos do Tubo Neural/induzido quimicamente
10.
Medicine (Baltimore) ; 103(8): e36509, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394540

RESUMO

This study aimed to investigate the molecular mechanisms underlying the aging of hematopoietic stem cells (HSCs). Gene expression profile GSE32719 was downloaded from the Gene Expression Omnibus database, including 14 young, 5 middle, and 8 old HSCs. Differential expression analysis, short time-series expression miner analysis, and weighted co-expression network analysis were conducted to screen for hub genes whose expression changed over time during HSC aging. Subsequently, functional enrichment and multiple regulatory network analyses of the hub genes were performed. A total of 124 intersecting time-dependent differentially expressed and module genes were obtained, which were considered hub genes whose expression changed over time during HSC aging. Hub genes were significantly enriched in pathways such as the Hippo and AMP-activated protein kinase (AMPK) signaling pathways. Moreover, AP-1 Transcription Factor Subunit (FOS) and sirtuin 1 (SIRT1) had higher degrees in the protein-protein interaction network, were regulated by more transcription factors (TFs), such as Sp1 transcription factor (SP1) and BRCA1 DNA repair-associated (BRCA1), in the TF-mRNA-miRNA network, were associated with more diseases in the disease-gene network, and could be targeted by more drugs in the drug-gene network. Furthermore, SIRT1 was targeted by miR-9-5p in the TF-mRNA-miRNA network. Hub genes such as FOS and SIRT1 and key pathways such as the Hippo and AMPK signaling pathways may play crucial roles in HSC aging. Moreover, FOS and SIRT1 were regulated by SP1 and BRCA1, respectively, during HSC aging. Furthermore, miR-9-5p may modulate HSC aging by targeting SIRT1. Thus, FOS and SIRT1 may be potential therapeutic targets for age-related hematopoietic dysfunction.


Assuntos
Perfilação da Expressão Gênica , MicroRNAs , Humanos , Proteínas Quinases Ativadas por AMP/genética , Sirtuína 1/genética , MicroRNAs/genética , Fatores de Transcrição/genética , Redes Reguladoras de Genes , Células-Tronco Hematopoéticas , RNA Mensageiro , Biologia Computacional
11.
Free Radic Biol Med ; 214: 101-113, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360276

RESUMO

Sorafenib is a targeted anticancer drug in clinic. Low-dose sorafenib has been reported to activate AMPK through inducing mitochondrial uncoupling without detectable toxicities. AMPK activation has been the approach for extending lifespan, therefore, we investigated the effect of sorafenib on lifespan and physical activity of C. elegans and the underlying mechanisms. In the present study, we found that the effect of sorafenib on C. elegans lifespan was typically hermetic. Sorafenib treatment at higher concentrations (100 µM) was toxic but at lower concentrations (1, 2.5, 5 µM) was beneficial to C. elegans. Sorafenib (1 µM) treatment for whole-life period extended C. elegans lifespan and improved C. elegans physical activity as manifested by increasing pharyngeal pumping and body movement, preserving intestinal barrier integrity, muscle fibers organization and mitochondrial morphology. In addition, sorafenib (1 µM) treatment enhanced C. elegans stress resistance. Sorafenib activated AMPK through inducing mitochondrial uncoupling in C. elegans. Sorafenib treatment activated DAF-16, SKN-1, and increased SOD-3, HSP-16.2, GST-4 expression in C. elegans. Sorafenib treatment induced AMPK-dependent autophagy in C. elegans. We conclude that low-dose sorafenib protects C. elegans against aging through activating AMPK/DAF-16 dependent anti-oxidant pathways and stimulating autophagy responses. Low-dose sorafenib could be a strategy for treating aging and aging-related diseases.


Assuntos
Caenorhabditis elegans , Longevidade , Animais , Caenorhabditis elegans/genética , Sorafenibe/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Envelhecimento
12.
Meat Sci ; 211: 109440, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38324956

RESUMO

This study aimed to investigate the effects of exercise on muscle fiber conversion, muscle development and meat quality in the biceps femoris (BF) muscle of Sunit sheep. Twelve Sunit sheep with similar body weight were divided into two groups: control group (C group) and exercise group (E group), E group lambs underwent 6 km of exercise training per day for 90 d. The findings revealed that compared with the C group, exercise training enhanced the expression of MyHC IIa mRNA, decreased the number ratio of type IIB muscle fibers and the expression of MyHC IIb mRNA (P < 0.05). Furthermore, the E group lamb displayed higher creatine kinase (CK) activity, and lactic acid levels (P < 0.05), while glycogen content and lactic dehydrogenase (LDH) activity showed opposite trends (P < 0.05). Exercise significantly up-regulated the mRNA expression of AMP-activated protein kinase α1 (AMPKα1), sirtuin1 (SIRT1), peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), cytochrome c oxidase IV (COX IV), protein kinase B (Akt), mammalian target of rapamycin (mTOR) and p70 Ribosomal S6 Kinase 1 (p70s6k1) (P < 0.05), suggesting exercise promoted muscle fiber conversion by mediating AMPK/PGC-1α pathway, and improved skeletal muscle development via Akt/mTOR pathway. Besides, backfat thickness and pH45min value in the E group decreased significantly, while the pH24, a*, and shear force value increased significantly (P < 0.05). To conclude, this study suggested that exercise training can be used to alter muscle fiber characteristics and muscle development in lamb production.


Assuntos
Músculo Esquelético , Proteínas Proto-Oncogênicas c-akt , Animais , Ovinos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Serina-Treonina Quinases TOR/metabolismo , RNA Mensageiro/metabolismo , Carne , Desenvolvimento Muscular , Mamíferos/genética , Mamíferos/metabolismo
13.
Pharmacogenomics J ; 24(2): 5, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378770

RESUMO

OBJECTIVE: To explore the role of p300 in the context of paclitaxel (PTX) resistance in triple-negative breast cancer (TNBC) cells, focusing on its interaction with the phosphoenolpyruvate carboxykinase 1 (PCK1)/adenosine monophosphate-activated protein kinase (AMPK) pathway. METHODS: The expression of p300 and PCK1 at the messenger ribonucleic acid (mRNA) level was detected using a quantitative polymerase chain reaction. The GeneCards and GEPIA databases were used to investigate the relationship between p300 and PCK1. The MDA-MB-231/PTX cell line, known for its PTX resistance, was chosen to understand the specific role of p300 in such cells. The Lipofectamine™ 3000 reagent was used to transfer the p300 small interfering RNA and the overexpression of PCK1 plasmid into MDA-MB-231/PTX. The expression levels of p300, PCK1, 5'AMPK and phosphorylated AMPK (p-AMPK) were determined using the western blot test. RESULTS: In TNBC cancer tissue, the expression of p300 was increased compared with TNBC paracancerous tissue (P < 0.05). In the MDA-MB-231 cell line of TNBC, the expression of p300 was lower than in the PTX-resistant TNBC cells (MDA-MB-231/PTX) (P < 0.05). The PCK1 expression was decreased in the TNBC cancer tissue compared with TNBC paracancerous tissue, and the PCK1 expression was reduced in MDA-MB-231/PTX than in MDA-MB-231 (P < 0.05) indicating that PCK1 was involved in the resistance function. Additionally, p-AMPK was decreased in MDA-MB-231/PTX compared with MDA-MB-231 (P < 0.05). The adenosine triphosphate (ATP) level was also detected and was significantly lower in MDA-MB-231/PTX than in MDA-MB-231 (P < 0.05). Additionally, cell proliferation increased significantly in MDA-MB-231/PTX at 48 and 72 h (P < 0.05) suggesting that MDA-MB-231/PTX cells obtained the resistance function which was associated with AMPK and ATP level. When p300 was inhibited, p-AMPK and ATP levels elevated in MDA-MB-231/PTX (P < 0.05). When PCK1 was suppressed, the ATP consumption rate decreased, and cell proliferation increased (P < 0.05). However, there were no changes in p300. CONCLUSIONS: In MDA-MB-231/PTX, p300 can inhibit p-AMPK and ATP levels by inhibiting PCK1 expression. Our findings suggest that targeting p300 could modulate the PCK1/AMPK axis, offering a potential therapeutic avenue for overcoming PTX resistance in TNBC.


Assuntos
Paclitaxel , Neoplasias de Mama Triplo Negativas , Humanos , Trifosfato de Adenosina/uso terapêutico , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Peptídeos e Proteínas de Sinalização Intracelular/genética , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Regulação para Cima
14.
Lipids Health Dis ; 23(1): 52, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378566

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is closely linked to metabolic syndrome, characterised by insulin resistance, hyperglycaemia, abnormal lipid metabolism, and chronic inflammation. Diabetic ulcers (DUs) comprise consequential complications that arise as a result of T2DM. To investigate, db/db mice were used for the disease model. The findings demonstrated that a scaffold made from a combination of rhubarb charcoal-crosslinked chitosan and silk fibroin, designated as RCS/SF, was able to improve the healing process of diabetic wounds in db/db mice. However, previous studies have primarily concentrated on investigating the impacts of the RSC/SF scaffold on wound healing only, while its influence on the entire body has not been fully elucidated. MATERIAL AND METHODS: The silk fibroin/chitosan sponge scaffold containing rhubarb charcoal was fabricated in the present study using a freeze-drying approach. Subsequently, an incision with a diameter of 8 mm was made on the dorsal skin of the mice, and the RCS/SF scaffold was applied directly to the wound for 14 days. Subsequently, the impact of RCS/SF scaffold therapy on hepatic lipid metabolism was assessed through analysis of serum and liver biochemistry, histopathology, quantitative real-time PCR (qRT-PCR), immunohistochemistry, and Western blotting. RESULTS: The use of the RCS/SF scaffold led to an enhancement in the conditions associated with serum glucolipid metabolism in db/db mice. An assessment of hepatic histopathology further confirmed this enhancement. Additionally, the qRT-PCR analysis revealed that treatment with RCS/SF scaffold resulted in the downregulation of genes associated with fatty acid synthesis, fatty acid uptake, triglyceride (TG) synthesis, gluconeogenesis, and inflammatory factors. Moreover, the beneficial effect of the RCS/SF scaffold on oxidative stress was shown by assessing antioxidant enzymes and lipid peroxidation. Additionally, the network pharmacology analysis verified that the adenosine monophosphate-activated protein kinase (AMPK) signalling pathway had a vital function in mitigating non-alcoholic fatty liver disease (NAFLD) by utilizing R. officinale. The measurement of AMPK, sterol regulatory element binding protein 1 (SREBP1), fatty acid synthase (FASN), and acetyl CoA carboxylase (ACC) gene and protein expression provided support for this discovery. Furthermore, the molecular docking investigations revealed a robust affinity between the active components of rhubarb and the downstream targets of AMPK (SREBP1 and FASN). CONCLUSION: By regulating the AMPK signalling pathway, the RCS/SF scaffold applied topically effectively mitigated hepatic lipid accumulation, decreased inflammation, and attenuated oxidative stress. The present study, therefore, emphasises the crucial role of the topical RCS/SF scaffold in regulating hepatic lipid metabolism, thereby confirming the concept of "external and internal reshaping".


Assuntos
Quitosana , Complicações do Diabetes , Diabetes Mellitus Tipo 2 , Fibroínas , Hepatopatia Gordurosa não Alcoólica , Rheum , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Rheum/metabolismo , Carvão Vegetal/metabolismo , Carvão Vegetal/farmacologia , Carvão Vegetal/uso terapêutico , Fibroínas/metabolismo , Fibroínas/farmacologia , Fibroínas/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Simulação de Acoplamento Molecular , Úlcera/metabolismo , Úlcera/patologia , Fígado/metabolismo , Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica/patologia , Complicações do Diabetes/patologia , Inflamação/patologia , Ácidos Graxos/metabolismo , Lipídeos/uso terapêutico
15.
Acta Biochim Biophys Sin (Shanghai) ; 56(2): 162-173, 2024 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-38298056

RESUMO

Voltage-dependent anion channel 1 (VDAC1) is a pore protein located in the outer mitochondrial membrane. Its channel gating mediates mitochondrial respiration and cell metabolism, and it has been identified as a critical modulator of mitochondria-mediated apoptosis. In many diseases characterized by mitochondrial dysfunction, such as cancer and neurodegenerative diseases, VDAC1 is considered a promising potential therapeutic target. However, there is limited research on the regulatory factors involved in VDAC1 protein expression in both normal and pathological states. In this study, we find that VDAC1 protein expression is up-regulated in various neuronal cell lines in response to intracellular metabolic and oxidative stress. We further demonstrate that VDAC1 expression is modulated by intracellular ATP level. Through the use of pharmacological agonists and inhibitors and small interfering RNA (siRNA), we reveal that the AMPK/PGC-1α signaling pathway is involved in regulating VDAC1 expression. Additionally, based on bioinformatics predictions and biochemical verification, we identify p53 as a potential transcription factor that regulates VDAC1 promoter activity during metabolic oxidative stress. Our findings suggest that VDAC1 expression is regulated by the AMPK/PGC-1α and p53 pathways, which contributes to the maintenance of stress adaptation and apoptotic homeostasis in neuronal cells.


Assuntos
Proteína Supressora de Tumor p53 , Canal de Ânion 1 Dependente de Voltagem , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Estresse Oxidativo , Apoptose/genética , Trifosfato de Adenosina/metabolismo
16.
J Biol Chem ; 300(3): 105695, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301894

RESUMO

BHLHE40 is a basic helix-loop-helix transcription factor that is involved in multiple cell activities including differentiation, cell cycle, and epithelial-to-mesenchymal transition. While there is growing evidence to support the functions of BHLHE40 in energy metabolism, little is known about the mechanism. In this study, we found that BHLHE40 expression was downregulated in cases of endometrial cancer of higher grade and advanced disease. Knockdown of BHLHE40 in endometrial cancer cells resulted in suppressed oxygen consumption and enhanced extracellular acidification. Suppressed pyruvate dehydrogenase (PDH) activity and enhanced lactated dehydrogenase (LDH) activity were observed in the knockdown cells. Knockdown of BHLHE40 also led to dephosphorylation of AMPKα Thr172 and enhanced phosphorylation of pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1) Ser293 and lactate dehydrogenase A (LDHA) Tyr10. These results suggested that BHLHE40 modulates PDH and LDH activity by regulating the phosphorylation status of PDHA1 and LDHA. We found that BHLHE40 enhanced AMPKα phosphorylation by directly suppressing the transcription of an AMPKα-specific phosphatase, PPM1F. Our immunohistochemical study showed that the expression of BHLHE40, PPM1F, and phosphorylated AMPKα correlated with the prognosis of endometrial cancer patients. Because AMPK is a central regulator of energy metabolism in cancer cells, targeting the BHLHE40‒PPM1F‒AMPK axis may represent a strategy to control cancer development.


Assuntos
Proteínas Quinases Ativadas por AMP , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Neoplasias do Endométrio , Metabolismo Energético , Fosfoproteínas Fosfatases , Feminino , Humanos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/fisiopatologia , Metabolismo Energético/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Consumo de Oxigênio/genética , Regulação Neoplásica da Expressão Gênica/genética , Fosforilação/genética
17.
J Cell Physiol ; 239(5): e31230, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403972

RESUMO

Multiple sclerosis (MS) is a chronic central nervous system (CNS) disorder characterized by demyelination, neuronal damage, and oligodendrocyte depletion. Reliable biomarkers are essential for early diagnosis and disease management. Emerging research highlights the role of mitochondrial dysfunction and oxidative stress in CNS disorders, including MS, in which mitochondria are central to the degenerative process. Adenosine monophosphate-activated protein kinase (AMPK) regulates the mitochondrial energy balance and initiates responses in neurodegenerative conditions. This systematic review, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, aimed to comprehensively assess the literature on AMPK pathways, mitochondrial dysfunction, and in vivo studies using MS animal models. The search strategy involved the use of AMPK syntaxes, MS syntaxes, and animal model syntaxes. The PubMed, Scopus, Web of Science, and Google Scholar databases were systematically searched on August 26, 2023 without publication year restrictions. The review identified and analyzed relevant papers to provide a comprehensive overview of the current state of related research. Eight studies utilizing various interventions and methodological approaches were included. Risk of bias assessment revealed some areas of low risk but lacked explicit reporting in others. These studies collectively revealed a complex relationship between AMPK, mitochondrial dysfunction, and MS pathogenesis, with both cuprizone and experimental autoimmune encephalomyelitis models demonstrating associations between AMPK and mitochondrial disorders, including oxidative stress and impaired expression of mitochondrial genes. These studies illuminate the multifaceted role of AMPK in MS animal models, involving energy metabolism, inflammatory processes, oxidative stress, and gene regulation leading to mitochondrial dysfunction. However, unanswered questions about its mechanisms and clinical applications underscore the need for further research to fully harness its potential in addressing MS-related mitochondrial dysfunction.


Assuntos
Proteínas Quinases Ativadas por AMP , Modelos Animais de Doenças , Mitocôndrias , Esclerose Múltipla , Estresse Oxidativo , Animais , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Esclerose Múltipla/enzimologia , Mitocôndrias/patologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Humanos , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia
18.
Res Vet Sci ; 169: 105177, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350170

RESUMO

Subclinical ketosis (SCK) in dairy cows is often misdiagnosed because it lacks clinical signs and detection indicators. However, it is highly prevalent and may transform into clinical ketosis if not treated promptly. Due to the negative energy balance, a large amount of fat is mobilized, producing NEFA that exceeds the upper limit of liver processing, which in turn leads to the disturbance of liver lipid metabolism. The silent information regulator 1 (SIRT1) is closely related to hepatic lipid metabolism disorders. Exosomes as signal transmitters, also play a role in the circulatory system. We hypothesize that the circulating exosome-mediated adenosine 5'-monophosphate (AMP)-activated protein kinase alpha (AMPKα)-SIRT1 pathway regulates lipid metabolism disorders in SCK cows. We extracted the exosomes required for the experiment from the peripheral circulating blood of non-ketotic (NK) and SCK cows. We investigated the effect of circulating exosomes on the expression levels of mRNA and protein of the AMPKα-SIRT1 pathway in non-esterified fatty acid (NEFA)-induced dairy cow primary hepatocytes using in vitro cell experiments. The results showed that circulating exosomes increased the expression levels of Lipolysis-related genes and proteins (AMPKα, SIRT1, and PGC-1α) in hepatocytes treated with 1.2 mM NEFA, and inhibited the expression of lipid synthesis-related genes and protein (SREBP-1C). The regulation of exosomes on lipid metabolism disorders caused by 1.2 mM NEFA treatment showed the same trend as for SIRT1-overexpressing adenovirus. The added exosomes could regulate NEFA-induced lipid metabolism in hepatocytes by mediating the AMPKα-SIRT1 pathway, consistent with the effect of transfected SIRT1 adenovirus.


Assuntos
Doenças dos Bovinos , Exossomos , Cetose , Transtornos do Metabolismo dos Lipídeos , Feminino , Animais , Bovinos , Metabolismo dos Lipídeos/fisiologia , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia , Ácidos Graxos não Esterificados , Exossomos/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Transtornos do Metabolismo dos Lipídeos/metabolismo , Transtornos do Metabolismo dos Lipídeos/veterinária , Proteínas Quinases Ativadas por AMP/genética , Cetose/veterinária , Doenças dos Bovinos/metabolismo
19.
EMBO Rep ; 25(1): 128-143, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177907

RESUMO

Collateral circulation is essential for blood resupply to the ischemic heart, which is dictated by the contractile phenotypic restoration of vascular smooth muscle cells (VSMC). Here we investigate whether S-nitrosylation of AMP-activated protein kinase (AMPK), a key regulator of the VSMC phenotype, impairs collateral circulation. In rats with collateral growth and development, nitroglycerin decreases coronary collateral blood flow (CCBF), inhibits vascular contractile phenotypic restoration, and increases myocardial infarct size, accompanied by reduced AMPK activity in the collateral zone. Nitric oxide (NO) S-nitrosylates human recombinant AMPKγ1 at cysteine 131 and decreases AMP sensitivity of AMPK. In VSMCs, exogenous expression of S-nitrosylation-resistant AMPKγ1 or deficient NO synthase (iNOS) prevents the disruption of VSMC reprogramming. Finally, hyperhomocysteinemia or hyperglycemia increases AMPKγ1 S-nitrosylation, prevents vascular contractile phenotypic restoration, reduces CCBF, and increases the infarct size of the heart in Apoe-/- mice, all of which is rescued in Apoe-/-/iNOSsm-/- mice or Apoe-/- mice with enforced expression of the AMPKγ1-C130A mutant following RI/MI. We conclude that nitrosative stress disrupts coronary collateral circulation during hyperhomocysteinemia or hyperglycemia through AMPK S-nitrosylation.


Assuntos
Hiperglicemia , Hiper-Homocisteinemia , Ratos , Camundongos , Humanos , Animais , Circulação Colateral , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Músculo Liso Vascular , Hiper-Homocisteinemia/metabolismo , Apolipoproteínas E/metabolismo , Hiperglicemia/metabolismo
20.
Biochim Biophys Acta Mol Cell Res ; 1871(3): 119659, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216089

RESUMO

The effects of EGCG on the selective death of cancer cells by modulating antioxidant pathways through autophagy were explored in various normal and cancer cells. EGCG positively regulated the p62-KEAP1-NRF2-HO-1 pathway in normal cells, while negatively regulating it in cancer cells, leading to selective apoptotic death of cancer cells. In EGCG-treated MRC5 cells (EGCG-MRC5), autophagic flux was blocked, which was accompanied by the formation of p62-positive aggregates. However, EGCG-treated HeLa cells (EGCG-HeLa) showed incomplete autophagic flux and no aggregate formation. The levels of P-ULK1 S556 and S758 increased in EGCG-MRC5 through AMPK-mTOR cooperative interaction. In contrast, EGCG treatment in HeLa cells led to AMPK-induced mTOR inactivation, resulting in abrogation of P-ULK1 S556 and S758 levels. AMPK knockout in EGCG-HeLa restored positive regulation of the p62-mediated pathway, which was accompanied by increased P-mTOR S2448 and P-ULK1 S758 levels. Knockdown of 67LR in EGCG-HeLa abolished AMPK activity but did not restore the p62-mediated pathway. Surprisingly, both AMPK knockout and 67LR knockdown in EGCG-HeLa markedly increased cell viability, despite differential regulation of the antioxidant enzyme HO-1. In conclusion, EGCG induces the selective death of cancer cells through the modulation of at least two autophagy-dependent and independent regulatory pathways: negative regulation involves the mTOR-ULK1 (S556 and S758)-p62-KEAP1-NRF2-HO-1 axis via AMPK activation, whereas positive regulation occurs through the 67LR-AMPK axis.


Assuntos
Antioxidantes , Neoplasias , Humanos , Antioxidantes/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch , Proteínas Quinases Ativadas por AMP/genética , Células HeLa , Fator 2 Relacionado a NF-E2/genética , Autofagia , Serina-Treonina Quinases TOR/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA