Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
J Biol Chem ; 300(8): 107550, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002682

RESUMO

The PKC-related kinases (PRKs, also termed PKNs) are important in cell migration, cancer, hepatitis C infection, and nutrient sensing. They belong to a group of protein kinases called AGC kinases that share common features like a C-terminal extension to the catalytic domain comprising a hydrophobic motif. PRKs are regulated by N-terminal domains, a pseudosubstrate sequence, Rho-binding domains, and a C2 domain involved in inhibition and dimerization, while Rho and lipids are activators. We investigated the allosteric regulation of PRK2 and its interaction with its upstream kinase PDK1 using a chemical biology approach. We confirmed the phosphoinositide-dependent protein kinase 1 (PDK1)-interacting fragment (PIF)-mediated docking interaction of PRK2 with PDK1 and showed that this interaction can be modulated allosterically. We showed that the polypeptide PIFtide and a small compound binding to the PIF-pocket of PRK2 were allosteric activators, by displacing the pseudosubstrate PKL region from the active site. In addition, a small compound binding to the PIF-pocket allosterically inhibited the catalytic activity of PRK2. Together, we confirmed the docking interaction and allostery between PRK2 and PDK1 and described an allosteric communication between the PIF-pocket and the active site of PRK2, both modulating the conformation of the ATP-binding site and the pseudosubstrate PKL-binding site. Our study highlights the allosteric modulation of the activity and the conformation of PRK2 in addition to the existence of at least two different complexes between PRK2 and its upstream kinase PDK1. Finally, the study highlights the potential for developing allosteric drugs to modulate PRK2 kinase conformations and catalytic activity.


Assuntos
Proteína Quinase C , Piruvato Desidrogenase Quinase de Transferência de Acetil , Humanos , Regulação Alostérica , Proteína Quinase C/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/química , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Domínio Catalítico , Simulação de Acoplamento Molecular , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/química , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/química , Ligação Proteica
2.
Cancer Lett ; 597: 217074, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38901667

RESUMO

Oncogene activation through DNA amplification or overexpression is a crucial driver of cancer initiation and progression. The FOXK2 gene, located on chromosome 17q25, encodes a transcription factor with a forkhead DNA-binding domain. Analysis of genomic datasets reveals that FOXK2 is frequently amplified and overexpressed in breast cancer, correlating with poor patient survival. Knockdown of FOXK2 significantly inhibited breast cancer cell proliferation, migration, anchorage-independent growth, and delayed tumor growth in a xenograft mouse model. Additionally, inhibiting FOXK2 sensitized breast cancer cells to chemotherapy. Co-overexpression of FOXK2 and mutant PI3KCA transformed non-tumorigenic MCF-10A cells, suggesting a role for FOXK2 in PI3KCA-driven tumorigenesis. CCNE2, PDK1, and ESR1 were identified as transcriptional targets of FOXK2 in MCF-7 cells. Small-molecule inhibitors of CCNE2/CDK2 (dinaciclib) and PDK1 (dichloroacetate) exhibited synergistic anti-tumor effects with PI3KCA inhibitor (alpelisib) in vitro. Inhibition of FOXK2 by dinaciclib synergistically enhanced the anti-tumor effects of alpelisib in a xenograft mouse model. Collectively, these findings highlight the oncogenic function of FOXK2 and suggest that FOXK2 and its downstream genes represent potential therapeutic targets in breast cancer.


Assuntos
Neoplasias da Mama , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Fatores de Transcrição Forkhead , Animais , Feminino , Humanos , Camundongos , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células MCF-7 , Camundongos Nus , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Tiazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Autophagy ; 20(9): 1984-1999, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38726865

RESUMO

AQP3 (aquaporin 3 (Gill blood group)), a member of the AQP family, is an aquaglyceroporin which transports water, glycerol and small solutes across the plasma membrane. Beyond its role in fluid transport, AQP3 plays a significant role in regulating various aspects of tumor cell behavior, including cell proliferation, migration, and invasion. Nevertheless, the underlying regulatory mechanism of AQP3 in tumors remains unclear. Here, for the first time, we report that AQP3 is a direct target for ubiquitination by the SCFFBXW5 complex. In addition, we revealed that downregulation of FBXW5 significantly induced AQP3 expression to prompt macroautophagic/autophagic cell death in hepatocellular carcinoma (HCC) cells. Mechanistically, AQP3 accumulation induced by FBXW5 knockdown led to the degradation of PDPK1/PDK1 in a lysosomal-dependent manner, thus inactivating the AKT-MTOR pathway and inducing autophagic death in HCC. Taken together, our findings revealed a previously undiscovered regulatory mechanism through which FBXW5 degraded AQP3 to suppress autophagic cell death via the PDPK1-AKT-MTOR axis in HCC cells.Abbreviation: BafA1: bafilomycin A1; CQ: chloroquine; CRL: CUL-Ring E3 ubiquitin ligases; FBXW5: F-box and WD repeat domain containing 5; HCC: hepatocellular carcinoma; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; 3-MA: 3-methyladenine; PDPK1/PDK1: 3-phosphoinositide dependent protein kinase 1; RBX1/ROC1: ring-box 1; SKP1: S-phase kinase associated protein 1; SCF: SKP1-CUL1-F-box protein.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Aquaporina 3 , Autofagia , Carcinoma Hepatocelular , Proteínas F-Box , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Autofagia/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Aquaporina 3/metabolismo , Aquaporina 3/genética , Proteínas F-Box/metabolismo , Linhagem Celular Tumoral , Ubiquitinação , Proteólise , Lisossomos/metabolismo , Animais
4.
BMC Genomics ; 25(1): 360, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605297

RESUMO

BACKGROUND: During mitosis the cell depends on proper attachment and segregation of replicated chromosomes to generate two identical progeny. In cancers defined by overexpression or dysregulation of the MYC oncogene this process becomes impaired, leading to genomic instability and tumor evolution. Recently it was discovered that the chromatin regulator WDR5-a critical MYC cofactor-regulates expression of genes needed in mitosis through a direct interaction with the master kinase PDPK1. However, whether PDPK1 and WDR5 contribute to similar mitotic gene regulation in MYC-overexpressing cancers remains unclear. Therefore, to characterize the influence of WDR5 and PDPK1 on mitotic gene expression in cells with high MYC levels, we performed a comparative transcriptomic analysis in neuroblastoma cell lines defined by MYCN-amplification, which results in high cellular levels of the N-MYC protein. RESULTS: Using RNA-seq analysis, we identify the genes regulated by N-MYC and PDPK1 in multiple engineered CHP-134 neuroblastoma cell lines and compare them to previously published gene expression data collected in CHP-134 cells following inhibition of WDR5. We find that as expected N-MYC regulates a multitude of genes, including those related to mitosis, but that PDPK1 regulates specific sets of genes involved in development, signaling, and mitosis. Analysis of N-MYC- and PDPK1-regulated genes reveals a small group of commonly controlled genes associated with spindle pole formation and chromosome segregation, which overlap with genes that are also regulated by WDR5. We also find that N-MYC physically interacts with PDPK1 through the WDR5-PDPK1 interaction suggesting regulation of mitotic gene expression may be achieved through a N-MYC-WDR5-PDPK1 nexus. CONCLUSIONS: Overall, we identify a small group of genes highly enriched within functional gene categories related to mitotic processes that are commonly regulated by N-MYC, WDR5, and PDPK1 and suggest that a tripartite interaction between the three regulators may be responsible for setting the level of mitotic gene regulation in N-MYC amplified cell lines. This study provides a foundation for future studies to determine the exact mechanism by which N-MYC, WDR5, and PDPK1 converge on cell cycle related processes.


Assuntos
Genes myc , Neuroblastoma , Humanos , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Linhagem Celular Tumoral , Segregação de Cromossomos , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neuroblastoma/metabolismo
5.
Eur J Immunol ; 54(7): e2350825, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38650034

RESUMO

Cyclosporin A is a well-established immunosuppressive drug used to treat or prevent graft-versus-host disease, the rejection of organ transplants, autoimmune disorders, and leukemia. It exerts its immunosuppressive effects by inhibiting calcineurin-mediated dephosphorylation of the nuclear factor of activated T cells (NFAT), thus preventing its nuclear entry and suppressing T cell activation. Here we report an unexpected immunostimulatory effect of cyclosporin A in activating the mammalian target of rapamycin complex 1 (mTORC1), a crucial metabolic hub required for T cell activation. Through screening a panel of tool compounds known to regulate mTORC1 activation, we found that cyclosporin A activated mTORC1 in CD8+ T cells in a 3-phosphoinositide-dependent protein kinase 1 (PDK1) and protein kinase B (PKB/AKT)-dependent manner. Mechanistically, cyclosporin A inhibited the calcineurin-mediated AKT dephosphorylation, thereby stabilizing mTORC1 signaling. Cyclosporin A synergized with mTORC1 pathway inhibitors, leading to potent suppression of proliferation and cytokine production in CD8+ T cells and an increase in the killing of acute T cell leukemia cells. Consequently, relying solely on CsA is insufficient to achieve optimal therapeutic outcomes. It is necessary to simultaneously target both the calcineurin-NFAT pathway and the mTORC1 pathway to maximize therapeutic efficacy.


Assuntos
Linfócitos T CD8-Positivos , Ciclosporina , Imunossupressores , Ativação Linfocitária , Alvo Mecanístico do Complexo 1 de Rapamicina , Transdução de Sinais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Ciclosporina/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais , Imunossupressores/farmacologia , Camundongos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição NFATC/metabolismo , Humanos , Serina-Treonina Quinases TOR/metabolismo , Calcineurina/metabolismo , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Proliferação de Células/efeitos dos fármacos , Complexos Multiproteicos/metabolismo
6.
Cancer Biol Ther ; 25(1): 2329372, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38494680

RESUMO

Succinylation modification involves in the progression of human cancers. The present study aimed to investigate the role of CPT1A, which is a succinyltransferase in the progression of prostate cancer (PCa). CCK-8 was used to detect the cell viability. Seahorse was performed to evaluate the cell glycolysis. Luciferase assay was used to detect the transcriptional regulation. ChIP was performed to assess the binding between transcriptional factors with the promoters. Co-IP was used to assess the binding between proteins. We found that CPT1A was highly expressed in PCa tissues and cell lines. Silencing of CPT1A inhibited the viability and glycolysis of PCa cells. Mechanistically, CPT1A promoted the succinylation of SP5, which strengthened the binding between SP5 and the promoter of PDPK1. SP5 activated PDPK1 transcription and PDPK1 activated the AKT/mTOR signal pathway. These findings might provide novel targets for the diagnosis or therapy of prostate cancer.


Assuntos
Neoplasias da Próstata , Fatores de Transcrição , Masculino , Humanos , Fatores de Transcrição/metabolismo , Linhagem Celular , Transdução de Sinais , Neoplasias da Próstata/genética , Glicólise , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo
7.
Chem Biol Drug Des ; 103(1): e14438, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230783

RESUMO

Bronchopneumonia is the most common pneumonia in childhood. Therefore, we tested the effects of Remimazolam presented Bronchopneumonia and its possible mechanisms. Phillygenin increased survival rate, reduced W/D ratio, and lung injury score, and inhibited IL-1ß, IL-6, TNF-α, and INF-γ levels in mice model of bronchopneumonia. Remimazolam induced PDPK1 and p-AKT protein expressions, and suppressed NLRP3 protein expression in lung tissue of mice model. In vitro model, Remimazolam also induced PDPK1 and p-AKT protein expressions, and suppressed NLRP3 protein expression. Remimazolam also inhibited inflammation levels in vitro model. PDPK1 inhibitor, PHT-427 (100 mg/kg) reduced survival rate, increased W/D ratio and lung injury score, and promoted inflammation levels in mice model of bronchopneumonia by treated with Remimazolam. PHT-427 suppressed PDPK1 and p-AKT protein expressions and induced NLRP3 protein expression in mice model of bronchopneumonia by treated with Remimazolam. Remimazolam interlinked PDPK1 protein. Remimazolam increased the expressions of PDPK1 and p-AKT in vitro model. Remimazolam reduced PDPK1 ubiquitination in vitro model.


Assuntos
Benzenossulfonamidas , Benzodiazepinas , Broncopneumonia , Lesão Pulmonar , Tiadiazóis , Humanos , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Modelos Animais de Doenças , Sulfonamidas , Ubiquitinação , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo
8.
J Gene Med ; 26(1): e3658, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282149

RESUMO

BACKGROUND: Aberrant activation of the phosphatidlinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway has been shown to play an important role in lung adenocarcinoma (LUAD). The effect of KRAS mutations, one of the important signatures of LUAD, on the PI3K/AKT/mTOR pathway in LUAD remains unclear. METHODS: The Seurat package and principal component analysis were used for cell categorization of single-cell RNA sequencing data of LUAD. The AUCell score was used to assess the activity of the PI3K/AKT/mTOR pathway. Meanwhile, using the gene expression profiles and mutation profiles in the The Cancer Genome Atlas dataset, LUAD patients were categorized into KRAS-mutant (KRAS-MT) and KRAS-wild-types (KRAS-WT), and the corresponding enrichment scores were calculated using gene set enrichment analysis analysis. Finally, the subpopulation of cells with the highest pathway activity was identified, the copy number variation profile of this subpopulation was inscribed using the inferCNV package and the CMap database was utilized to make predictions for drugs targeting this subpopulation. RESULTS: There is higher PI3K/AKT/mTOR pathway activity in LUAD epithelial cells with KRAS mutations, and high expression of KRAS, PIK3CA, AKT1 and PDPK1. In particular, we found significantly higher levels of pathway activity and associated gene expression in KRAS-MT than in KRAS-WT. We identified the highest pathway activity on a subpopulation of GRB2+ epithelial cells and the presence of amplified genes within its pathway. Finally, drugs were able to target GRB2+ epithelial cell subpopulations, such as wortmannin, palbociclib and angiogenesis inhibitor. CONCLUSIONS: The present study provides a basic theory for the activation of the PI3K/AKT/mTOR signaling pathway as a result of KRAS mutations.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Adenocarcinoma de Pulmão/genética , Variações do Número de Cópias de DNA , Neoplasias Pulmonares/patologia , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Análise de Sequência de RNA , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
9.
Biochem Genet ; 62(5): 4087-4102, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38273153

RESUMO

Non-small-cell lung cancer (NSCLC) stands as a prevalent subtype of lung cancer, with circular RNAs emerging as key players in cancer development. This study elucidates the role of circRNA-CPA4 in NSCLC. Elevated circRNA-CPA4 expression in NSCLC lines was confirmed through qRT-PCR. Silencing circRNA-CPA4 with shRNA revealed, through CCK-8, colony formation, and flow cytometry assays, a notable constraint on proliferation and promotion of apoptosis in NSCLC cells. Subcellular localization analysis, RNA immunoprecipitation, and expression level assessments were employed to decipher the intricate interplay among miR-1183, circRNA-CPA4, and PDPK1. Results demonstrated heightened circRNA-CPA4 levels in NSCLC, and its knockdown curtailed NSCLC growth in vivo. Acting as a molecular sponge for miR-1183, circRNA-CPA4 regulated PDPK1 expression. Conversely, inhibiting miR-1183 counteracted the impact of circRNA-CPA4 silencing, reinstating NSCLC cell proliferation, and impeding apoptosis. Overall, this study unveils a novel mechanism: circRNA-CPA4 promotes PDPK1 expression by sequestering miR-1183, fostering NSCLC cell proliferation, and hindering apoptosis.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Apoptose , Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Neoplasias Pulmonares , MicroRNAs , RNA Circular , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Linhagem Celular Tumoral , Camundongos , Animais , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Células A549
10.
Cell Biol Int ; 48(4): 440-449, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38115179

RESUMO

Kirsten rat sarcoma virus (KRAS) gene mutation is common in colorectal cancer (CRC) and is often predictive of treatment failure and poor prognosis. To understand the mechanism, we compared the transcriptome of CRC patients with wild-type and mutant KRAS and found that KRAS mutation is associated with the overexpression of a secreted serine protease, kallikrein-related peptidase 10 (KLK10). Moreover, using in vitro and in vivo models, we found that KLK10 overexpression favors the rapid growth and liver metastasis of KRAS mutant CRC and can also impair the efficacy of KRAS inhibitors, leading to drug resistance and poor survival. Further functional assays revealed that the oncogenic role of KLK10 is mediated by protease-activated receptor 1 (PAR1). KLK10 cleaves and activates PAR1, which further activates 3-phosphoinositide-dependent kinase 1 (PDK1)-AKT oncogenic pathway. Notably, suppressing PAR1-PDK1-AKT cascade via KLK10 knockdown can effectively inhibit CRC progression and improve the sensitivity to KRAS inhibitor, providing a promising therapeutic strategy. Taken together, our study showed that KLK10 promotes the progression of KRAS mutant CRC via activating PAR1-PDK1-AKT signaling pathway. These findings expanded our knowledge of CRC development, especially in the setting of KRAS mutation, and also provided novel targets for clinical intervention.


Assuntos
Neoplasias Colorretais , Receptor PAR-1 , Humanos , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Calicreínas/genética , Calicreínas/metabolismo , Mutação/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Transdução de Sinais , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo
11.
Cancer Sci ; 114(12): 4691-4705, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37840379

RESUMO

B-cell lymphomas (BCLs) are the most common disease entity among hematological malignancies and have various genetically and molecularly distinct subtypes. In this study, we revealed that the blockade of phosphoinositide-dependent kinase-1 (PDPK1), the master kinase of AGC kinases, induces a growth inhibition via cell cycle arrest and the induction of apoptosis in all eight BCL-derived cell lines examined, including those from activated B-cell-like diffuse large B-cell lymphoma (DLBCL), double expressor DLBCL, Burkitt lymphoma, and follicular lymphoma. We also demonstrated that, in these cell lines, RSK2, AKT, and S6K, but not PLK1, SGK, or PKC, are the major downstream therapeutic target molecules of PDPK1 and that RSK2 plays a central role and AKT and S6K play subsidiary functional roles as the downstream effectors of PDPK1 in cell survival and proliferation. Following these results, we confirmed the antilymphoma efficacy of TAS0612, a triple inhibitor for total RSK, including RSK2, AKT, and S6K, not only in these cell lines, regardless of disease subtypes, but also in all 25 patient-derived B lymphoma cells of various disease subtypes. At the molecular level, TAS0612 caused significant downregulation of MYC and mTOR target genes while inducing the tumor suppressor TP53INP1 protein in these cell lines. These results prove that the simultaneous blockade of RSK2, AKT, and S6K, which are the pivotal downstream substrates of PDPK1, is a novel therapeutic target for the various disease subtypes of BCLs and line up TAS0612 as an attractive candidate agent for BCLs for future clinical development.


Assuntos
Linfoma Difuso de Grandes Células B , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , 1-Fosfatidilinositol 4-Quinase/metabolismo , Linhagem Celular , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Supressoras de Tumor/metabolismo , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Linhagem Celular Tumoral , Proteínas de Transporte , Proteínas de Choque Térmico/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo
12.
PLoS Biol ; 21(8): e3002227, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37531320

RESUMO

Phosphoinositide-dependent kinase-1 (PDK1) is a master kinase of the protein A, G, and C (AGC) family kinases that play important roles in regulating cancer cell proliferation, survival, and metabolism. Besides phosphorylating/activating AKT at the cell membrane in a PI3K-dependent manner, PDK1 also exhibits constitutive activity on many other AGC kinases for tumor-promoting activity. In the latter case, PDK1 protein levels dominate its activity. We previously reported that MAPK4, an atypical MAPK, can PI3K-independently promote AKT activation and tumor growth. Here, using triple-negative breast cancer (TNBC) cell models, we demonstrate that MAPK4 can also enhance PDK1 protein synthesis, thus phosphorylate/activate PDK1 substrates beyond AKT. This new MAPK4-PDK1 axis alone lacks vigorous tumor-promoting activity but cooperates with our previously reported MAPK4-AKT axis to promote tumor growth. Besides enhancing resistance to PI3K blockade, MAPK4 also promotes cancer cell resistance to the more stringent PI3K and PDK1 co-blockade, a recently proposed therapeutic strategy. Currently, there is no MAPK4 inhibitor to treat MAPK4-high cancers. Based on the concerted action of MAPK4-AKT and MAPK4-PDK1 axis in promoting cancer, we predict and confirm that co-targeting AKT and PDK1 effectively represses MAPK4-induced cancer cell growth, suggesting a potential therapeutic strategy to treat MAPK4-high cancers.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Proteínas Quinases Ativadas por Mitógeno , Neoplasias , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
13.
Bull Exp Biol Med ; 174(4): 489-496, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36899199

RESUMO

We explored the mechanism by which miR-139 modulates radioresistance of esophageal cancer (EC). The radioresistant cell line KYSE150R was obtained from the parental KYSE150 cell line by fractionated irradiation (15×2 Gy; total dose of 30 Gy). The cell cycle was assessed by flow cytometry. A gene profiling study was conducted to detect the expression of genes related to the radioresistance of EC. In the KYSE150R line, flow cytometry revealed increased number of G1-phase cells and decreased number of G2-phase cells; the expression of miR-139 increased. Knockdown of miR-139 decreased radioresistance and changed the distribution of cell cycle phases in KYSE150R cells. Western blotting showed that miR-139 knockdown increased the expression levels of cyclin D1, p-AKT, and PDK1. However, PDK1 inhibitor GSK2334470 reversed this effect for p-AKT and cyclin D1 expression. A luciferase reporter assay indicated that miR-139 directly bound to the PDK1 mRNA 3'-UTR. Analysis of the clinical data from 110 patients with EC showed an association of miR-139 expression with the TNM stage and the effect of therapy. MiR-139 expression significantly correlated with EC and progression-free survival. In conclusion, miR-139 enhances the radiosensitivity of EC by regulating the cell cycle through the PDK1/Akt/Cyclin D1 signaling pathway.


Assuntos
Neoplasias Esofágicas , MicroRNAs , Tolerância a Radiação , Humanos , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Linhagem Celular Tumoral/efeitos da radiação , Proliferação de Células/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tolerância a Radiação/genética , Transdução de Sinais/genética
14.
Nat Commun ; 13(1): 1548, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35318320

RESUMO

Functioning as a master kinase, 3-phosphoinositide-dependent protein kinase 1 (PDK1) plays a fundamental role in phosphorylating and activating protein kinases A, B and C (AGC) family kinases, including AKT. However, upstream regulation of PDK1 remains largely elusive. Here we report that ribosomal protein S6 kinase beta 1 (S6K1), a member of AGC kinases and downstream target of mechanistic target of rapamycin complex 1 (mTORC1), directly phosphorylates PDK1 at its pleckstrin homology (PH) domain, and impairs PDK1 interaction with and activation of AKT. Mechanistically, S6K1-mediated phosphorylation of PDK1 augments its interaction with 14-3-3 adaptor protein and homo-dimerization, subsequently dissociating PDK1 from phosphatidylinositol 3,4,5 triphosphate (PIP3) and retarding its interaction with AKT. Pathologically, tumor patient-associated PDK1 mutations, either attenuating S6K1-mediated PDK1 phosphorylation or impairing PDK1 interaction with 14-3-3, result in elevated AKT kinase activity and oncogenic functions. Taken together, our findings not only unravel a delicate feedback regulation of AKT signaling via S6K1-mediated PDK1 phosphorylation, but also highlight the potential strategy to combat mutant PDK1-driven cancers.


Assuntos
Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas c-akt , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo
15.
Nucleic Acids Res ; 50(7): 3764-3776, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35323972

RESUMO

The core catalytic unit of telomerase comprises telomerase reverse transcriptase (TERT) and telomerase RNA (TERC). Unlike TERT, which is predominantly expressed in cancer and stem cells, TERC is ubiquitously expressed in normal somatic cells without telomerase activity. However, the functions of TERC in these telomerase-negative cells remain elusive. Here, we reported positive feedback regulation between TERC and the PI3K-AKT pathway that controlled cell proliferation independent of telomerase activity in human fibroblasts. Mechanistically, we revealed that TERC activated the transcription of target genes from the PI3K-AKT pathway, such as PDPK1, by targeting their promoters. Overexpression of PDPK1 partially rescued the deficiency of AKT activation caused by TERC depletion. Furthermore, we found that FOXO1, a transcription factor negatively regulated by the PI3K-AKT pathway, bound to TERC promoter and suppressed its expression. Intriguingly, TERC-induced activation of the PI3K-AKT pathway also played a critical role in the proliferation of activated CD4+ T cells. Collectively, our findings identify a novel function of TERC that regulates the PI3K-AKT pathway via positive feedback to elevate cell proliferation independent of telomerase activity and provide a potential strategy to promote CD4+ T cells expansion that is responsible for enhancing adaptive immune reactions to defend against pathogens and tumor cells.


Assuntos
RNA , Telomerase , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Proliferação de Células/genética , Retroalimentação Fisiológica , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA/genética , RNA/metabolismo , Telomerase/genética , Telomerase/metabolismo
16.
Clin Transl Med ; 12(2): e676, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35172032

RESUMO

BACKGROUND: Prostate cancer (PCa), an inert tumour, has a long progression period, but valid biomarkers and methods for effectively and sensitively monitoring PCa progression are lacking, prompting us to identify new predictors for diagnosis and prognosis. Posttranslational modifications characterizing receptor activation are considered potentially strong indicators of disease progression. METHODS: The posttranscriptional regulation of leukaemia inhibitory factor receptor (LIFR) and its novel downstream signalling activity in PCa were studied using liquid mass spectrometry, genetically engineered mouse (GEM) models, organoid assays, lentivirus packaging, infection and stable cell line construction. RESULTS: In this study, the level of acetylated K620 on LIFR in its extracellular domain was shown to predict the progression and prognosis of PCa. In PCa cells, LIFR-K620 acetylation is reversibly mediated by GCN5 and SIRT2. GEM experiments and organoid assays confirmed that the loss of LIFR-K620 acetylation inhibits PCa progression. Mechanistically, K620 acetylation facilitates LIFR homodimerization and subsequently promotes LIFR-S1044 phosphorylation and activation, which further recruits PDPK1 to activate AKT signalling and sequentially enhances the GCN5 protein level to sustain the protumour level of LIFR-K620 acetylation by preventing GCN5 degradation via CRL4Cdt2 E3 ligase. CONCLUSIONS: Acetylation of extracellular K620 on LIFR reinforces its homodimerization and integrates the activities of PDPK1, AKT, GSK3ß and GCN5 to form a novel positive feedback loop in PCa; this modification is thus a promising biomarker for monitoring PCa progression.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Progressão da Doença , Lisina/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de OSM-LIF/metabolismo , Acetilação , Animais , Masculino , Camundongos
17.
Cell Death Dis ; 13(2): 181, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210408

RESUMO

The immune system is finely tuned to fight against infections, eradicate neoplasms, and prevent autoimmunity. Protein posttranslational modification (PTM) constitutes a molecular layer of regulation to guarantee the proper intensity of immune response. Herein, we report that UBC9-mediated protein SUMOylation plays an essential role in peripheral CD4 T-cell proliferation, but without a perceptible impact on T-cell polarization. Both conventional T-cell (Tcon) and regulatory T-cell (Treg) maintenance are differentially affected, which was likely caused by a shared deficit in cell glycolytic metabolism. Mechanistically, PDPK1 (3-phosphoinositide-dependent protein-kinase 1) was identified as a novel SUMOylation substrate, which occurred predominantly at lysine 299 (K299) located within the protein-kinase domain. Loss of PDPK1 SUMOylation impeded its autophosphorylation at serine 241 (S241), thereby leading to hypoactivation of downstream mTORC1 signaling coupled with incompetence of cell proliferation. Altogether, our results revealed a novel regulatory mechanism in peripheral CD4 T-cell homeostatic proliferation, which involves SUMOylation regulation of PDPK1-mTORC1 signaling-mediated glycolytic process.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Linfócitos T CD4-Positivos , Sumoilação , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Glicólise , Homeostase , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
18.
PLoS One ; 17(1): e0261696, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35061720

RESUMO

The Alzheimer's brain is affected by multiple pathophysiological processes, which include a unique, organ-specific form of insulin resistance that begins early in its course. An additional complexity arises from the four-fold risk of Alzheimer's Disease (AD) in type 2 diabetics, however there is no definitive proof of causation. Several strategies to improve brain insulin signaling have been proposed and some have been clinically tested. We report findings on a small allosteric molecule that reverses several indices of insulin insensitivity in both cell culture and in vitro models of AD that emphasize the intracellular accumulation of ß-amyloid (Aßi). PS48, a chlorophenyl pentenoic acid, is an allosteric activator of PDK-1, which is an Akt-kinase in the insulin/PI3K pathway. PS48 was active at 10 nM to 1 µM in restoring normal insulin-dependent Akt activation and in mitigating Aßi peptide toxicity. Synaptic plasticity (LTP) in prefrontal cortical slices from normal rat exposed to Aß oligomers also benefited from PS48. During these experiments, neither overstimulation of PI3K/Akt signaling nor toxic effects on cells was observed. Another neurotoxicity model producing insulin insensitivity, utilizing palmitic acid, also responded to PS48 treatment, thus validating the target and indicating that its therapeutic potential may extend outside of ß-amyloid reliance. The described in vitro and cell based-in vitro coupled enzymatic assay systems proved suitable platforms to screen a preliminary library of new analogs.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Insulina/metabolismo , Neurônios/metabolismo , Ácidos Pentanoicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Ratos , Ratos Sprague-Dawley
19.
Cereb Cortex ; 32(16): 3488-3500, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34918060

RESUMO

During cortical development, the balance between progenitor self-renewal and neurogenesis is critical for determining the size/morphology of the cortex. A fundamental feature of the developing cortex is an increase in the length of G1 phase in RGCs over the course of neurogenesis, which is a key determinant of progenitor fate choice. How the G1 length is temporally regulated remains unclear. Here, Pdk1, a member of the AGC kinase family, was conditionally disrupted by crossing an Emx1-Cre mouse line with a Pdk1fl/fl line. The loss of Pdk1 led to a shorter cell cycle accompanied by increased RGC proliferation specifically at late rather than early/middle neurogenic stages, which was attributed to impaired lengthening of G1 phase. Coincidently, apical-to-basal interkinetic nuclear migration was accelerated in Pdk1 cKO cortices. Consequently, we detected an increased neuronal output at P0. We further showed the significant upregulation of the cell cycle regulator cyclin D1 and its activator Myc in the cKO cortices relative to those of control animals. Overall, we have identified a novel role for PDK1 in cortical neurogenesis. PDK1 functions as an upstream regulator of the Myc-cyclin D1 pathway to control the lengthening of G1 phase and the balance between RGC proliferation and differentiation.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Ciclina D1 , Neurogênese , Neuroglia , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Ciclina D1/metabolismo , Fase G1 , Camundongos , Neuroglia/citologia
20.
PLoS Biol ; 19(12): e3001483, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34879056

RESUMO

Cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) signalling is essential for the proliferation of Plasmodium falciparum malaria blood stage parasites. The mechanisms regulating the activity of the catalytic subunit PfPKAc, however, are only partially understood, and PfPKAc function has not been investigated in gametocytes, the sexual blood stage forms that are essential for malaria transmission. By studying a conditional PfPKAc knockdown (cKD) mutant, we confirm the essential role for PfPKAc in erythrocyte invasion by merozoites and show that PfPKAc is involved in regulating gametocyte deformability. We furthermore demonstrate that overexpression of PfPKAc is lethal and kills parasites at the early phase of schizogony. Strikingly, whole genome sequencing (WGS) of parasite mutants selected to tolerate increased PfPKAc expression levels identified missense mutations exclusively in the gene encoding the parasite orthologue of 3-phosphoinositide-dependent protein kinase-1 (PfPDK1). Using targeted mutagenesis, we demonstrate that PfPDK1 is required to activate PfPKAc and that T189 in the PfPKAc activation loop is the crucial target residue in this process. In summary, our results corroborate the importance of tight regulation of PfPKA signalling for parasite survival and imply that PfPDK1 acts as a crucial upstream regulator in this pathway and potential new drug target.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Animais , Domínio Catalítico , Linhagem Celular , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Eritrócitos/parasitologia , Humanos , Malária , Malária Falciparum/parasitologia , Merozoítos , Parasitos/metabolismo , Proteínas de Protozoários/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA