Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Cycle ; 20(9): 839-854, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33938392

RESUMO

Eukaryotic translation initiation factor 4E was recently shown to be a substrate of mTORC1, suggesting it may be a mediator of mTORC1 signaling. Here, we present evidence that eIF4E phosphorylated at S209 interacts with TOS motif of S6 Kinase1 (S6K1). We also show that this interaction is sufficient to overcome rapamycin sensitivity and mTORC1 dependence of S6K1. Furthermore, we show that eIF4E-TOS interaction relieves S6K1 from auto-inhibition due to carboxy terminal domain (CTD) and primes it for hydrophobic motif (HM) phosphorylation and activation in mTORC1 independent manner. We conclude that the role of mTORC1 is restricted to engaging eIF4E with S6K1-TOS motif to influence its state of HM phosphorylation and inducing its activation.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Quinases S6 Ribossômicas/química , Proteínas Quinases S6 Ribossômicas/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Modelos Biológicos , Células NIH 3T3 , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Sirolimo/farmacologia
2.
Cell Signal ; 25(5): 1054-63, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23403125

RESUMO

S6 kinase is a member of the AGC family of serine/threonine kinases and plays a key role in diverse cellular processes including cell growth and metabolism. Although, the high degree of homology between S6K family members (S6K1 and S6K2) in kinase and kinase-extension domains, the two proteins are highly divergent in the N- and C-terminal regulatory regions, hinting at differential regulation, downstream signalling and cellular function. Deregulated signalling via S6Ks has been linked to various human pathologies, such as diabetes and cancer. Therefore, S6K has emerged as a promising target for drug development. Much of what we know about S6K signalling in health and disease comes from studies of S6K1, as molecular cloning of this isoform was reported a decade earlier than S6K2. In this study, we report for the first time, the identification of the general transcription factor Yin Yang 1 (YY1) as a novel and specific binding partner of S6K2, but not S6K1. The interaction between YY1 and S6K2 was demonstrated by co-immunoprecipitation of transiently overexpressed and endogenous proteins in a number of cell lines, including HEK293, MCF7 and U937. Furthermore, direct association between S6K2 and YY1 was demonstrated by GST pull-down assay using recombinant proteins. A panel of deletion mutants was used to show that the C-terminal regulatory region of S6K2 mediates the interaction with YY1. Interestingly, the complex formation between S6K2 and YY1 can be detected in serum-starved cells, but the interaction is strongly induced in response to mitogenic stimulation. The induction of S6K2/YY1 complex formation in response to serum stimulation is abolished by pre-treatment of cells with the mTOR inhibitor, rapamycin. Furthermore, mTOR is also detected in complex with YY1 and S6K2 in serum-stimulated cells. We utilized size exclusion chromatography along with co-immunoprecipitation analysis to demonstrate the existence of the mTOR/S6K2/YY1 complex in high molecular weight fractions, which might also involve other cellular proteins. The physiological significance of the mTOR/S6K2/YY1 complex, which is induced in response to mitogenic stimulation, remains to be further investigated.


Assuntos
Proteínas Quinases S6 Ribossômicas/metabolismo , Fator de Transcrição YY1/metabolismo , Linhagem Celular , Células HEK293 , Humanos , Imunoprecipitação , Células MCF-7 , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Quinases S6 Ribossômicas/química , Proteínas Quinases S6 Ribossômicas/genética , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Fator de Transcrição YY1/química , Fator de Transcrição YY1/genética
4.
Blood ; 114(8): 1585-95, 2009 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-19531656

RESUMO

Constitutive expression of the chimeric NPM/ALK fusion protein encoded by the t(2;5)(p32;q35) is a key oncogenic event in the pathogenesis of most anaplastic large cell lymphomas (ALCLs). The proteomic network alterations produced by this aberration remain largely uncharacterized. Using a mass spectrometry (MS)-driven approach to identify changes in protein expression caused by the NPM/ALK fusion, we identified diverse NPM/ALK-induced changes affecting cell proliferation, ribosome synthesis, survival, apoptosis evasion, angiogenesis, and cytoarchitectural organization. MS-based findings were confirmed using Western blotting and/or immunostaining of NPM/ALK-transfected cells and ALK-deregulated lymphomas. A subset of the proteins distinguished NPM/ALK-positive ALCLs from NPM/ALK-negative ALCLs and Hodgkin lymphoma. The multiple NPM/ALK-deregulated pathways identified by MS analysis also predicted novel biologic effects of NPM/ALK expression. In this regard, we showed loss of cell adhesion as a consequence of NPM/ALK expression in a kinase-dependent manner, and sensitivity of NPM/ALK-positive ALCLs to inhibition of the RAS, p42/44ERK, and FRAP/mTOR signaling pathways. These findings reveal that the NPM/ALK alteration affects diverse cellular pathways, and provide novel insights into NPM/ALK-positive ALCL pathobiology. Our studies carry important implications for the use of MS-driven approaches for the elucidation of neoplastic pathobiology, the identification of novel diagnostic biomarkers, and pathogenetically relevant therapeutic targets.


Assuntos
Linfoma Anaplásico de Células Grandes/metabolismo , Redes e Vias Metabólicas , Proteínas Tirosina Quinases/metabolismo , Proteoma/análise , Sequência de Aminoácidos , Regulação Neoplásica da Expressão Gênica , Humanos , Células Jurkat , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Tirosina Quinases/genética , Proteoma/metabolismo , Proteômica , Proteínas Quinases S6 Ribossômicas/química , Proteínas Quinases S6 Ribossômicas/metabolismo , Análise Serial de Tecidos , Transfecção , Células Tumorais Cultivadas
5.
J Biol Chem ; 283(18): 11972-80, 2008 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-18326039

RESUMO

S6K1 is a member of the AGC subfamily of serine-threonine protein kinases, whereby catalytic activation requires dual phosphorylation of critical residues in the conserved T-loop (Thr-229) and hydrophobic motif (Thr-389). Previously, we described production of the fully activated catalytic kinase domain construct, His(6)-S6K1alphaII(DeltaAID)-T389E. Now, we report its kinetic mechanism for catalyzing phosphorylation of a model peptide substrate (Tide, RRRLSSLRA). First, two-substrate steady-state kinetics and product inhibition patterns indicated a Steady-State Ordered Bi Bi mechanism, whereby initial high affinity binding of ATP (K(d)(ATP)=5-6 microM) was followed by low affinity binding of Tide (K(d)(Tide)=180 microM), and values of K(m)(ATP)=5-6 microM and K(m)(Tide)=4-5 microM were expressed in the active ternary complex. Global curve-fitting analysis of ATP, Tide, and ADP titrations of pre-steady-state burst kinetics yielded microscopic rate constants for substrate binding, rapid chemical phosphorylation, and rate-limiting product release. Catalytic trapping experiments confirmed rate-limiting steps involving release of ADP. Pre-steady-state kinetic and catalytic trapping experiments showed osmotic pressure to increase the rate of ADP release; and direct binding experiments showed osmotic pressure to correspondingly weaken the affinity of the enzyme for both ADP and ATP, indicating a less hydrated conformational form of the free enzyme.


Assuntos
Proteínas Quinases S6 Ribossômicas/metabolismo , Difosfato de Adenosina/metabolismo , Ativação Enzimática , Cinética , Modelos Biológicos , Proteínas Mutantes/metabolismo , Fosforilação , Conformação Proteica , Proteínas Quinases S6 Ribossômicas/química , Especificidade por Substrato
6.
Growth Factors ; 25(4): 209-26, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18092230

RESUMO

Current understanding of the mechanisms by which cell growth is regulated lags significantly behind our knowledge of the complex processes controlling cell cycle progression. Recent studies suggest that the mammalian target of rapamycin (mTOR) pathway is a key regulator of cell growth via the regulation of protein synthesis. The key mTOR effectors of cell growth are eukaryotic initiation factor 4E-binding protein 1 (4EBP-1) and the ribosomal protein S6 kinase (S6K). Here we will review the current models for mTOR dependent regulation of ribosome function and biogenesis as well as its role in coordinating growth factor and nutrient signaling to facilitate homeostasis of cell growth and proliferation. We will place particular emphasis on the role of S6K1 signaling and will highlight the points of cross talk with other key growth control pathways. Finally, we will discuss the impact of S6K signaling and the consequent feedback regulation of the PI3K/Akt pathway on disease processes including cancer.


Assuntos
Proteínas Quinases S6 Ribossômicas/fisiologia , Ribossomos/metabolismo , Processos de Crescimento Celular , Fosfatidilinositol 3-Quinases/metabolismo , Biossíntese de Proteínas , Proteínas Quinases/metabolismo , RNA Ribossômico/biossíntese , Proteínas Quinases S6 Ribossômicas/química , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR
7.
Bioorg Med Chem ; 15(14): 5018-34, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17512736

RESUMO

Inappropriate activity of p90 ribosomal S6 kinase (RSK) has been implicated in various human cancers as well as other pathologies. We previously reported the isolation, characterization, and synthesis of the natural product kaempferol 3-O-(3'',4''-di-O-acetyl-alpha-l-rhamnopyranoside), termed SL0101 [Smith, J. A.; Poteet-Smith, C. E.; Xu, Y.; Errington, T. M.; Hecht, S. M.; Lannigan, D. A. Cancer Res., 2005, 65, 1027-1034: Xu, Y.-M; Smith, J. A.; Lannigan, D. A.; Hecht, S. M. Bioorg. Med. Chem., 2006, 14, 3974-3977: Maloney, D. J.; Hecht, S. M. Org. Lett., 2005, 7, 1097-1099]. SL0101 is a potent and specific inhibitor of RSK; therefore, we performed an analysis of the structural basis for the inhibitory activity of this lead compound. In in vitro kinase assays we found that acylation of the rhamnose moiety and the 4', 5, and 7-hydroxyl groups are responsible for maintaining a high affinity interaction of RSK with SL0101. It is likely that the hydroxyl groups facilitate RSK binding through their ability to form hydrogen bonds. To determine whether the SL0101 derivatives were specific for inhibition of RSK we analyzed their ability to preferentially inhibit the growth of the human breast cancer line, MCF-7, compared to the normal human breast line, MCF-10A. We have previously validated this differential growth assay as a convenient readout for analyzing the specificity of RSK inhibitors [Smith, J. A.; Maloney, D. J.; Clark, D. E.; Xu, Y.-M.; Hecht, S. M.; Lannigan, D. A. Bioorg. Med. Chem., 2006, 14, 6034-6042]. We found that acylation of the rhamnose moiety was essential for maintaining the selectivity for RSK inhibition in intact cells. Further, the efficacy of SL0101 in intact cells is limited by cellular uptake as well as possible hydrolysis of the acetyl groups on the rhamnose moiety by ubiquitous intracellular esterases. These studies should facilitate the development of a RSK inhibitor, based on the SL0101 pharmacophore, as an anti-cancer chemotherapeutic agent.


Assuntos
Benzopiranos/química , Benzopiranos/farmacologia , Monossacarídeos/química , Monossacarídeos/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases S6 Ribossômicas/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Alquilação , Benzopiranos/síntese química , Linhagem Celular Tumoral , Humanos , Interações Hidrofóbicas e Hidrofílicas , Hidroxilação , Quempferóis/síntese química , Quempferóis/química , Quempferóis/farmacologia , Modelos Moleculares , Estrutura Molecular , Monossacarídeos/síntese química , Inibidores de Proteínas Quinases/síntese química , Ramnose/síntese química , Ramnose/química , Ramnose/farmacologia , Proteínas Quinases S6 Ribossômicas/química , Relação Estrutura-Atividade
8.
Plant Cell ; 18(2): 477-90, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16377759

RESUMO

TARGET OF RAPAMYCIN (TOR) kinase controls many cellular functions in eukaryotic cells in response to stress and nutrient availability and was shown to be essential for embryonic development in Arabidopsis thaliana. We demonstrated that Arabidopsis RAPTOR1 (a TOR regulatory protein) interacts with the HEAT repeats of TOR and that RAPTOR1 regulates the activity of S6 kinase (S6K) in response to osmotic stress. RAPTOR1 also interacts in vivo with Arabidopsis S6K1, a putative substrate for TOR. S6K1 fused to green fluorescent protein and immunoprecipitated from tobacco (Nicotiana tabacum) leaves after transient expression was active in phosphorylating the Arabidopsis ribosomal S6 protein. The catalytic domain of S6K1 could be phosphorylated by Arabidopsis 3-phosphoinositide-dependent protein kinase-1 (PDK1), indicating the involvement of PDK1 in the regulation of S6K. The S6K1 activity was sensitive to osmotic stress, while PDK1 activity was not affected. However, S6K1 sensitivity to osmotic stress was relieved by co-overexpression of RAPTOR1. Overall, these observations demonstrated the existence of a functional TOR kinase pathway in plants. However, Arabidopsis seedlings do not respond to normal physiological levels of rapamycin, which appears to be due its inability to bind to the Arabidopsis homolog of FKBP12, a protein that is essential for the binding of rapamycin with TOR. Replacement of the Arabidopsis FKBP12 with the human FKBP12 allowed rapamycin-dependent interaction with TOR. Since homozygous mutation in TOR is lethal, it suggests that this pathway is essential for integrating the stress signals into the growth regulation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Motivos de Aminoácidos , Sequência de Aminoácidos , Éxons/genética , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Pressão Osmótica , Fosfatidilinositol 3-Quinases , Fosforilação , Plantas Geneticamente Modificadas/anatomia & histologia , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Quinases S6 Ribossômicas/química , Proteína 1A de Ligação a Tacrolimo/metabolismo
9.
J Biol Chem ; 280(20): 19445-8, 2005 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-15809305

RESUMO

The mTOR protein kinase is the target of the immunosuppressive and anti-cancer drug rapamycin and is increasingly recognized as a key regulator of cell growth in mammals. S6 kinase 1 (S6K1) is the best characterized effector of mTOR, and its regulation serves as a model for mTOR signaling. Nutrients and growth factors activate S6K1 by inducing the phosphorylation of threonine 389 in the hydrophobic motif of S6K1. As phosphorylation of Thr(389) is rapamycin sensitive and mTOR can phosphorylate the same site in vitro, it has been suggested that mTOR is the physiological Thr(389) kinase. This proposal is not supported, however, by the existence of mutants of S6K1 that are phosphorylated in vivo on Thr(389) in a rapamycin-resistant fashion. Here, we demonstrate that the raptor-mTOR complex phosphorylates the rapamycin-sensitive forms of S6K1, while the distinct rictor-mTOR complex phosphorylates the rapamycin-resistant mutants of S6K1. Phosphorylation of Thr(389) by rictor-mTOR is independent of the TOR signaling motif and depends on removal of the carboxyl terminal domain of S6K1. Because many members of the AGC family of kinases lack an analogous domain, rictor-mTOR may phosphorylate the hydrophobic motifs of other kinases.


Assuntos
Proteínas Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas/química , Proteínas Quinases S6 Ribossômicas/metabolismo , Motivos de Aminoácidos , Animais , Domínio Catalítico/genética , Linhagem Celular , Humanos , Interações Hidrofóbicas e Hidrofílicas , Técnicas In Vitro , Modelos Biológicos , Mutagênese Sítio-Dirigida , Fosforilação , Proteínas Quinases/genética , Estrutura Terciária de Proteína , Interferência de RNA , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Quinases S6 Ribossômicas/genética , Serina-Treonina Quinases TOR , Treonina/química
10.
Mol Cells ; 19(1): 39-45, 2005 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-15750338

RESUMO

RPK118 is a sphingosine kinase-1-binding protein that has been implicated in sphingosine 1 phosphate-mediated signaling. It contains a PX (phox homology) domain and two pseudo-kinase domains, and co-localizes with sphingosine kinase-1 on early endosomes. In this study we identified a novel RPK118-binding protein, PRDX3 (peroxiredoxin-3), by yeast two-hybrid screening. The interaction between these proteins was confirmed by pull-down assays and co-immunoprecipitation experiments. Deletion studies showed that RPK118 interacted with PRDX3 through its pseudokinase domains, and with early endosomes through its PX domain. Double immunofluorescence experiments demonstrated that PRDX3 co-localized with RPK118 on early endosomes in COS7 cells. PRDX3 is a member of the antioxidant family of proteins synthesized in the cytoplasm and functioning in mitochondria. Our findings indicate that RPK118 is a PRDX3-binding protein that may be involved in transporting PRDX3 from the cytoplasm to its mitochondrial site of function or to other membrane structures via endosome trafficking.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Fosfotransferases/genética , Estrutura Terciária de Proteína , Proteínas Quinases S6 Ribossômicas/metabolismo , Animais , Células COS , Chlorocebus aethiops , Citoplasma/metabolismo , Endossomos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas de Neoplasias/química , Peroxidases , Peroxirredoxina III , Peroxirredoxinas , Fosfotransferases (Aceptor do Grupo Álcool)/biossíntese , Transporte Proteico , Proteínas Quinases S6 Ribossômicas/química , Técnicas do Sistema de Duplo-Híbrido
11.
FEBS Lett ; 578(3): 357-62, 2004 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-15589845

RESUMO

Ribosomal protein S6 kinase (S6K) is a key regulator of cell size and growth. It is regulated via phosphoinositide 3-kinases (PI3K) and the mammalian target of rapamycin (mTOR) signaling pathways. We demonstrate for the first time that CoA synthase associates specifically with S6K1. The association was observed between native and transiently overexpressed proteins in vivo, as well as by BIAcore analysis in vitro. The sites of interaction were mapped to the C-terminal regions of both CoA synthase and S6K1. In vitro studies indicated that the interaction does not affect their enzymatic activities and that CoA synthase is not a substrate for S6 kinase. This study uncovers a potential link between mTor/S6K signaling pathway and energy metabolism through CoA and its thioester derivatives, but its physiological relevance should be further elucidated.


Assuntos
Acetato-CoA Ligase/biossíntese , Metabolismo Energético , Proteínas Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais , Acetato-CoA Ligase/química , Sequência de Aminoácidos , Neoplasias da Mama/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Tamanho Celular , Feminino , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas/química , Ressonância de Plasmônio de Superfície , Serina-Treonina Quinases TOR
12.
J Biol Chem ; 277(35): 31423-9, 2002 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-12087098

RESUMO

Phosphorylation of the ribosomal S6 subunit is tightly correlated with enhanced translation initiation of a subset of mRNAs that encodes components of the protein synthesis machinery, which is an important early event that controls mammalian cell growth and proliferation. The recently identified S6 kinase 2 (S6K2), together with its homologue S6K1, is likely responsible for the mitogen-stimulated phosphorylation of S6. Like S6K1, the activation of S6K2 requires signaling from both the phosphatidylinositol 3-kinase and the mammalian target of rapamycin (mTOR). Here we report the investigation of the mechanisms of S6K2 regulation by mTOR. We demonstrate that similar to S6K1 the serum activation of S6K2 in cells is dependent on mTOR kinase activity, amino acid sufficiency, and phosphatidic acid. Previously we have shown that mTOR is a cytoplasmic-nuclear shuttling protein. As a predominantly nuclear protein, S6K2 activation was facilitated by enhanced mTOR nuclear import with the tagging of an exogenous nuclear localization signal and diminished by enhanced mTOR nuclear export with the tagging of a nuclear export sequence. However, further increase of mTOR nuclear import by the tagging of four copies of nuclear localization signal resulted in its decreased ability to activate S6K2, suggesting that mTOR nuclear export may also be an integral part of the activation process. Consistently, the nuclear export inhibitor leptomycin B inhibited S6K2 activation. Taken together, our observations suggest a novel regulatory mechanism in which an optimal cytoplasmic-nuclear distribution or shuttling rate for mTOR is required for maximal activation of the nuclear S6K2.


Assuntos
Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Quinases S6 Ribossômicas/genética , Sirolimo/farmacologia , 1-Butanol/farmacologia , Androstadienos/farmacologia , Animais , Linhagem Celular , Chlorocebus aethiops , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Rim , Cinética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Subunidades Proteicas , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Proteínas Recombinantes/metabolismo , Proteínas Quinases S6 Ribossômicas/química , Ribossomos/enzimologia , Serina-Treonina Quinases TOR , Transfecção , Wortmanina
13.
J Biol Chem ; 276(39): 36079-82, 2001 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-11500483

RESUMO

Rapamycin inhibits differentiation of mouse C2C12 myoblasts, a tissue culture model for skeletal muscle differentiation. The mechanism by which a rapamycin-sensitive signaling pathway regulates myogenesis is largely unknown. The mammalian target of rapamycin (mTOR) is a central regulator of cell growth and proliferation, but its role in myogenesis has not been examined directly. Here we report the investigation of the function of mTOR and its downstream effectors in muscle differentiation. Rapamycin exerts an inhibitory effect on C2C12 myogenesis at different stages, implying that a rapamycin-sensitive pathway may be required for multiple processes during muscle differentiation. The mTOR protein level increases 10-fold during differentiation, via a post-transcriptional mechanism. As the first direct demonstration of the essential role of mTOR in muscle differentiation, we show that a rapamycin-resistant mTOR, but not S6 kinase 1, can rescue rapamycin-inhibited myogenesis. Remarkably, the myogenic function of mTOR does not require its kinase activity. Two downstream effectors of the rapamycin-sensitive pathway, S6 kinase 1 and eIF4E-binding protein 1, undergo differential regulation during myogenesis, but neither protein is the relevant effector for the myogenic signaling of mTOR. Taken together, our observations suggest a novel mTOR signaling mechanism essential for skeletal muscle differentiation.


Assuntos
Músculo Esquelético/citologia , Fosfoproteínas , Proteínas Quinases S6 Ribossômicas/metabolismo , Sirolimo/farmacologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Antibióticos Antineoplásicos/farmacologia , Northern Blotting , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Diferenciação Celular , Linhagem Celular , Fatores de Iniciação em Eucariotos , Camundongos , Microscopia de Fluorescência , Microscopia de Contraste de Fase , Proteínas Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas/química , Transdução de Sinais , Serina-Treonina Quinases TOR , Fatores de Tempo , Transfecção , Regulação para Cima
14.
J Biochem Biophys Methods ; 48(3): 219-37, 2001 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-11384759

RESUMO

Ribosomal p90rsk is a kinase of central importance in transducing mitogenic signals from an activated receptor to the cell nucleus and for protein synthesis. Here, we analyze the optimal steps to fully describe this kinase in both normal neutrophils and leukemic cell lines. These are: (i) immunological analyses (immunoblotting and immunoprecipitation); (ii) enzyme activity assays (in vitro and "in-gel"); and (iii) immunobiochemical combination methods (immunoprecipitation/kinase assay, immunoprecipitation/"in-gel" assay and ion exchange chromatography/immunoblotting). For the enzyme assays, we describe a novel method to measure ribosomal p90rsk kinase activity "in-gel", based on a renatured-protein method that allows for the direct quantitation of enzyme activity. Finally, we present an algorithm that can be readily implemented to the quantification of the extent of stimulation of a kinase in response to a particular extracellular stimuli. In our case, it was found that activation of p90rsk was higher in proliferating leukemic cells than in mature neutrophils, indicating that a suppression of key signal transduction links could contribute to the maturational arrest typical of acute leukemia. All the techniques and strategies described here for p90rsk could be easily extrapolated to the study of any signal transduction molecule, provided it has a phosphotransferase activity.


Assuntos
Bioquímica/métodos , Proteínas Quinases S6 Ribossômicas/química , Algoritmos , Diferenciação Celular , Cromatografia por Troca Iônica , Relação Dose-Resposta a Droga , Células HL-60 , Humanos , Immunoblotting , Cinética , Leucemia/enzimologia , Neutrófilos/enzimologia , Testes de Precipitina , Desnaturação Proteica , Especificidade por Substrato , Fatores de Tempo
15.
J Biol Chem ; 276(18): 14572-80, 2001 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-11278279

RESUMO

UVA exposure plays an important role in the etiology of skin cancer. The family of p90-kDa ribosomal S6 kinases (p90(RSK)/MAPKAP-K1) are activated via phosphorylation. In this study, results show that UVA-induced phosphorylation of p90(RSK) at Ser(381) through ERKs and JNKs, but not p38 kinase pathways. We provide evidence that UVA-induced p90(RSK) phosphorylation and kinase activity were time- and dose-dependent. Both PD98059 and a dominant negative mutant of ERK2 blocked ERKs and p90(RSK) Ser(381) phosphorylation, as well as p90(RSK) activity. A dominant negative mutant of p38 kinase blocked UVA-induced phosphorylation of p38 kinase, but had no effect on UVA-induced Ser(381) phosphorylation of p90(RSK) or kinase activity. UVA-induced p90(RSK) phosphorylation and kinase activity were markedly attenuated in JnK1(-/-) and JnK2(-/-) cells. A dominant negative mutant of JNK1 inhibited UVA-induced JNKs and p90(RSK) phosphorylation and kinase activity, but had no effect on ERKs phosphorylation. PD169316, a novel inhibitor of JNKs and p38 kinase, inhibited phosphorylation of p90(RSK), JNKs, and p38 kinase, but not ERKs. However, SB202190, a selective inhibitor of p38 kinase, had no effect on p90(RSK) or JNKs phosphorylation. Significantly, ERKs and JNKs, but not p38 kinase, immunoprecipitated with p90(RSK) when stimulated by UVA and p90(RSK) was a substrate for ERK2 and JNK2, but not p38 kinase. These data indicate clearly that p90(RSK) Ser(381) may be phosphorylated by activation of JNKs or ERKs, but not p38 kinase.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Serina/metabolismo , Raios Ultravioleta , Ativação Enzimática , Proteínas Quinases JNK Ativadas por Mitógeno , Fosforilação , Testes de Precipitina , Proteínas Quinases S6 Ribossômicas/química , Proteínas Quinases S6 Ribossômicas 90-kDa
16.
FEBS Lett ; 486(1): 38-42, 2000 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-11108839

RESUMO

The present study has explored T cell antigen receptor-regulated serine kinases in human T cells. The results identify two phosphatidylinositol 3-kinase (PI3K)-controlled serine kinases operating downstream of the T cell receptor (TCR) in primary T cells: (i) protein kinase B whose activation regulates the phosphorylation of glycogen synthase kinase 3 and (ii) ribosomal S6 kinase 1, a kinase with a critical role in the regulation of protein synthesis and cell growth. T cells express two isoforms of S6k1: a 70 kDa cytoplasmic kinase and an 85 kDa isoform that has a classic nuclear localisation. TCR ligation triggers a parallel engagement of both the 70 and 85 kDa isoforms of S6k1 in a response that requires PI3K function.


Assuntos
Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Linfócitos T/enzimologia , Linfócitos T/metabolismo , Anticorpos/farmacologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Cromonas/farmacologia , Ativação Enzimática/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase , Quinases da Glicogênio Sintase , Humanos , Peso Molecular , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Proteínas Proto-Oncogênicas c-akt , Proteínas Quinases S6 Ribossômicas/química , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Linfócitos T/efeitos dos fármacos
17.
J Biol Chem ; 275(41): 31588-93, 2000 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-10922375

RESUMO

Mitogen-activated protein kinase-activated protein kinases (MAPKAPKs) lie immediately downstream of the mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase (ERK), and p38 MAPK. Although the family of MAPKAPKs shares sequence similarity, it demonstrates selectivity for the upstream activator. Here we demonstrate that each of the ERK- and p38 MAPK-regulated MAPKAPKs contains a MAPK docking site positioned distally to the residue(s) phosphorylated by MAPKs. The isolated MAPK docking sites show specificity for the upstream activator similar to that reported for the full-length proteins. Moreover, replacement of the ERK docking site of p90 ribosomal S6 kinase with the p38 MAPK docking site of MAPKAPK2 converts p90 ribosomal S6 kinase into a stress-activated kinase in vivo. It is apparent that mechanisms controlling events downstream of the proline-directed MAPKs involve specific MAPK docking sites within the carboxyl termini of the MAPKAPKs that determine the cascade in which the MAPKAPK functions.


Assuntos
Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Engenharia de Proteínas , Proteínas Quinases S6 Ribossômicas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Cricetinae , Ativação Enzimática , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/química , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/química , Proteínas Quinases Ativadas por Mitógeno/genética , Dados de Sequência Molecular , Fosforilação , Testes de Precipitina , Estrutura Terciária de Proteína , Ratos , Receptores de Estrogênio/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Quinases S6 Ribossômicas/química , Proteínas Quinases S6 Ribossômicas/genética , Especificidade por Substrato , Transfecção , Proteínas Quinases p38 Ativadas por Mitógeno
18.
Biochem J ; 347(Pt 2): 389-97, 2000 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-10749668

RESUMO

Fundamental cellular processes such as cell differentiation and growth, apoptosis and cellular metabolism are regulated differentially by glucocorticoid hormones in a cell-context-related fashion. However, these basic processes are not governed by isolated signals but are influenced by the integration of both synergistic and antagonistic extracellular and intracellular stimuli. Because glucocorticoids and insulin-like growth factor I (IGF-I) reciprocally modulate growth-regulated processes such as translation initiation, especially in skeletal muscle, a study was undertaken to address the nature of this counter-regulation. Quiescent L6 skeletal myoblasts pretreated for 4 h with the synthetic glucocorticoid dexamethasone exhibited a marked attenuation of IGF-I-induced activation of the ribosomal protein S6 kinase (p70(S6k)). The adverse effects of glucocorticoids on the activity of the endogenous enzyme were due to differential dephosphorylation at discrete residues, suggesting that, physiologically, some but not all phosphorylation sites are subject to mitogenic regulation. Furthermore, the translational repressor eIF4E-binding protein 1 (4E-BP1), which in many circumstances is co-ordinately regulated with p70(S6k), was dephosphorylated in response to glucocorticoids; however, hyperphosphorylation of the protein after stimulation with IGF-I was refractory to inhibition by glucocorticoids, as was its dissociation from its binding partner, eIF4E. Although both basal and IGF-I-stimulated rates of protein synthesis were modestly affected by glucocorticoids, the synthesis of EF1A, whose mRNA precursor is a prototype for the terminal oligopyrimidine ('TOP') transcript family and whose expression is controlled by the activity of p70(S6k), was markedly affected. Therefore in this cell system it seems that, despite the mutual control of p70(S6k) and 4E-BP1 that is often observed, p70(S6k) is more sensitive to down-regulation by glucocorticoids under growth-promoting conditions than is 4E-BP1.


Assuntos
Proteínas de Transporte , Glucocorticoides/farmacologia , Proteínas Quinases S6 Ribossômicas/antagonistas & inibidores , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Sequência de Aminoácidos , Linhagem Celular , Dexametasona/farmacologia , Ativação Enzimática/efeitos dos fármacos , Fator de Iniciação 4E em Eucariotos , Fator de Crescimento Insulin-Like I/farmacologia , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Fator 1 de Elongação de Peptídeos/biossíntese , Fatores de Iniciação de Peptídeos/metabolismo , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Quinases S6 Ribossômicas/química , Proteínas Quinases S6 Ribossômicas/metabolismo
19.
Mol Biol Cell ; 10(9): 2971-86, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10473640

RESUMO

The efficient activation of p90(rsk) by MAP kinase requires their interaction through a docking site located at the C-terminal end of p90(rsk). The MAP kinase p42(mpk1) can associate with p90(rsk) in G(2)-arrested but not in mature Xenopus oocytes. In contrast, an N-terminally truncated p90(rsk) mutant named D2 constitutively interacts with p42(mpk1). In this report we show that expression of D2 inhibits Xenopus oocyte maturation. The inhibition requires the p42(mpk1) docking site. D2 expression uncouples the activation of p42(mpk1) and p34(cdc2)/cyclin B in response to progesterone but does not prevent signaling through p90(rsk). Instead, D2 interferes with a p42(mpk1)-triggered pathway, which regulates the phosphorylation and activation of Plx1, a potential activator of the Cdc25 phosphatase. This new pathway that links the activation of p42(mpk1) and Plx1 during oocyte maturation is independent of p34(cdc2)/cyclin B activity but requires protein synthesis. Using D2, we also provide evidence that the sustained activation of p42(mpk1) can trigger nuclear migration in oocytes. Our results indicate that D2 is a useful tool to study MAP kinase function(s) during oocyte maturation. Truncated substrates such as D2, which constitutively interact with MAP kinases, may also be helpful to study signal transduction by MAP kinases in other cellular processes.


Assuntos
Proteína Quinase CDC2/metabolismo , Ciclina B/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Mutação , Oócitos/enzimologia , Proteínas Quinases S6 Ribossômicas/metabolismo , Proteínas de Xenopus , Animais , Sítios de Ligação , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Ativação Enzimática/efeitos dos fármacos , Fator Promotor de Maturação/farmacologia , Meiose/efeitos dos fármacos , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oócitos/crescimento & desenvolvimento , Fosforilação , Progesterona/farmacologia , Ligação Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-mos/metabolismo , Proteínas Quinases S6 Ribossômicas/química , Proteínas Quinases S6 Ribossômicas/genética , Deleção de Sequência , Transdução de Sinais/efeitos dos fármacos , Xenopus laevis
20.
EMBO J ; 17(15): 4426-41, 1998 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-9687510

RESUMO

We have identified a novel mitogen- and stress-activated protein kinase (MSK1) that contains two protein kinase domains in a single polypeptide. MSK1 is activated in vitro by MAPK2/ERK2 or SAPK2/p38. Endogenous MSK1 is activated in 293 cells by either growth factor/phorbol ester stimulation, or by exposure to UV radiation, and oxidative and chemical stress. The activation of MSK1 by growth factors/phorbol esters is prevented by PD 98059, which suppresses activation of the MAPK cascade, while the activation of MSK1 by stress stimuli is prevented by SB 203580, a specific inhibitor of SAPK2/p38. In HeLa, PC12 and SK-N-MC cells, PD 98059 and SB 203580 are both required to suppress the activation of MSK1 by TNF, NGF and FGF, respectively, because these agonists activate both the MAPK/ERK and SAPK2/p38 cascades. MSK1 is localized in the nucleus of unstimulated or stimulated cells, and phosphorylates CREB at Ser133 with a Km value far lower than PKA, MAPKAP-K1(p90Rsk) and MAPKAP-K2. The effects of SB 203580, PD 98059 and Ro 318220 on agonist-induced activation of CREB and ATF1 in four cell-lines mirror the effects of these inhibitors on MSK1 activation, and exclude a role for MAPKAP-K1 and MAPKAP-K2/3 in this process. These findings, together with other observations, suggest that MSK1 may mediate the growth-factor and stress-induced activation of CREB.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas de Ligação a DNA , Proteínas Quinases Ativadas por Mitógeno , Proteínas Serina-Treonina Quinases/metabolismo , Fator 1 Ativador da Transcrição , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/isolamento & purificação , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/efeitos da radiação , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/efeitos da radiação , Fator de Crescimento Epidérmico/fisiologia , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Rim , Camundongos , Proteína Quinase 1 Ativada por Mitógeno , Dados de Sequência Molecular , Células PC12 , Fosforilação/efeitos da radiação , Testes de Precipitina , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/isolamento & purificação , Proteínas Serina-Treonina Quinases/fisiologia , Ratos , Proteínas Quinases S6 Ribossômicas/química , Proteínas Quinases S6 Ribossômicas/imunologia , Proteínas Quinases S6 Ribossômicas/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa , Transdução de Sinais/fisiologia , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/efeitos da radiação , Fator de Necrose Tumoral alfa/fisiologia , Raios Ultravioleta , Proteínas Quinases p38 Ativadas por Mitógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA