Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.488
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 24233, 2024 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-39414944

RESUMO

Cancer patients commonly use morphine to alleviate advanced pain. Studies have shown that morphine may influence and intervene in the malignancy of various cancers, but its role and effects on pancreatic cancer are less studied. This study aims to examine how morphine affects pancreatic cancer and its possible mechanisms. In vitro experiments were conducted using the CCK-8 experiment, colony formation experiment, EdU test, wound healing experiment, and transwell migration and invasion experiment. Tumor xenograft tests were employed to investigate the in vivo impact of morphine on pancreatic cancer. The Western blot (WB) assay was used to detect possible changes in key proteins of the related signaling pathway. Our experimental results showed that low concentrations of morphine (25 µM) promoted the progression of pancreatic cancer, while high concentrations of morphine (100 µM) inhibited its progression. Further, we demonstrated that morphine may interfere with the progression of pancreatic cancer by acting on the p38/JNK signaling pathway. Morphine may affect pancreatic cancer progression through the p38/JNK pathway in a bidirectional manner at different concentrations.


Assuntos
Sistema de Sinalização das MAP Quinases , Morfina , Neoplasias Pancreáticas , Animais , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Nus , Morfina/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(10): 1567-1572, 2024 Oct 06.
Artigo em Chinês | MEDLINE | ID: mdl-39428241

RESUMO

Exploring the protective mechanism of metformin against septic cardiomyopathy based on the mitogen-activated protein kinase P38 (P38 MAPK)/c-Jun amino-terminal kinase (JNK) signaling pathway. This paper is an experimental animal study design, which was completed from January to December 2023 at the Xiangya Hospital, Central South University. Forty-eight 8-week-old female C57BL/6 mice were divided into four groups: group A (control group), group B (model group), group C (model+trimetazidine hydrochloride), and group D (model+metformin group), with 12 mice in each group, by using a randomized numeric table method. Groups B, C, and D were injected intraperitoneally with LPS (15 mg/kg) to construct a septic cardiomyopathy mouse model. 24 h after modeling, Groups A and B were injected intraperitoneally with an equal amount of saline, Group C was given 20 mg/kg trimetazidine hydrochloride by gavage, and Group D was injected with metformin 200 mg/kg intraperitoneally, and all of them were subjected to consecutive interventions for 14 d. The results were summarized in the following table. Ultrasound imaging system was used to detect cardiac function, and TUNEL method was used to detect apoptosis rate of myocardial tissues; real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was used to detect the levels of mRNA of JNK, P38 MAPK of P38 MAPK signaling pathway in the myocardial tissues of mice; Plasma creatine kinase isoenzyme (CK-MB), brain natriuretic peptide (BNP), tumor necrosis factor alpha (TNF-α), and interleukin 6 (IL-6) levels were measured by enzyme-linked immunosorbent assay (ELISA) in all groups of mice; and protein kinase C, and protein kinase C levels were measured by protein blotting in cardiac muscle tissue. Eplison isoform (PKCε), and Cavity protein-3 (Cav-3) protein expression in myocardial tissues. The results showed that compared with group A, left ventricular ejection fraction (LVEF) (79.51±6.62)%, left ventricular short-axis shortening (FS) (45.66±4.13), apoptosis rate (4.34±0.36)%, JNK (0.96±0.06), P38 MAPK (1.01±0.03), CK-MB (2.37±0.13) µg/L, BNP (21.36±3.47) ng/L, TNF-α (176.22±19.24) ng/L, IL-6 (35.43±3.84) ng/L, PKCε expression (1.98±0.26), Cav-3 expression (1.04±0.03) compared to apoptosis rates in groups B, C, and D (28.22±4.49, 22.45±3.69, 15.88±3.27), JNK (1.68±0.11, 1.32±0.18, 1.13±0.14), P38 MAPK (2.47±0.71,1.77±0.35,1.49±0.05), CK-MB (16.55±2.16, 12.63±1.98, 5.27±0.61), BNP (48.92±5.67, 33.78±4.11, 27.55±3.84), TNF-α (463.71±24.81, 335.71±36.71, 214.78±22.53), and IL-6 (78.57±6.36, 63.71±5.66, 52.47±5.47) expression were elevated, while left ventricular ejection fraction (LVEF) (49.38±5.27, 55.47±5.03, 62.26±5.14), left ventricular short-axis shortening (FS) (24.36±2.17, 30.43±3.29, 33.57±2.72), PKCε expression (1.33±0.21, 1.54±0.23, 1.75±0.22), and Cav-3 expression (0.47±0.06, 0.76±0.05, 0.85±0.04) were all down-regulated (F=113.020,67.657,219.539,206.222,227.977,88.455,6285.186,135.877,65.924,96.362,17.532,314.419,P<0.05). Compared with group B, apoptosis rate, JNK, P38 MAPK, CK-MB, BNP, TNF-α, and IL-6 expression were decreased, and LVEF, FS, PKCε, and Cav-3 expression were up-regulated in groups C and D. And group D was better than group C (P<0.05). In conclusion, metformin has a protective effect against septic cardiomyopathy, and the mechanism may be related to the inhibition of the activation of the P38 MAPK/JNK signaling pathway and the up-regulation of PKCε and Cav-3 expression.


Assuntos
Cardiomiopatias , Modelos Animais de Doenças , Sistema de Sinalização das MAP Quinases , Metformina , Camundongos Endogâmicos C57BL , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Metformina/farmacologia , Camundongos , Feminino , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sepse/tratamento farmacológico , Sepse/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Apoptose/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
J Tradit Chin Med ; 44(5): 885-895, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39380219

RESUMO

OBJECTIVE: To investigate the mechanism of the protective effect of modified Pulsatilla decoction (, MPD) on the mechanical barrier of the ulcerative colitis (UC) intestinal epithelium in vitro and in vivo. METHODS: We established an intestinal epithelial crypt cell line-6 cell barrier injury model by using lipopolysaccharide (LPS). The model was then treated with p38 mitogen-activated protein kinase-myosin light chain kinase (p38MAPK-MLCK) pathway inhibitors, p38MAPK-MLCK pathway silencing genes (si-p38MAPK, si-NF-κB, and si-MLCK), and MPD respectively. Transepithelial electronic resistance (TEER) measurements and permeability assays were performed to assess barrier function. Immunofluorescence staining of tight junctions (TJ) was performed. In in vivo experiment, dextran sodium sulfate-induced colitis rat model was conducted to evaluate the effect of MPD and mesalazine on UC. The rats were scored using the disease activity index based on their clinical symptoms. Transmission electron microscopy and hematoxylin-eosin staining were used to examine morphological changes in UC rats. Western blotting and real-time quantitative polymerase chain reaction were performed to examine the gene and protein expression of significant differential molecules. RESULTS: In in vitro study, LPS-induced intestinal barrier dysfunction was inhibited by p38MAPK-MLCK pathway inhibitors and p38MAPK-MLCK pathway gene silencing. Silencing of p38MAPK-MLCK pathway genes decreased TJ expression. MPD treatment partly restored the LPS-induced decreased in TEER and increase in permeability. MPD increased the gene and protein expression of TJ, while down-regulated the LPS-induced high expression of p-p38MAPK and p-MLC. In UC model rats, MPD could ameliorate body weight loss and disease activity index, relieve colonic pathology, up-regulate TJ expression as well as decrease the expression of p-p38MAPK and p-MLC in UC rat colonic mucosal tissue. CONCLUSIONS: The p38MAPK-MLCK signaling pathway can affect mechanical barrier function and TJ expression in the intestinal epithelium. MPD restores TJ expression and attenuates intestinal epithelial barrier damage by suppressing the p38MAPK-MLCK pathway.


Assuntos
Colite Ulcerativa , Medicamentos de Ervas Chinesas , Mucosa Intestinal , Quinase de Cadeia Leve de Miosina , Proteínas Quinases p38 Ativadas por Mitógeno , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Colite Ulcerativa/induzido quimicamente , Ratos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Humanos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
4.
Gut Microbes ; 16(1): 2409924, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39369445

RESUMO

Helicobacter pylori, a dominant member of the gastric microbiota was associated with various gastrointestinal diseases and presents a significant challenge due to increasing antibiotic resistance. This study identifies H. pylori's phospholipase A (PldA) as a critical factor in modulating host macrophage responses, facilitating H. pylori 's evasion of the immune system and persistence. PldA alters membrane lipids through reversible acylation and deacylation, affecting their structure and function. We found that PldA incorporates lysophosphatidylethanolamine into macrophage membranes, disrupting their bilayer structure and impairing TNFR1-mediated p38-MK2 signaling. This disruption results in reduced macrophage autophagy and elevated RIP1-dependent apoptosis, thereby enhancing H. pylori survival, a mechanism also observed in multidrug-resistant strains. Pharmacological inhibition of PldA significantly decreases H. pylori viability and increases macrophage survival. In vivo studies corroborate PldA's essential role in H. pylori persistence and immune cell recruitment. Our findings position PldA as a pivotal element in H. pylori pathogenesis through TNFR1-mediated membrane modulation, offering a promising therapeutic target to counteract bacterial resistance.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Macrófagos , Receptores Tipo I de Fatores de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/metabolismo , Animais , Camundongos , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Camundongos Endogâmicos C57BL , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Sistema de Sinalização das MAP Quinases , Apoptose
5.
Nat Commun ; 15(1): 8540, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358362

RESUMO

A spontaneously occurring temperature increase in solid tumors has been reported sporadically, but is largely overlooked in terms of cancer biology. Here we show that temperature is increased in tumors of patients with pancreatic ductal adenocarcinoma (PDAC) and explore how this could affect therapy response. By mimicking this observation in PDAC cell lines, we demonstrate that through adaptive changes in lipid metabolism, the temperature increase found in human PDAC confers protection to lipid peroxidation and contributes to gemcitabine resistance. Consistent with the recently uncovered role of p38 MAPK in ferroptotic cell death, we find that the reduction in lipid peroxidation potential following adaptation to tumoral temperature allows for p38 MAPK inhibition, conferring chemoresistance. As an increase in tumoral temperature is observed in several other tumor types, our findings warrant taking tumoral temperature into account in subsequent studies related to ferroptosis and therapy resistance. More broadly, our findings indicate that tumoral temperature affects cancer biology.


Assuntos
Carcinoma Ductal Pancreático , Desoxicitidina , Resistencia a Medicamentos Antineoplásicos , Ferroptose , Gencitabina , Metabolismo dos Lipídeos , Neoplasias Pancreáticas , Ferroptose/efeitos dos fármacos , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Peroxidação de Lipídeos/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Temperatura , Animais , Camundongos
6.
Discov Med ; 36(189): 2026-2036, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39463222

RESUMO

BACKGROUND: Psoriasis is a prevalent cutaneous inflammatory disorder characterized by elevated keratinocyte inflammation. 5(S)-6(R)-7-trihydroxyheptanoic-acid-methyl-ester (BML-111), an established analogue of lipoxin A4, is known for its potent anti-inflammatory properties. However, the precise role of BML-111 within a murine psoriasis-like dermatitis model requires further clarification. This research aims to investigate the modulatory effects of BML-111 on inflammatory responses, the p38/mitogen-activated protein kinase (MAPK) signaling cascade, and T helper type 1 (Th1), Th2, and Th17 cell responses within the context of a murine psoriasis-like dermatitis model. METHODS: A psoriasis-like dermatitis model was established by applying 5% imiquimod (IMQ) cream to the backs of C57BL/6 mice, which were pretreated intraperitoneally with or without BML-111 prior to IMQ application. Hematoxylin-eosin staining was utilized to detect the pathological alterations of the murine dorsal skin tissue. Furthermore, the psoriasis area and severity index (PASI) scoring system was used to assess the dynamic cutaneous alterations in the mice. The levels of tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), interleukin (IL)-1ß, IL-6, IL-4, and IL-17A in the murine serum samples were quantified by means of enzyme-linked immunosorbent assays (ELISA). Western blotting was conducted to detect the proteins of TNF-α, IL-1ß, IL-6, phospho-p38 (p-p38), and p38 in murine skin tissues. Lastly, a flow cytometry analysis was executed to evaluate the expression of peripheral blood Th1/Th2/Th17 cell subsets. RESULTS: BML-111 attenuated IMQ-induced pathological changes in skin tissue of psoriasis-like dermatitis mice. BML-111 treatment substantially reduced TNF-α, IL-1ß, IL-6, IFN-γ and IL-17A levels and elevated IL-4 levels in serum and skin lesion tissues of IMQ-induced mice (p < 0.01, p < 0.01, p < 0.01, p < 0.05, p < 0.05, p < 0.05, respectively). The ratio of Th1/Th17 cells in the peripheral blood of BML-111-treated mice was substantially diminished and the ratio of Th2 cells was substantially augmented (p < 0.05, p < 0.01, p < 0.001, respectively). Mechanistically, p-p38 protein level was substantially reduced in the skin tissues of BML-111-treated mice (p < 0.05). While, dehydrocorydaline (DHC, a p38/MAPK pathway agonists) reversed the reduction of p-p38 protein level induced by BML-111 treatment in psoriasis-like mice (p < 0.05). CONCLUSION: BML-111 modulates the p38/MAPK signaling pathway and Th1/Th2/Th17 cytokine response, and alleviates psoriasis-like dermatitis in mice.


Assuntos
Citocinas , Modelos Animais de Doenças , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Psoríase , Células Th1 , Células Th17 , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Psoríase/tratamento farmacológico , Psoríase/imunologia , Psoríase/induzido quimicamente , Psoríase/patologia , Camundongos , Células Th17/imunologia , Células Th17/efeitos dos fármacos , Células Th17/metabolismo , Células Th1/imunologia , Células Th1/efeitos dos fármacos , Células Th1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Citocinas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células Th2/imunologia , Células Th2/efeitos dos fármacos , Células Th2/metabolismo , Imiquimode/toxicidade , Feminino
7.
Medicine (Baltimore) ; 103(43): e40211, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39470475

RESUMO

BACKGROUND: Radix Rehmanniae (RR) plays an important role in treating psoriasis. However, the active compounds of RR and potential mechanisms are unclear. The current study was designed to investigate the potential active ingredients, targets, and mechanisms of RR in treating psoriasis through network pharmacology, molecular docking, and vitro experiments. METHODS: Initially, the TCMSP database and literature retrieval were used to access the active ingredients of RR. The psoriasis target proteins were obtained from Therapeutic Target Database, OMIM, GeneCards, and DrugBank databases. The target proteins were then converted into target genes using Uniprot. Secondly, overlapping genes were obtained through Venn online tool. Then, protein-protein interactions network diagram is finished by STRING database. Next, Cytoscape software was used to acquire the top 10 hub proteins; gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis were then used to predict possible mechanisms. Afterwards, molecular docking validation of the active ingredients with the main targets was performed by AutoDock software. Finally, lipopolysaccharides induced RAW264.7, to assess the effects and molecular mechanisms by MTT, RT-qPCR, and Western blot assays. RESULTS: Overall, there are 20 effective compounds and 33 targets involved in biological processes including apoptosis, intracellular signaling, vasodilation, and mitogen-activated protein kinase (MAPK) signaling cascade. The docking results showed strong binding capacity between the active ingredients and targets. We verified aucubin as the key active ingredient, tumor necrosis factor α, and IL6 as the core targets, and focused on the p38MAPK protein pathway. Cellular experiments showed that aucubin down-regulated the phosphorylated p38MAP protein and reduced the expression of tumor necrosis factor α mRNA, IL6 mRNA, and IL1ßmRNA. CONCLUSION: In summary, RR is featured with multicomponent, multi-target, and multi-pathway in treating psoriasis; the preliminary mechanism may be associated with the down-regulation of p38MAPK phosphorylation and curbing the expression of inflammatory factor by aucubin. This paper provides the scientific basis for Traditional Chinese medicine treating psoriasis.


Assuntos
Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Psoríase , Psoríase/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Humanos , Camundongos , Rehmannia/química , Mapas de Interação de Proteínas , Animais , Células RAW 264.7 , Interleucina-6/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Sci Rep ; 14(1): 25636, 2024 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-39465338

RESUMO

Lung adenocarcinoma (LUAD) is the most common lung cancer, accounting for 19.4% of all cancer deaths. Our previous study discovered that INTS7 expression was upregulated in LUAD, while the precise mechanism by which INTS7 exerts pro-cancer effects remains unknown. In our study, shRNA was used to knockdown the expression of INTS7 in A549 cells. Cancer behaviors in vitro were determined by CCK8 and transwell assays. Xenograft mice models were constructed to detect the tumorigenesis in vivo. Immunofluorescence and toluidine blue staining were used to test the immune infiltration. Bioinformatics analysis was adopted to predict the potential signaling pathways and construct INTS7-derived genomic prognostic model. Western blot was utilized to confirm the molecular pathways. In total, downregulation of INTS7 suppressed proliferation, invasion and migration of A549 cells, as well as tumor growth. Bioinformatics and western blot analysis indicated that p38MAPK pathway participated in the regulatory mechanism of INTS7. Moreover, INTS7 expression was negatively correlated with infiltration of memory B cells and mast cells, while positively correlated with infiltration of macrophages M2. A nomogram, including INTS7-derived risk score, was used to estimate individual's survival probability. Generally, our findings provided comprehensive understanding of the molecular mechanisms about INTS7, and targeting INTS7 may represent a potential therapy for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Proliferação de Células , Neoplasias Pulmonares , Proteínas Quinases p38 Ativadas por Mitógeno , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/metabolismo , Animais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Camundongos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células A549 , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Sistema de Sinalização das MAP Quinases , Camundongos Nus , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cells ; 13(20)2024 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-39451251

RESUMO

Cancer-associated fibroblasts (CAFs) are a key component of the tumor microenvironment and significantly contribute to the progression of various cancers, including esophageal squamous cell carcinoma (ESCC). Our previous study established a direct co-culture system of human bone marrow-derived mesenchymal stem cells (progenitors of CAFs) and ESCC cell lines, which facilitates the generation of CAF-like cells and enhances malignancy in ESCC cells. In this study, we further elucidated the mechanism by which CAFs promote ESCC progression using cDNA microarray analysis of monocultured ESCC cells and those co-cultured with CAFs. We observed an increase in the expression and secretion of amphiregulin (AREG) and the expression and phosphorylation of its receptor EGFR in co-cultured ESCC cells. Moreover, AREG treatment of ESCC cells enhanced their survival and migration via the EGFR-Erk/p38 MAPK signaling pathway. Immunohistochemical analysis of human ESCC tissues showed a positive correlation between the intensity of AREG expression at the tumor-invasive front and the expression level of the CAF marker FAP. Bioinformatics analysis confirmed significant upregulation of AREG in ESCC compared with normal tissues. These findings suggest that AREG plays a crucial role in CAF-mediated ESCC progression and could be a novel therapeutic target for ESCC.


Assuntos
Anfirregulina , Fibroblastos Associados a Câncer , Progressão da Doença , Receptores ErbB , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Sistema de Sinalização das MAP Quinases , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno , Humanos , Anfirregulina/metabolismo , Anfirregulina/genética , Receptores ErbB/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Regulação para Cima/genética , Linhagem Celular Tumoral , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Feminino , Masculino , Transdução de Sinais , Pessoa de Meia-Idade
10.
Int Immunopharmacol ; 142(Pt A): 113077, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39265353

RESUMO

Acute kidney injury (AKI) is an important clinical syndrome characterised by a sudden decline in renal function, often accompanied by renal inflammation and tubular epithelial cell damage. It has been reported that inhibiting DNA methylation significantly suppress the progression of AKI. In the current study, we investigate the effect of the DNA methyltransferase (DNMT) inhibitor RG108 in cisplatin- and hypoxia-reoxygenation-induced AKI. The expression of kidney injury molecules and inflammatory factors was examined by immunofluorescence, Western blotting and Real-time PCR. The results demonstrated that RG108 treatment significantly reduced kidney inflammation and injury. Furthermore, RNA-seq analysis was performed to reveal the regulatory mechanism of RG108 in AKI. The expression of the FOS and JUN genes, which are downstream of the MAPK pathway, were significant increased in AKI. Meanwhile, the expression of FOS and JUN were both inhibited by RG108, which is similar to what we found treatment with a specific JNK inhibitor and a specific p38 MAPK inhibitor, and thus attenuated renal inflammation and injury. In conclusion, we suggest that RG108 inhibits P38 MAPK/FOS and JNK/JUN pathways and attenuates renal injury and inflammatory responses. In these results, RG108 may become a novel MAPK pathway inhibitor and a clinical candidate for the treatment of AKI.


Assuntos
Injúria Renal Aguda , Cisplatino , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Humanos , Masculino , Camundongos , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Ftalimidas , Triptofano/análogos & derivados
11.
Chem Biol Interact ; 403: 111222, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39237074

RESUMO

The unknown mechanism that controls intestinal barrier dysfunction in individuals with Crohn's disease (CD) plays a crucial role in the onset of intestinal inflammation. Testin, an intercellular linker protein, has the potential to protect epithelial barrier function. This study aimed to analyse the effects of Testin on CD-like colitis and explore the possible underlying mechanism. Colon samples from CD patients and trinitrobenzene-sulfonic acid (TNBS)-treated mice were collected to examine changes in Testin expression. To assess the therapeutic effects of Testin on CD-like colitis in mice, we examined the symptoms of enteritis, performed histological analysis, and evaluated intestinal barrier permeability. The ability of Testin to stabilize tight junction (TJ) proteins was investigated via immunofluorescence and western blotting. We conducted in vivo and in vitro experiments using colonic organoids and blocking techniques to explore how Testin safeguards the integrity of the intestinal barrier. Testin expression was downregulated in the colons of CD patients and TNBS-treated mice. Increasing Testin expression led to amelioration of colitis symptoms and reduced the production of inflammatory cytokines in the colons of TNBS-induced colitis model mice. Furthermore, increased Testin expression resulted in decreased depletion of TJ proteins (ZO-1 and Claudin-1) and promoted the effectiveness of the intestinal barrier in mice with TNBS-induced colon damage and in lipopolysaccharide (LPS)-stimulated colonic organoids. Elevated Testin levels inactivated the JNK/P38 signalling pathway, potentially contributing to the beneficial impact of Testin on the intestinal barrier. Testin can inhibit the loss of TJ proteins in CD mice by inactivating the JNK/P38 pathway. These findings help to clarify how Testin alleviates CD-like colitis in mice by protecting intestinal barrier function. These findings could lead to the use of a new treatment approach for CD in clinical practice.


Assuntos
Colite , Doença de Crohn , Mucosa Intestinal , Ácido Trinitrobenzenossulfônico , Animais , Doença de Crohn/metabolismo , Doença de Crohn/tratamento farmacológico , Doença de Crohn/patologia , Doença de Crohn/induzido quimicamente , Colite/induzido quimicamente , Colite/metabolismo , Colite/tratamento farmacológico , Colite/patologia , Humanos , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Masculino , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Feminino , Colo/patologia , Colo/metabolismo , Colo/efeitos dos fármacos , Modelos Animais de Doenças , Adulto , Proteínas de Junções Íntimas/metabolismo
12.
Kaohsiung J Med Sci ; 40(10): 916-925, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39230472

RESUMO

This study aims to investigate the effects of the Galectin-3 (Gal-3) inhibitor TD139 on inflammation and the extracellular signal-regulated kinase (ERK)/c-Jun N-terminal kinase (JNK)/p38 pathway in gestational diabetes mellitus (GDM). Human placental tissues were treated with TD139 and TNF-α, assessing Gal-3, ERK/JNK/p38 activation, and inflammatory cytokines. GDM was induced in mice via subcutaneous injections of streptozotocin (STZ). After confirming GDM, mice were treated with 15 mg/kg TD139 on GD 10.5 12.5, 14.5, 16.5, and 18.5. Serum inflammatory cytokines were measured on GD 20.5, and post-delivery placental tissues were analyzed. Data were analyzed using one-way or two-way repeated measures ANOVA with post hoc tests. TD139 suppressed TNF-α-induced increases in Gal-3, IL-1ß, IL-6, MCP-1, and ERK/JNK/p38 activation in placental tissues. In STZ-induced GDM mice, TD139 reduced glucose levels, weight loss, and food and water intake. TD139 significantly lowered TNF-α, IL-1ß, IL-6, and MCP-1 in serum and placental tissues and inhibited the ERK/JNK/p38 pathway. TD139 improved pup numbers in GDM mice compared to untreated ones. TD139 reduces inflammation and inhibits the ERK/JNK/p38 pathway in TNF-α stimulated placental tissues and STZ-induced GDM mice, suggesting its therapeutic potential for managing GDM-related placental inflammation and improving pregnancy outcomes. The study used TNF-α to mimic GDM in placental tissues and an STZ-induced GDM mouse model, which may not fully represent human GDM complexity. Future research should explore alternative models, and broader signaling pathways, and thoroughly evaluate TD139's safety in pregnancy.


Assuntos
Diabetes Gestacional , Galectina 3 , Sistema de Sinalização das MAP Quinases , Placenta , Gravidez , Animais , Diabetes Gestacional/tratamento farmacológico , Diabetes Gestacional/metabolismo , Feminino , Camundongos , Humanos , Placenta/metabolismo , Placenta/efeitos dos fármacos , Galectina 3/metabolismo , Galectina 3/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Inflamação/tratamento farmacológico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Citocinas/metabolismo , Citocinas/sangue , Estreptozocina , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo
13.
Int Immunopharmacol ; 142(Pt B): 113191, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39317050

RESUMO

BACKGROUND: Breast cancer has the highest incidence rate and causes the most fatalities among all female cancers worldwide. Triple-negative breast cancer (TNBC) is known for its strong invasiveness and higher rates of recurrence. In this research, we aimed to identify MIR4435-2HG as a promising long non-coding RNA (lncRNA) biomarker and therapeutic target for TNBC. METHODS: Utilizing clinicopathological information and transcriptome data from The Cancer Genome Atlas (TCGA) database, we assessed the clinical relevance of MIR4435-2HG in breast cancer through univariate and multivariate COX regression, receiver operating characteristic (ROC) analysis, as well as Kaplan-Meier survival analysis. To investigate the biological role of MIR4435-2HG in TNBC, we conducted gene set enrichment analysis (GSEA), as well as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Additionally, we constructed and validated a nomogram to predict disease-free survival (DFS). Both the R package "pRRophetic" and the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm were employed to forecast the sensitivity to different therapeutics between the high- and low-MIR4435-2HG groups. We employed single-cell RNA sequencing analysis and tumor microenvironment infiltration analysis to investigate the potential involvement of MIR4435-2HG in the TNBC tumor microenvironment. Cellular biological behaviors were assessed utilizing CCK-8, transwell assays, and wound-healing assays. Furthermore, we performed RNA-seq, qRT-PCR, and western blotting analyses to elucidate and confirm the specific mechanisms underlying the role of MIR4435-2HG in TNBC. RESULTS: In our study, we have identified MIR4435-2HG as a significant diagnostic and prognostic factor for TNBC. We observed that MIR4435-2HG is widely expressed and might have a significant impact on the reshaping of the TNBC tumor microenvironment. Patients with TNBC in the high-MIR4435-2HG group may show reduced sensitivity to cisplatin, doxorubicin, and gemcitabine and have an increased propensity for immune escape. Knockdown of MIR4435-2HG inhibits cancer-associated fibroblasts (CAFs) activation. Notably, MIR4435-2HG predominantly enhances the migratory and invasive capabilities of TNBC cells through the epithelial-mesenchymal transition (EMT) process. Mechanistically, we validated that MIR4435-2HG activates the JNK/c-Jun and p38 non-classical MAPK signaling pathway in TNBC cells. CONCLUSIONS: Our findings highlight the significant potential of MIR4435-2HG as a highly promising biomarker for TNBC. Targeting MIR4435-2HG could represent an appealing therapeutic approach for TNBC.


Assuntos
Biomarcadores Tumorais , Fibroblastos Associados a Câncer , Transição Epitelial-Mesenquimal , MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/mortalidade , Feminino , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Transição Epitelial-Mesenquimal/genética , Prognóstico , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Invasividade Neoplásica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Microambiente Tumoral/genética , Sistema de Sinalização das MAP Quinases , Pessoa de Meia-Idade , Movimento Celular/genética
14.
Eur J Oral Sci ; 132(5): e13019, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39302740

RESUMO

In response to pro-inflammatory cytokines such as interleukin (IL)-1ß, dental pulp fibroblasts produce various inflammatory mediators, including IL-6, IL-8, CC chemokine ligand 20 (CCL20), and CXC chemokine ligand 10 (CXCL10), leading to the progression of pulpitis. IL-17/IL-17A (IL-17A) is a pro-inflammatory cytokine secreted by T helper (Th) 17 cells following their recruitment to inflamed sites; however, the roles of IL-17A during pulpitis remain unclear. The purpose of this study was to investigate the effect of IL-17A on IL-6, IL-8, CCL20 and CXCL10 production by human dental pulp fibroblasts (HDPFs) in vitro. IL-17A at a concentration of 100 ng/ml induced the production of 10 times more IL-8 and 4 times more CXCL10, but not IL-6 and CCL20, compared to controls. Co-stimulation of HDPFs with IL-17A and IL-1ß synergistically enhanced the production of IL-6, CCL20, IL-8 and CXCL10. IL-1ß increased expression of IL-17 receptor/IL-17RA (IL-17R) on HDPFs. Moreover, the cell signal pathways of p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) were more potently activated by simultaneous stimulation with IL-17A and IL-1ß. These findings suggest that IL-17A participates in the progression of dental pulp inflammation through the enhanced production of inflammatory mediators in HDPFs.


Assuntos
Quimiocina CXCL10 , Polpa Dentária , Fibroblastos , Interleucina-17 , Interleucina-1beta , Interleucina-6 , Interleucina-8 , Humanos , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Polpa Dentária/efeitos dos fármacos , Interleucina-17/farmacologia , Interleucina-17/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Interleucina-1beta/metabolismo , Quimiocina CXCL10/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Mediadores da Inflamação/metabolismo , Quimiocina CCL20/metabolismo , Pulpite/metabolismo , Células Cultivadas , NF-kappa B/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Receptores de Interleucina-17/metabolismo
15.
Molecules ; 29(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39274835

RESUMO

The cell signaling pathways involved in the antiproliferative activities of T. rosea inner bark remain unexplored. This study evaluated the apoptotic effects of two iridoids from the inner bark of T. rosea and apicidin on THP-1 cells. The cytotoxic effects of the extract and the pure compounds on THP-1 and Jurkat cells were also evaluated using the MTT assay. The apoptotic effect was determined by measuring the mitochondrial membrane potential. The expression of mRNA and MAPK kinase, Bax, and Bcl-2 proteins was detected by Western blotting and RT-qPCR, respectively. The extract and the compounds evaluated increased the percentage of apoptotic cells. Depolarization of the mitochondrial membrane was observed, and the number of cells in the G0/G1 phase increased. Catalposide and specioside significantly increased p38 protein expression, mostly in cells pretreated with apicidin. The p38 MAPK signaling pathway is at least one of the pathways by which the n-butanol extract obtained from Tabebuia rosea, catalposide, and specioside exerts its apoptotic effect on THP-1 cells, and this effect generates a response in the G0/G1 phase and subsequent cell death. In addition, there was depolarization of the mitochondrial membrane, an effect that was related to the participation of the proapoptotic protein Bax.


Assuntos
Apoptose , Potencial da Membrana Mitocondrial , Casca de Planta , Extratos Vegetais , Tabebuia , Humanos , Apoptose/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Casca de Planta/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Tabebuia/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Células Jurkat , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Leucemia/patologia , 1-Butanol/química , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células THP-1 , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos
16.
Nutrients ; 16(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39275334

RESUMO

In this study, we discovered the mechanisms underlying parecoxib and resveratrol combination's anti-cancer characteristics against human colorectal cancer DLD-1 cells. We studied its anti-proliferation and apoptosis-provoking effect by utilizing cell viability 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, fluorescence microscope, gene overexpression, Western blot, and flow cytometry analyses. Parecoxib enhanced the ability of resveratrol to inhibit cell viability and increase apoptosis. Parecoxib in combination with resveratrol strongly enhanced apoptosis by inhibiting the expression of thioredoxin domain containing 5 (TXNDC5) and Akt phosphorylation. Parecoxib enhanced resveratrol-provoked c-Jun N-terminal kinase (JNK) and p38 phosphorylation. Overexpression of TXNDC5 and repression of JNK and p38 pathways significantly reversed the inhibition of cell viability and stimulation of apoptosis by the parecoxib/resveratrol combination. This study presents evidence that parecoxib enhances the anti-cancer power of resveratrol in DLD-1 colorectal cancer cells via the inhibition of TXNDC5 and Akt signaling and enhancement of JNK/p38 MAPK pathways. Parecoxib may be provided as an efficient drug to sensitize colorectal cancer by resveratrol.


Assuntos
Apoptose , Sobrevivência Celular , Neoplasias Colorretais , Isoxazóis , Proteínas Proto-Oncogênicas c-akt , Resveratrol , Humanos , Resveratrol/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Isoxazóis/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sinergismo Farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Mol Med Rep ; 30(5)2024 11.
Artigo em Inglês | MEDLINE | ID: mdl-39301637

RESUMO

Lung cancer has the highest incidence and mortality rates of all cancer types in China and therefore represents a serious threat to human health. In the present study, the mechanism of rabdoternin E against the proliferation of the lung cancer cell line A549 was explored. It was found that rabdoternin E caused the accumulation of large amounts of reactive oxygen species (ROS), promoted cell S phase arrest by reducing the expression of CDK2 and cyclin A2, induced apoptosis by increasing the Bax/Bcl­2 ratio and promoted the phosphorylation of proteins in the ROS/p38 MAPK/JNK signaling pathway, which is associated with apoptosis and ferroptosis. In addition, it was also found that Z­VAD­FMK (an apoptosis inhibitor), ferrostatin­1 (ferroptosis inhibitor) and N­acetylcysteine (a ROS inhibitor) could partially or greatly reverse the cytotoxicity of rabdoternin E to A549 cells. Similarly, NAC (N­acetylcysteine) treatment notably inhibited the rabdoternin E­stimulated p38 MAPK and JNK activation. Furthermore, in vivo experiments in mice revealed that Rabdoternin E markedly reduced tumor volume and weight and regulated the expression levels of apoptosis and ferroptosis­related proteins (including Ki67, Bcl­2, Bax, glutathione peroxidase 4, solute carrier family 7 member 11 and transferrin) in the tumor tissues of mice. Histopathological observation confirmed that the number of tumor cells decreased markedly after administration of rabdoternin E. Taken together, rabdoternin E induced apoptosis and ferroptosis of A549 cells by activating the ROS/p38 MAPK/JNK signaling pathway. Therefore, the results of the present study showed that rabdoternin E is not toxic to MCF­7 cells (normal lung cells), had no significant effect on body weight and was effective and therefore may be a novel therapeutic treatment for lung cancer.


Assuntos
Apoptose , Neoplasias Pulmonares , Sistema de Sinalização das MAP Quinases , Espécies Reativas de Oxigênio , Proteínas Quinases p38 Ativadas por Mitógeno , Humanos , Espécies Reativas de Oxigênio/metabolismo , Animais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Células A549 , Apoptose/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Ferroptose/efeitos dos fármacos , Camundongos Nus , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
18.
J Agric Food Chem ; 72(37): 20331-20342, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39253853

RESUMO

Cytochrome P450 monooxygenases in insects have been verified to implicated in insecticide and phytochemical detoxification metabolism. However, the regulation of P450s, which are modulated by signal-regulated transcription factors (TFs), is less well studied in insects. Here, we found that the Malpighian tubule specific P450 gene SlCYP9A75b in Spodoptera litura is induced by xenobiotics. The transgenic Drosophila bioassay and RNAi results indicated that this P450 gene contributes to α-cypermethrin, cyantraniliprole, and nicotine tolerance. In addition, functional analysis revealed that the MAPKs p38, PI3K/Akt, and JAK-STAT activate the transcription factor fushi tarazu factor 1 (FTZ-F1) to regulate CYP9A75b expression. These findings provide mechanistic insights into the contributions of CYP9A genes to xenobiotic detoxification and support the possible involvement of different signaling pathways and TFs in tolerance to xenobiotics in insects.


Assuntos
Sistema Enzimático do Citocromo P-450 , Proteínas de Insetos , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Spodoptera , Xenobióticos , Animais , Spodoptera/genética , Spodoptera/efeitos dos fármacos , Spodoptera/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Xenobióticos/metabolismo , Xenobióticos/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Inseticidas/farmacologia , Fator de Transcrição STAT5/metabolismo , Fator de Transcrição STAT5/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética
19.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273324

RESUMO

Several lines of evidence have linked the intestinal bacterium Helicobacter cinaedi with the pathogenesis of atherosclerosis, identifying the Cinaedi Antigen Inflammatory Protein (CAIP) as a key virulence factor. Oxidative stress and inflammation are crucial in sustaining the atherosclerotic process and oxidized LDL (oxLDL) uptake. Primary human macrophages and endothelial cells were pre-incubated with 10 µM diphenyl iodonium salt (DPI) and stimulated with 20 µg/mL CAIP. Lectin-like oxLDL receptor (LOX-1) expression was evaluated by FACS analysis, reactive oxygen species (ROS) production was measured using the fluorescent probe H2DCF-DA, and cytokine release was quantified by ELISA assay. Foam cells formation was assessed by Oil Red-O staining, and phosphorylation of p38 and ERK1/2 MAP kinases and NF-κB pathway activation were determined by Western blot. This study demonstrated that CAIP triggered LOX-1 over-expression and increased ROS production in both macrophages and endothelial cells. Blocking ROS abrogated LOX-1 expression and reduced LDL uptake and foam cells formation. Additionally, CAIP-mediated pro-inflammatory cytokine release was significantly affected by ROS inhibition. The signaling pathway induced by CAIP-induced oxidative stress led to p38 MAP kinase phosphorylation and NF-κB activation. These findings elucidate the mechanism of action of CAIP, which heightens oxidative stress and contributes to the atherosclerotic process in H. cinaedi-infected patients.


Assuntos
Aterosclerose , Infecções por Helicobacter , Helicobacter , Lipoproteínas LDL , Macrófagos , Espécies Reativas de Oxigênio , Receptores Depuradores Classe E , Humanos , Espécies Reativas de Oxigênio/metabolismo , Aterosclerose/metabolismo , Aterosclerose/microbiologia , Aterosclerose/patologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Receptores Depuradores Classe E/metabolismo , Lipoproteínas LDL/metabolismo , Helicobacter/patogenicidade , Células Endoteliais/metabolismo , Células Endoteliais/microbiologia , NF-kappa B/metabolismo , Células Espumosas/metabolismo , Citocinas/metabolismo , Estresse Oxidativo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas de Bactérias/metabolismo , Sistema de Sinalização das MAP Quinases , Células Cultivadas , Transdução de Sinais
20.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39273358

RESUMO

Neutrophil extracellular traps (NETs) are three-dimensional reticular structures that release chromatin and cellular contents extracellularly upon neutrophil activation. As a novel effector mechanism of neutrophils, NETs possess the capacity to amplify localized inflammation and have been demonstrated to contribute to the exacerbation of various inflammatory diseases, including cardiovascular diseases and tumors. It is suggested that lysophosphatidylcholine (LPC), as the primary active component of oxidized low-density lipoprotein, represents a significant risk factor for various inflammatory diseases, such as cardiovascular diseases and neurodegenerative diseases. However, the specific mechanism of NETs formation induced by LPC remains unclear. Quercetin has garnered considerable attention due to its anti-inflammatory properties, serving as a prevalent flavonoid in daily diet. However, little is currently known about the underlying mechanisms by which quercetin inhibits NETs formation and alleviates associated diseases. In our study, we utilized LPC-treated primary rat neutrophils to establish an in vitro model of NETs formation, which was subsequently subjected to treatment with a combination of quercetin or relevant inhibitors/activators. Compared to the control group, the markers of NETs and the expression of P2X7R/P38MAPK/NOX2 pathway-associated proteins were significantly increased in cells treated with LPC alone. Quercetin intervention decreased the LPC-induced upregulation of the P2X7R/P38MAPK/NOX2 pathway and effectively reduced the expression of NETs markers. The results obtained using a P2X7R antagonist/activator and P38MAPK inhibitor/activator support these findings. In summary, quercetin reversed the upregulation of the LPC-induced P2X7R/P38MAPK/NOX2 pathway, further mitigating NETs formation. Our study investigated the potential mechanism of LPC-induced NETs formation, elucidated the inhibitory effect of quercetin on NETs formation, and offered new insights into the anti-inflammatory properties of quercetin.


Assuntos
Armadilhas Extracelulares , Lisofosfatidilcolinas , NADPH Oxidase 2 , Neutrófilos , Quercetina , Receptores Purinérgicos P2X7 , Proteínas Quinases p38 Ativadas por Mitógeno , Quercetina/farmacologia , Lisofosfatidilcolinas/metabolismo , Lisofosfatidilcolinas/farmacologia , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Ratos , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Receptores Purinérgicos P2X7/metabolismo , NADPH Oxidase 2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA