Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Int J Mol Sci ; 24(24)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38139155

RESUMO

The vesicle-associated membrane protein 7 (VAMP7) is a SNARE protein of the longin family involved in a wide range of subcellular trafficking events, including neurite sprouting and elongation. The expression of the human gene SYBL1, encoding VAMP7, is finely regulated by alternative splicing. Among the minor isoforms identified so far, VAMP7j is the one most expressed and modulated in the human brain. Therefore, we focused on gaining functional evidence on VAMP7j, which lacks a functional SNARE motif but retains both the longin and transmembrane domains. In human SH-SY5Y cells, we found VAMP7j to modulate neuritogenesis by mediating transport of L1CAM toward the plasma membrane, in a fashion regulated by phosphorylation of the longin domain. VAMP7-mediated regulation of L1CAM trafficking seems at least to differentiate humans from rats, with VAMP7j CNS expression being restricted to primates, including humans. Since L1CAM is a central player in neuritogenesis and axon guidance, these findings suggest the species-specific splicing of SYBL1 is among the fine tuners of human neurodevelopmental complexity.


Assuntos
Molécula L1 de Adesão de Célula Nervosa , Neuroblastoma , Animais , Humanos , Ratos , Membrana Celular/metabolismo , Molécula L1 de Adesão de Célula Nervosa/genética , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neuroblastoma/metabolismo , Crescimento Neuronal , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Proteínas SNARE/metabolismo
2.
Mol Plant Pathol ; 24(9): 1154-1167, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37278116

RESUMO

The soilborne bacterial pathogen Ralstonia solanacearum is one of the most destructive plant pathogens worldwide, and its infection process involves the manipulation of numerous plant cellular functions. In this work, we found that the R. solanacearum effector protein RipD partially suppressed different levels of plant immunity triggered by R. solanacearum elicitors, including specific responses triggered by pathogen-associated molecular patterns and secreted effectors. RipD localized in different subcellular compartments in plant cells, including vesicles, and its vesicular localization was enriched in cells undergoing R. solanacearum infection, suggesting that this specific localization may be particularly relevant during infection. Among RipD-interacting proteins, we identified plant vesicle-associated membrane proteins (VAMPs). We also found that overexpression of Arabidopsis thaliana VAMP721 and VAMP722 in Nicotiana benthamiana leaves promoted resistance to R. solanacearum, and this was abolished by the simultaneous expression of RipD, suggesting that RipD targets VAMPs to contribute to R. solanacearum virulence. Among proteins secreted in VAMP721/722-containing vesicles, CCOAOMT1 is an enzyme required for lignin biosynthesis, and mutation of CCOAOMT1 enhanced plant susceptibility to R. solanacearum. Altogether our results reveal the contribution of VAMPs to plant resistance against R. solanacearum and their targeting by a bacterial effector as a pathogen virulence strategy.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ralstonia solanacearum , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Doenças das Plantas/microbiologia , Plantas/metabolismo , Nicotiana/microbiologia , Imunidade Vegetal/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
3.
Medicine (Baltimore) ; 102(15): e33546, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37058019

RESUMO

YKT6, as a Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein with vesicle trafficking, plays an essential role in the development and progression of tumor. However, the gene of YKT6 has not been fully assessed in pan-cancer studies. We aim to investigate the gene of YKT6 across 33 different types of tumor by using the Cancer Genome Atlas, Gene Expression Omnibus database, and other several kinds of bioinformatic tools. YKT6 is significantly up-regulated in most tumors, and we found that overexpression of YKT6 is positively associated with poor prognosis of overall survival and poor disease-free survival prognosis in several tumors, such as Adrenocortical carcinoma, Bladder Urothelial Carcinoma, Head and Neck squamous cell carcinoma. We also detected distinct associations exist between YKT6 and tumor mutational burden or microsatellite instability with tumors. YKT6 expression was positively related to cancer-associated fibroblasts for TCGA tumors of colon adenocarcinoma and LGG. Furthermore, we discovered a significantly positively correlation between YKT6 expression and endothelial cell in tumors of colon adenocarcinoma, HNSC-HPV+, OV, READ and THCA. While a negative relationship was obtained between YKT6 expression and endothelial cell in KIRC. Moreover, "Syntaxin binding," "SNARE complex," "vesicle fusion" and "DNA replication" are involved in the influence of YKT6 on tumor pathogenesis. Our pan-cancer analysis offers a deep comprehending the gene of YKT6 in tumoeigenesis from viewpoint of clinical tumor samples.


Assuntos
Adenocarcinoma , Carcinoma de Células de Transição , Neoplasias do Colo , Neoplasias da Bexiga Urinária , Humanos , Proteínas R-SNARE/genética , Proteínas SNARE
4.
Cell Death Dis ; 13(1): 84, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082283

RESUMO

Deregulated lncRNAs play critical roles in tumorigenesis and tumor progression. NR2F1-AS1 is an antisense lncRNA of NR2F1. However, the biological function of NR2F1-AS1 in gastric cancer (GC) remains largely unclear. In this study, we revealed that NR2F1-AS1 and NR2F1 were both positively correlated with the degree of malignancy and predicted poor prognosis in two independent GC cohorts. Besides, NR2F1-AS1 and NR2F1 can respond to Epithelial-to-mesenchymal transition (EMT) signaling in GC, since their expression was increased by TGF-beta treatment and decreased after stable overexpression of OVOL2 in GC cell lines. NR2F1-AS1 and NR2F1 were highly co-expressed in pan-tissues and pan-cancers. Depletion of NR2F1-AS1 compromised the expression level of NR2F1 in GC cells. Furthermore, NR2F1-AS1 knockdown inhibited the proliferation, migration, invasion and G1/S transition of GC cells. More importantly, transcriptome sequencing revealed a novel ceRNA network composed of NR2F1-AS1, miR-29a-3p, and VAMP7 in GC. The overexpression of VAMP7 predicted poor prognosis in GC. Rescue assay confirmed that NR2F1-AS1 promotes GC progression through miR-29a-3p/VAMP7 axis. Our finding highlights that the aberrant expression of NR2F1-AS1 is probably due to the abnormal EMT signaling in GC. LncRNA NR2F1-AS1 plays crucial roles in GC progression by modulating miR-29a-3p/VAMP7 axis, suggesting that NR2F1-AS1 may serve as a potential therapeutic target in GC.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Fator I de Transcrição COUP/genética , Fator I de Transcrição COUP/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas R-SNARE/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/patologia , Fatores de Transcrição/metabolismo
5.
Cancer Biother Radiopharm ; 37(8): 650-661, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32818383

RESUMO

Background: Breast cancer is one of the most prevalent cancers that often occur in females. Long noncoding RNA differentiation antagonizing nonprotein coding RNA (DANCR) has been involved in the pathogenesis of various tumors, including breast cancer. This study aimed to investigate the role and underlying mechanism of DANCR in breast cancer. Materials and Methods: The level of DANCR was detected in breast cancer tissues and cells by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability was evaluated by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Cell apoptosis was assessed using flow cytometry. Cell migration and invasion were estimated by the Transwell assay. The relationship between DANCR, miR-4319, and vesicle-associated membrane protein-associated protein B (VAPB) was confirmed by bioinformatic analysis and dual-luciferase reporter assay. The level of microRNA-4319 (miR-4319) was tested by qRT-PCR. The expression of VAPB was measured by qRT-PCR or Western blot assay. Results: DANCR and VAPB were upregulated, while miR-4319 was downregulated in breast cancer tissues and cells. Knockdown of DANCR hindered proliferation, migration, and invasion and promoted apoptosis of breast cancer cells. DANCR knockdown inhibited breast cancer development through regulating miR-4319. Inhibition of miR-4319 restrained breast cancer cell progression by targeting VAPB. Moreover, DANCR regulated VAPB expression by sponging miR-4319 in breast cancer cells. Conclusion: DANCR facilitated breast cancer cell progression through regulating the miR-4319/VAPB axis, indicating that DANCR might be a potential biomarker and therapeutic target for breast cancer treatment.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Humanos , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Mama/genética , Brometos/metabolismo , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Apoptose/genética , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
6.
Cells Dev ; 169: 203759, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34856414

RESUMO

Ykt6 has emerged as a key protein involved in a wide array of trafficking events, and has also been implicated in a number of human pathologies, including the progression of several cancers. It is a complex protein that simultaneously exhibits a high degree of structural and functional homology, and yet adopts differing roles in different cellular contexts. Because Ykt6 has been implicated in a variety of vesicle fusion events, we characterized the role of Ykt6 in oogenesis by observing the phenotype of Ykt6 germline clones. Immunofluorescence was used to visualize the expression of membrane proteins, organelles, and vesicular trafficking markers in mutant egg chambers. We find that Ykt6 germline clones have morphological and actin defects affecting both the nurse cells and oocyte, consistent with a role in regulating membrane growth during mid-oogenesis. Additionally, these egg chambers exhibit defects in bicoid and oskar RNA localization, and in the trafficking of Gurken during mid-to-late oogenesis. Finally, we show that Ykt6 mutations result in defects in late endosomal pathways, including endo- and exocytosis. These findings suggest a role for Ykt6 in endosome maturation and in the movement of membranes to and from the cell surface.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Fusão de Membrana/fisiologia , Oogênese/genética , Proteínas R-SNARE/genética
7.
Cancer Lett ; 525: 179-197, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34752845

RESUMO

The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitous cation channel possessing kinase activity. TRPM7 mediates a variety of physiological responses by conducting flow of cations such as Ca2+, Mg2+, and Zn2+. Here, we show that the activation of TRPM7 channel stimulated by chemical agonists of TRPM7, Clozapine or Naltriben, inhibited autophagy via mediating Zn2+ release to the cytosol, presumably from the intracellular Zn2+-accumulating vesicles where TRPM7 localizes. Zn2+ release following the activation of TRPM7 disrupted the fusion between autophagosomes and lysosomes by disturbing the interaction between Sxt17 and VAMP8 which determines fusion status of autophagosomes and lysosomes. Ultimately, the disrupted fusion resulting from stimulation of TRPM7 channels arrested autophagy. Functionally, we demonstrate that the autophagy inhibition mediated by TRPM7 triggered cell death and suppressed metastasis of cancer cells in vitro, more importantly, restricted tumor growth and metastasis in vivo, by evoking apoptosis, cell cycle arrest, and reactive oxygen species (ROS) elevation. These findings represent a strategy for stimulating TRPM7 to combat cancer.


Assuntos
Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Proteínas R-SNARE/genética , Canais de Cátion TRPM/genética , Apoptose/efeitos dos fármacos , Autofagossomos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Clozapina/farmacologia , Humanos , Lisossomos/efeitos dos fármacos , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Metástase Neoplásica , Neoplasias/genética , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPM/agonistas , Zinco/farmacologia
8.
Oncoimmunology ; 10(1): 1938890, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34221701

RESUMO

Metastasis and immune suppression account for the poor prognosis of oral squamous cell carcinoma (OSCC). YKT6 is a member of the soluble NSF attachment protein receptor (SNARE) family, and the effect of YKT6 in OSCC remains elusive. The purpose of this study was to explore promising prognostic and immune therapeutic candidate biomarkers for OSCC and to understand the expression pattern, prognostic value, immune effects, and biological functions of YKT6. Genes correlated with tumor metastasis and CD8 + T cell levels were identified by weighted gene coexpression network analysis (WGCNA). Next, YKT6 was analyzed through differential expression, prognostic and machine learning analyses. The molecular and immune characteristics of YKT6 were analyzed in independent cohorts, clinical specimens, and in vitro. In addition, we investigated the role of YKT6 at the pan-cancer level. The results suggested that the red module in WGCNA, as a hub module, was associated with lymph node (LN) metastasis and CD8 + T cell infiltration. Upregulation of YKT6 was found in OSCC and linked to adverse prognosis. A nomogram model containing YKT6 expression and tumor stage was constructed for clinical practice. The aggressive and immune-inhibitory phenotypes showed YKT6 overexpression, and the effect of YKT6 on OSCC cell invasion and metastasis in vitro was observed. Moreover, the low expression of YKT6 was correlated with high CD8 + T cell levels and potential immunotherapy response in OSCC. Similar results were found at the pan-cancer level. In total, YKT6 is a promising candidate biomarker for prognosis, molecular, and immune characteristics in OSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Proteínas R-SNARE/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço , Linfócitos T CD8-Positivos , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Imunoterapia , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia
9.
J Exp Clin Cancer Res ; 40(1): 183, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34088337

RESUMO

BACKGROUND: Tumor cells are known to release large numbers of exosomes containing active substances that participate in cancer progression. Abnormally expressed long noncoding RNAs (lncRNAs) have been confirmed to regulate multiple processes associated with tumor progression. However, the mechanism by which lncRNAs affect exosome secretion remains unclear. METHODS: The underlying mechanisms of long noncoding RNA LINC00511 (LINC00511) regulation of multivesicular body (MVB) trafficking, exosome secretion, invadopodia formation, and tumor invasion were determined through gene set enrichment analysis (GSEA), immunoblotting, nanoparticle tracking analysis, confocal colocalization analysis, electron microscopy, and invasion experiments. RESULTS: We revealed that the tumorigenesis process is associated with a significant increase in vesicle secretion in hepatocellular carcinoma (HCC). Additionally, LINC00511 was significantly more highly expressed in HCC tissues and is related to vesicle trafficking and MVB distribution. We also found that in addition to the formation of invadopodia in HCC progression, abnormal LINC00511 induces invadopodia formation in HCC cells by regulating the colocalization of vesicle associated membrane protein 7 (VAMP7) and synaptosome associated protein 23 (SNAP23) to induce the invadopodia formation, which are key secretion sites for MVBs and control exosome secretion. Finally, we revealed that LINC0051-induced invadopodia and exosome secretion were involved in tumor progression. CONCLUSIONS: Our experiments revealed novel findings on the relationship between LINC00511 dysregulation in HCC and invadopodia production and exosome secretion. This is a novel mechanism by which LINC00511 regulates invadopodia biogenesis and exosome secretion to further promote cancer progression.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética , Proteínas R-SNARE/genética , RNA Longo não Codificante/genética , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Progressão da Doença , Exossomos/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Hepáticas/patologia , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Podossomos/genética
10.
Life Sci ; 278: 119590, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33965377

RESUMO

AIMS: The expression of antisense lncRNA STXBP5-AS1 and its sense gene STXBP5 were found to be downregulated in glioma by RNA sequencing; however, the function and mechanism of both two genes in the development of glioma have not been studied. MATERIALS AND METHODS: QRT-PCR and western blot were used to determine the transcriptional and translational levels of moleculars. MSP and BSP assays were used to evaluate the methylation status of promoter CpG island. MTT, EdU, flow cytometry, and transwell assays were used to reveal biological effects. The in vivo mice model was used to validate the role of target genes in tumorigenesis. KEY FINDINGS: The mRNA and protein expression of STXBP5 was significantly downregulated in glioma tissues and positively correlated with prognosis. STXBP5-AS1 was downregulated in glioma cells and tissues, and associated with tumor size and clinical stages. Both of two genes were significantly restored in cells treatment with 5-Aza. The promoter CpG island of STXBP5/STXBP5-AS1 was hypermethylated in glioma cells, but partially methylated in NHA cells. We found that promoter methylation frequency was significantly higher in glioma tissues. Functionally, overexpression of STXBP5 and STXBP5-AS1 inhibited cell proliferation, migration, and invasion and promoted apoptosis in vitro, whereas depletion of STXBP5 and STXBP5-AS1 showed opposite effects. Both the mRNA and protein expression of STXBP5 were positively regulated by STXBP5-AS1. Ectopic expression of STXBP5 and STXBP5-AS1 suppressed tumor formation in vivo. SIGNIFICANCE: Our findings suggested that epigenetically silenced STXBP5-AS1 and STXBP5 might act as novel tumor suppressors of glioma.


Assuntos
Neoplasias Encefálicas/genética , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Proteínas do Tecido Nervoso/genética , Proteínas R-SNARE/genética , RNA Longo não Codificante/genética , Adulto , Animais , Neoplasias Encefálicas/patologia , Carcinogênese/patologia , Linhagem Celular Tumoral , Metilação de DNA , Regulação para Baixo , Feminino , Glioma/patologia , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade
11.
Medicine (Baltimore) ; 100(13): e25148, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33787596

RESUMO

BACKGROUND: The heterogeneity of colorectal cancer (CRC) poses a significant challenge to the precise treatment of patients. CRC has been divided into 4 consensus molecular subtypes (CMSs) with distinct biological and clinical characteristics, of which CMS4 has the mesenchymal identity and the highest relapse rate. Autophagy plays a vital role in CRC development and therapeutic response. METHODS: The gene expression profiles collected from 6 datasets were applied to this study. Network analysis was applied to integrate the subtype-specific molecular modalities and autophagy signature to establish an autophagy-based prognostic signature for CRC (APSCRC). RESULTS: Network analysis revealed that 6 prognostic autophagy genes (VAMP7, DLC1, FKBP1B, PEA15, PEX14, and DNAJB1) predominantly regulated the mesenchymal modalities of CRC. The APSCRC was constructed by these 6 core genes and applied for risk calculation. Patients were divided into high- and low-risk groups based on APSCRC score in all cohorts. Patients within the high-risk group showed an unfavorable prognosis. In multivariate analysis, the APSCRC remained an independent predictor of prognosis. Moreover, the APSCRC achieved higher prognostic power than commercialized multigene signatures. CONCLUSIONS: We proposed and validated an autophagy-based signature, which is a promising prognostic biomarker of CRC patients. Further prospective studies are warranted to test and validate its efficiency for clinical application.


Assuntos
Autofagia/genética , Neoplasias Colorretais/genética , Heterogeneidade Genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas Reguladoras de Apoptose/genética , Biomarcadores Tumorais/genética , Feminino , Proteínas Ativadoras de GTPase/genética , Proteínas de Choque Térmico HSP40/genética , Humanos , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Prognóstico , Proteínas R-SNARE/genética , Proteínas Repressoras/genética , Proteínas de Ligação a Tacrolimo/genética , Transcriptoma , Proteínas Supressoras de Tumor/genética
12.
Med Sci Monit ; 27: e927850, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33510126

RESUMO

BACKGROUND Several studies have suggested the importance of autophagy during esophageal adenocarcinoma (EAC) development. This study aimed to explore the autophagy-related genes correlated with overall survival in patients with EAC. MATERIAL AND METHODS The RNA-seq expression profiles and clinical data of patients with EAC were screened using The Cancer Genome Atlas (TCGA) database. Screening of autophagy-related genes was conducted using the human autophagy database (HADb). Bioinformatic analysis was conducted and included the following: univariate cox, lasso regression, and multivariate cox regression analysis; building overall survival assessment of the prognosis model; drawing the model of receiver operating characteristic (ROC) curve and determining the area under the curve; and a C-index reliability index assessment model through Kaplan-Meier screening of statistically significant genes in the model. The screening results were verified via Oncomine differential expression analysis. Gene set enrichment analysis (GSEA) was further used to analyze the molecular biological functions and related pathways of the gene model. RESULTS Through cox regression and ROC analysis, the model showed that the risk score could accurately and independently predict the prognosis of EAC. The screening identified 4 genes: DAPK1, BECN1, ATG5, and VAMP7. GSEA showed that the high and low expression levels of the 4 genes were mainly enriched in biological functions, such as cell production and regulation, and metabolic pathways that maintain cell activity. CONCLUSIONS Our research found that autophagy was involved in the process of EAC development and that several autophagy-related genes may provide prognostic information and clinical application value for patients with EAC.


Assuntos
Adenocarcinoma/genética , Autofagia/genética , Biologia Computacional/métodos , Neoplasias Esofágicas/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Proteína 5 Relacionada à Autofagia/genética , Proteína Beclina-1/genética , Biomarcadores Tumorais/genética , Bases de Dados Genéticas , Proteínas Quinases Associadas com Morte Celular/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/mortalidade , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Estimativa de Kaplan-Meier , Prognóstico , Proteínas R-SNARE/genética , Curva ROC , Reprodutibilidade dos Testes , Fatores de Risco , Transcriptoma/genética
13.
Cell Res ; 31(2): 141-156, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32989223

RESUMO

Cells mitigate ER stress through the unfolded protein response (UPR). Here, we report formation of ER whorls as an effector mechanism of the ER stress response. We found that strong ER stress induces formation of ER whorls, which contain ER-resident proteins such as the Sec61 complex and PKR-like ER kinase (PERK). ER whorl formation is dependent on PERK kinase activity and is mediated by COPII machinery, which facilitates ER membrane budding to form tubular-vesicular ER whorl precursors. ER whorl precursors then go through Sec22b-mediated fusion to form ER whorls. We further show that ER whorls contribute to ER stress-induced translational inhibition by possibly modulating PERK activity and by sequestering translocons in a ribosome-free environment. We propose that formation of ER whorls reflects a new type of ER stress response that controls inhibition of protein translation.


Assuntos
Estresse do Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Proteínas R-SNARE/metabolismo , Canais de Translocação SEC/metabolismo , Transdução de Sinais/genética , eIF-2 Quinase/metabolismo , Animais , Linfócitos B/metabolismo , Células Epiteliais/metabolismo , Técnicas de Inativação de Genes/métodos , Células HEK293 , Humanos , Camundongos , Fosforilação/genética , Biossíntese de Proteínas/genética , Proteínas R-SNARE/genética , Ratos , Canais de Translocação SEC/genética , Transfecção , Resposta a Proteínas não Dobradas , eIF-2 Quinase/genética
14.
Aging (Albany NY) ; 13(2): 2168-2183, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33316779

RESUMO

Tumor microenvironments are strongly related to tumor development, and immune-infiltrating cells and immune-related molecules are potential prognostic markers. However, the shortcomings of traditional measurement methods limit the accurate evaluation of various components in tumor microenvironments. With the rapid advancement of Next-Generation RNA Sequencing technology, dedicated and in-depth analyses of immune filtration within the tumor microenvironment has been achieved. In this study, we combined the bioinformatics analysis methods ESTIMATE, CIBERSORT, and ssGSEA to characterize the immune infiltration of sarcomas and to identify specific immunomodulators of different pathological subtypes. We further extracted a functional enrichment of significant immune-related genes related to improved prognosis, including NR1H3, VAMP5, GIMAP2, GBP2, HLA-E and CRIP1. Overall, the immune microenvironment is an important prognostic determinant of sarcomas and may be a potential resource for developing effective immunotherapy.


Assuntos
Regulação Neoplásica da Expressão Gênica , Mutação , Sarcoma/genética , Microambiente Tumoral/genética , Biomarcadores Tumorais/genética , Proteínas de Transporte/genética , Biologia Computacional , Feminino , GTP Fosfo-Hidrolases/genética , Proteínas de Ligação ao GTP/genética , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Proteínas com Domínio LIM/genética , Receptores X do Fígado/genética , Masculino , Proteínas de Membrana/genética , Prognóstico , Proteínas R-SNARE/genética , Sarcoma/imunologia , Sarcoma/mortalidade , Microambiente Tumoral/imunologia , Antígenos HLA-E
15.
Cytoskeleton (Hoboken) ; 77(8): 303-312, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32748571

RESUMO

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins are a large protein complex that is involved in the membrane fusion in vesicle trafficking, cell growth, cytokinesis, membrane repair, and synaptic transmission. As one of the SNARE proteins, SEC22B functions in membrane fusion of vesicle trafficking between the endoplasmic reticulum and the Golgi apparatus, antigen cross-presentation, secretory autophagy, and other biological processes. However, apart from not being SNARE proteins, there is little knowledge known about its two homologs (SEC22A and SEC22C). SEC22B alterations have been reported in many human diseases, especially, many mutations of SEC22B in human cancers have been detected. In this review, we will introduce the specific functions of SEC22B, and summarize the researches about SEC22B in human cancers and other diseases. These findings have laid the foundation for further studies to clarify the exact mechanism of SEC22B in the pathological process and to seek new therapeutic targets and better treatment strategies.


Assuntos
Doença/genética , Transporte Proteico/fisiologia , Proteínas R-SNARE/genética , Humanos
16.
Pathol Oncol Res ; 26(4): 2409-2423, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32556890

RESUMO

A growing number of studies have suggested that genetic variants affecting the micro-RNA- binding mechanisms (miRSNPs) constitute a promising novel class of biomarkers for prostate cancer (PCa) biology. Among the most extensively studied miRSNPs in the context of cancer is the variation rs4245739 in the MDM4 gene, while a recent large-scale analysis revealed significant differences in genotype distributions between aggressive and non-aggressive disease for rs1058205 in KLK3 and rs1010 in VAMP8. In this study, we examined a total of 1083 subjects for these three variants using Taqman® SNP Genotyping Assays. Three hundred and fifty-five samples of peripheral blood were obtained from patients with PCa and 358 samples from patients with benign prostatic hyperplasia (BPH). The control group consisted of 370 healthy volunteers. Comparisons of genotype distributions among PCa and BPH patients, as well as between PCa patients and healthy controls, yielded no evidence of association between the analyzed genetic variants and the risk of developing PCa. However, all three tested genetic variants have shown the association with the parameters of PCa progression. For KLK3 variant rs1058205, minor allele C was found to associate with the lower serum PSA score in PCa patients (PSA > 20 ng/ml vs. PSA < 10 ng/ml comparison, Prec = 0.038; ORrec = 0.20, 95%CI 0.04-1.05). The obtained results point out the potential relevance of the tested genetic variants for the disease aggressiveness assessment.


Assuntos
Biomarcadores Tumorais/genética , Proteínas de Ciclo Celular/genética , Calicreínas/genética , MicroRNAs/genética , Antígeno Prostático Específico/genética , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas/genética , Proteínas R-SNARE/genética , Idoso , Sítios de Ligação/genética , Predisposição Genética para Doença/genética , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Sérvia
17.
Aging (Albany NY) ; 12(11): 10427-10440, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32499447

RESUMO

Pancreatic cancer (PC) is one of the deadliest cancers worldwide. Cancer cells secrete excessive numbers of exosomes that play essential roles in tumorigenesis. Long non-coding RNAs (lncRNAs) are essential non-coding RNAs for cancer progression. However, the role of lncRNA plasmacytoma variant translocation 1 (PVT1) in exosome secretion of PC remains to be comprehensively investigated. Thus, nanoparticle tracking analysis and transmission electron microscopy were performed to determine exosome secretion. Confocal microscopy, western blots, real-time PCR, immunofluorescence, pull-down and RNA immunoprecipitation assays, and rescue experiments were applied to investigate the mechanism underlying the role of PVT1 in exosome secretion. The results showed that PVT1 was upregulated in PC cells, along with increased levels of YKT6 v-SNARE homolog (YKT6), ras-related protein Rab-7 (RAB7), and vesicle-associated membrane protein 3 (VAMP3). Also, PVT1 promoted the transportation of multivesicular bodies (MVBs) towards the plasma membrane. In addition, PVT1 promoted the docking of MVBs by altering RAB7 expression and localization. Moreover, PVT1 promoted the fusion of MVBs with the plasma membrane through regulating YKT6 and VAMP3 colocalization and the palmitoylation of YKT6. Taken together, the results suggest that PVT1 promoted exosome secretion of PC cells and thus, can expand the understanding of PVT1 in tumor biology.


Assuntos
Exossomos/metabolismo , Neoplasias Pancreáticas/patologia , RNA Longo não Codificante/metabolismo , Microambiente Tumoral/genética , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Exossomos/ultraestrutura , Regulação Neoplásica da Expressão Gênica , Humanos , Lipoilação/genética , Microscopia Eletrônica de Transmissão , Corpos Multivesiculares/metabolismo , Corpos Multivesiculares/ultraestrutura , Neoplasias Pancreáticas/genética , Proteínas R-SNARE/genética , Regulação para Cima , Proteína 3 Associada à Membrana da Vesícula/genética , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
18.
J Immunol ; 204(10): 2818-2828, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32269094

RESUMO

CTLs release cytotoxic proteins such as granzymes and perforin through fusion of cytotoxic granules (CG) at the target cell interface, the immune synapse, to kill virus-infected and tumorigenic target cells. A characteristic feature of these granules is their acidic pH inside the granule lumen, which is required to process precursors of granzymes and perforin to their mature form. However, the role of acidic pH in CG maturation, transport, and fusion is not understood. We demonstrate in primary murine CTLs that the a3-subunit of the vacuolar-type (H+)-adenosine triphosphatase is required for establishing a luminal pH of 6.1 inside CG using ClopHensorN(Q69M), a newly generated CG-specific pH indicator. Knockdown of the a3-subunit resulted in a significantly reduced killing of target cells and a >50% reduction in CG fusion in total internal reflection fluorescence microscopy, which was caused by a reduced number of CG at the immune synapse. Superresolution microscopy revealed a reduced interaction of CG with the microtubule network upon a3-subunit knockdown. Finally, we find by electron and structured illumination microscopy that knockdown of the a3-subunit altered the diameter and density of individual CG, whereas the number of CG per CTL was unaffected. We conclude that the a3-subunit of the vacuolar adenosine triphosphatase is not only responsible for the acidification of CG, but also contributes to the maturation and efficient transport of the CG to the immune synapse.


Assuntos
Sinapses Imunológicas/metabolismo , Microtúbulos/metabolismo , Vesículas Secretórias/metabolismo , Linfócitos T Citotóxicos/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Células Cultivadas , Citotoxicidade Imunológica , Exocitose , Concentração de Íons de Hidrogênio , Sinapses Imunológicas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Proteínas R-SNARE/genética , Linfócitos T Citotóxicos/imunologia , ATPases Vacuolares Próton-Translocadoras/genética
19.
J Neurosci Res ; 98(6): 1213-1231, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32133675

RESUMO

Tomosyn, a protein encoded by syntaxin-1-binding protein 5 (STXBP5) gene, has a well-established presynaptic role in the inhibition of neurotransmitter release and the reduction of synaptic transmission by its canonical interaction with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor machinery. However, the postsynaptic role of tomosyn in dendritic arborization, spine stability, and trafficking of ionotropic glutamate receptors remains to be elucidated. We used short hairpin RNA to knock down tomosyn in mouse primary neurons to evaluate the postsynaptic cellular function and molecular signaling regulated by tomosyn. Knockdown of tomosyn led to an increase of RhoA GTPase activity accompanied by compromised dendritic arborization, loss of dendritic spines, decreased surface expression of AMPA receptors, and reduced miniature excitatory postsynaptic current frequency. Inhibiting RhoA signaling was sufficient to rescue the abnormal dendritic morphology and the surface expression of AMPA receptors. The function of tomosyn regulating RhoA is mediated through the N-terminal WD40 motif, where two variants each carrying a single nucleotide mutation in this region were found in individuals with autism spectrum disorder (ASD). We demonstrated that these variants displayed loss-of-function phenotypes. Unlike the wild-type tomosyn, these two variants failed to restore the reduced dendritic complexity, spine density, as well as decreased surface expression of AMPA receptors in tomosyn knockdown neurons. This study uncovers a novel role of tomosyn in maintaining neuronal function by inhibiting RhoA activity. Further analysis of tomosyn variants also provides a potential mechanism for explaining cellular pathology in ASD.


Assuntos
Dendritos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas R-SNARE/metabolismo , Receptores de AMPA/metabolismo , Animais , Linhagem Celular Tumoral , Potenciais Pós-Sinápticos Excitadores/fisiologia , Camundongos , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas do Tecido Nervoso/genética , Proteínas R-SNARE/genética , Receptores de AMPA/genética
20.
J Cell Biol ; 219(3)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31940424

RESUMO

Phagocytes use their actomyosin cytoskeleton to migrate as well as to probe their environment by phagocytosis or macropinocytosis. Although migration and extracellular material uptake have been shown to be coupled in some immune cells, the mechanisms involved in such coupling are largely unknown. By combining time-lapse imaging with genetics, we here identify the lysosomal Ca2+ channel Trpml as an essential player in the coupling of cell locomotion and phagocytosis in hemocytes, the Drosophila macrophage-like immune cells. Trpml is needed for both hemocyte migration and phagocytic processing at distinct subcellular localizations: Trpml regulates hemocyte migration by controlling actomyosin contractility at the cell rear, whereas its role in phagocytic processing lies near the phagocytic cup in a myosin-independent fashion. We further highlight that Vamp7 also regulates phagocytic processing and locomotion but uses pathways distinct from those of Trpml. Our results suggest that multiple mechanisms may have emerged during evolution to couple phagocytic processing to cell migration and facilitate space exploration by immune cells.


Assuntos
Actomiosina/metabolismo , Movimento Celular , Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Hemócitos/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , Fagocitose , Canais de Potencial de Receptor Transitório/metabolismo , Actomiosina/genética , Animais , Animais Geneticamente Modificados , Cálcio/metabolismo , Sinalização do Cálcio , Citoesqueleto/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/imunologia , Hemócitos/imunologia , Lisossomos/genética , Macrófagos/imunologia , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Fatores de Tempo , Canais de Potencial de Receptor Transitório/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA