Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34.487
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Protein Sci ; 33(6): e5021, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38747394

RESUMO

While nickel-nitrilotriacetic acid (Ni-NTA) has greatly advanced recombinant protein purification, its limitations, including nonspecific binding and partial purification for certain proteins, highlight the necessity for additional purification such as size exclusion and ion exchange chromatography. However, specialized equipment such as FPLC is typically needed but not often available in many laboratories. Here, we show a novel method utilizing polyphosphate (polyP) for purifying proteins with histidine repeats via non-covalent interactions. Our study demonstrates that immobilized polyP efficiently binds to histidine-tagged proteins across a pH range of 5.5-7.5, maintaining binding efficacy even in the presence of reducing agent DTT and chelating agent EDTA. We carried out experiments of purifying various proteins from cell lysates and fractions post-Ni-NTA. Our results demonstrate that polyP resin is capable of further purification post-Ni-NTA without the need for specialized equipment and without compromising protein activity. This cost-effective and convenient method offers a viable approach as a complementary approach to Ni-NTA.


Assuntos
Histidina , Polifosfatos , Histidina/química , Polifosfatos/química , Polifosfatos/metabolismo , Ácido Nitrilotriacético/química , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Humanos , Proteínas/química , Proteínas/isolamento & purificação
2.
World J Microbiol Biotechnol ; 40(7): 199, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727988

RESUMO

Glucagon-like peptide-1(GLP-1) is an incretin hormone secreted primarily from the intestinal L-cells in response to meals. GLP-1 is a key regulator of energy metabolism and food intake. It has been proven that P9 protein from A. muciniphila could increase GLP-1 release and improve glucose homeostasis in HFD-induced mice. To obtain an engineered Lactococcus lactis which produced P9 protein, mature polypeptide chain of P9 was codon-optimized, fused with N-terminal signal peptide Usp45, and expressed in L. lactis NZ9000. Heterologous secretion of P9 by recombinant L. lactis NZP9 were successfully detected by SDS-PAGE and western blotting. Notably, the supernatant of L. lactis NZP9 stimulated GLP-1 production of NCI-H716 cells. The relative expression level of GLP-1 biosynthesis gene GCG and PCSK1 were upregulated by 1.63 and 1.53 folds, respectively. To our knowledge, this is the first report on the secretory expression of carboxyl-terminal processing protease P9 from A. muciniphila in L. lactis. Our results suggest that genetically engineered L. lactis which expressed P9 may have therapeutic potential for the treatment of diabetes, obesity and other metabolic disorders.


Assuntos
Akkermansia , Peptídeo 1 Semelhante ao Glucagon , Lactococcus lactis , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/genética , Akkermansia/genética , Akkermansia/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Humanos , Células L , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Animais , Camundongos , Linhagem Celular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Appl Microbiol Biotechnol ; 108(1): 324, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713211

RESUMO

Laccase, a copper-containing polyphenol oxidase, is an important green biocatalyst. In this study, Laccase Lcc5 was homologous recombinantly expressed in Coprinopsis cinerea and a novel strategy of silencing chitinase gene expression was used to enhance recombinant Lcc5 extracellular yield. Two critical chitinase genes, ChiEn1 and ChiE2, were selected by analyzing the transcriptome data of C. cinerea FA2222, and their silent expression was performed by RNA interference (RNAi). It was found that silencing either ChiEn1 or ChiE2 reduced sporulation and growth rate, and increased cell wall sensitivity, but had no significant effect on mycelial branching. Among them, the extracellular laccase activity of the ChiE2-silenced engineered strain Cclcc5-antiChiE2-5 and the control Cclcc5-13 reached the highest values (38.2 and 25.5 U/mL, respectively) at 250 and 150 rpm agitation speeds, corresponding to productivity of 0.35 and 0.19 U/mL·h, respectively, in a 3-L fermenter culture. Moreover, since Cclcc5-antiChiE2-5 could withstand greater shear forces, its extracellular laccase activity was 2.6-fold higher than that of Cclcc5-13 when the agitation speed was all at 250 rpm. To our knowledge, this is the first report of enhanced recombinant laccase production in C. cinerea by silencing the chitinase gene. This study will pave the way for laccase industrial production and accelerate the development of a C. cinerea high-expression system. KEY POINTS: • ChiEn1 and ChiE2 are critical chitinase genes in C. cinerea FA2222 genome. • Chitinase gene silencing enhanced the tolerance of C. cinerea to shear forces. • High homologous production of Lcc5 is achieved by fermentation in a 3-L fermenter.


Assuntos
Quitinases , Inativação Gênica , Lacase , Quitinases/genética , Quitinases/metabolismo , Quitinases/biossíntese , Lacase/genética , Lacase/metabolismo , Lacase/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Agaricales/genética , Agaricales/enzimologia , Fermentação , Interferência de RNA , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Micélio/genética , Micélio/crescimento & desenvolvimento , Micélio/enzimologia , Parede Celular/metabolismo , Parede Celular/genética
4.
Mol Biol Rep ; 51(1): 628, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717629

RESUMO

Autoinduction systems in Escherichia coli can control the production of proteins without the addition of a particular inducer. In the present study, we optimized the heterologous expression of Moloney Murine Leukemia Virus derived Reverse Transcriptase (MMLV-RT) in E. coli. Among 4 autoinduction media, media Imperial College resulted the highest MMLV-RT overexpression in E. coli BL21 Star (DE3) with incubation time 96 h. The enzyme was produced most optimum in soluble fraction of lysate cells. The MMLV-RT was then purified using the Immobilized Metal Affinity Chromatography method and had specific activity of 629.4 U/mg. The system resulted lower specific activity and longer incubation of the enzyme than a classical Isopropyl ß-D-1-thiogalactopyranoside (IPTG)-induction system. However, the autoinduction resulted higher yield of the enzyme than the conventional induction (27.8%). Techno Economic Analysis revealed that this method could produce MMLV-RT using autoinduction at half the cost of MMLV-RT production by IPTG-induction. Bioprocessing techniques are necessary to conduct to obtain higher quality of MMLV-RT under autoinduction system.


Assuntos
Escherichia coli , Vírus da Leucemia Murina de Moloney , DNA Polimerase Dirigida por RNA , Escherichia coli/genética , Escherichia coli/metabolismo , Vírus da Leucemia Murina de Moloney/genética , Vírus da Leucemia Murina de Moloney/enzimologia , DNA Polimerase Dirigida por RNA/metabolismo , DNA Polimerase Dirigida por RNA/genética , Isopropiltiogalactosídeo/farmacologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Meios de Cultura
5.
Physiol Plant ; 176(3): e14340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741259

RESUMO

Malate dehydrogenases (MDHs) catalyze a reversible NAD(P)-dependent-oxidoreductase reaction that plays an important role in central metabolism and redox homeostasis of plant cells. Recent studies suggest a moonlighting function of plastidial NAD-dependent MDH (plNAD-MDH; EC 1.1.1.37) in plastid biogenesis, independent of its enzyme activity. In this study, redox effects on activity and conformation of recombinant plNAD-MDH from Arabidopsis thaliana were investigated. We show that reduced plNAD-MDH is active while it is inhibited upon oxidation. Interestingly, the presence of its cofactors NAD+ and NADH could prevent oxidative inhibition of plNAD-MDH. In addition, a conformational change upon oxidation could be observed via non-reducing SDS-PAGE. Both effects, its inhibition and conformational change, were reversible by re-reduction. Further investigation of single cysteine substitutions and mass spectrometry revealed that oxidation of plNAD-MDH leads to oxidation of all four cysteine residues. However, cysteine oxidation of C129 leads to inhibition of plNAD-MDH activity and oxidation of C147 induces its conformational change. In contrast, oxidation of C190 and C333 does not affect plNAD-MDH activity or structure. Our results demonstrate that plNAD-MDH activity can be reversibly inhibited, but not inactivated, by cysteine oxidation and might be co-regulated by the availability of its cofactors in vivo.


Assuntos
Arabidopsis , Cisteína , Malato Desidrogenase , NAD , Oxirredução , Plastídeos , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Cisteína/metabolismo , Malato Desidrogenase/metabolismo , Malato Desidrogenase/genética , Plastídeos/metabolismo , Plastídeos/enzimologia , NAD/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética
6.
Protein Expr Purif ; 219: 106487, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38657915

RESUMO

The bacterial Efe system functions as an importer of free Fe2+ into cells independently of iron-chelating compounds such as siderophores and consisted of iron-binding protein EfeO, peroxidase EfeB, and transmembrane permease EfeU. While we and other researchers reported crystal structures of EfeO and EfeB, that of EfeU remains undetermined. In this study, we constructed expression system of EfeU derived from Escherichia coli, selected E. coli Rosetta-gami 2 (DE3) as an expression host, and succeeded in purification of the proteins which were indicated to form an oligomer by blue native PAGE. We obtained preliminary data of the X-ray crystallography, suggesting that expression and purification methods we established in this study enable structural analysis of the bacterial Efe system.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Ferro , Escherichia coli/genética , Escherichia coli/metabolismo , Cristalografia por Raios X , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/isolamento & purificação , Ferro/metabolismo , Ferro/química , Expressão Gênica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/isolamento & purificação , Proteínas de Ligação ao Ferro/metabolismo
7.
Methods Mol Biol ; 2757: 269-287, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38668972

RESUMO

Light-sensitive Ca2+-regulated photoproteins of ctenophores are single-chain polypeptide proteins of 206-208 amino acids in length comprising three canonical EF-hand Ca2+-binding sites, each of 12 contiguous residues. These photoproteins are a stable complex of apoprotein and 2-hydroperoxy adduct of coelenterazine. Addition of calcium ions to photoprotein is only required to trigger bright bioluminescence. However, in contrast to the related Ca2+-regulated photoproteins of jellyfish their capacity to bioluminescence disappears on exposure to light over the entire absorption spectral range of ctenophore photoproteins. Here, we describe protocols for expression of gene encoding ctenophore photoprotein in Escherichia coli cells, obtaining of the recombinant apoprotein of high purity and its conversion into active photoprotein with synthetic coelenterazine as well as determination of its sensitivity to calcium ions using light-sensitive Ca2+-regulated photoprotein berovin from ctenophore Beroe abyssicola as an illustrative case.


Assuntos
Cálcio , Ctenóforos , Escherichia coli , Imidazóis , Proteínas Luminescentes , Ctenóforos/genética , Ctenóforos/metabolismo , Cálcio/metabolismo , Animais , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Expressão Gênica , Clonagem Molecular/métodos , Pirazinas/metabolismo
8.
Sci Rep ; 14(1): 8714, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622266

RESUMO

Green, photosynthesizing plants can be proficiently used as cost-effective, single-use, fully biodegradable bioreactors for environmentally-friendly production of a variety of valuable recombinant proteins. Being near-infinitely scalable and most energy-efficient in generating biomass, plants represent profoundly valid alternatives to conventionally used stationary fermenters. To validate this, we produced a plastome-engineered tobacco bioreactor line expressing a recombinant variant of the protein A from Staphylococcus aureus, an affinity ligand widely useful in antibody purification processes, reaching accumulation levels up to ~ 250 mg per 1 kg of fresh leaf biomass. Chromatography resin manufactured from photosynthetically-sourced recombinant protein A ligand conjugated to agarose beads demonstrated the innate pH-driven ability to bind and elute IgG-type antibodies and allowed one-step efficient purification of functional monoclonal antibodies from the supernatants of the producing hybridomas. The results of this study emphasize the versatility of plant-based recombinant protein production and illustrate its vast potential in reducing the cost of diverse biotechnological applications, particularly the downstream processing and purification of monoclonal antibodies.


Assuntos
Cromatografia , Proteína Estafilocócica A , Proteína Estafilocócica A/química , Ligantes , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Anticorpos Monoclonais/metabolismo , Imunoglobulina G/metabolismo , Proteínas de Plantas/metabolismo , Cromatografia de Afinidade/métodos
9.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673749

RESUMO

The anticancer potential of Levilactobacillus brevis KU15176 against the stomach cancer cell line AGS has been reported previously. In this study, we aimed to analyze the genome of L. brevis KU15176 and identify key genes that may have potential anticancer properties. Among potential anticancer molecules, the role of arginine deiminase (ADI) in conferring an antiproliferative functionality was confirmed. In vitro assay against AGS cell line confirmed that recombinant ADI from L. brevis KU15176 (ADI_br, 5 µg/mL), overexpressed in E. coli BL21 (DE3), exerted an inhibitory effect on AGS cell growth, resulting in a 65.32% reduction in cell viability. Moreover, the expression of apoptosis-related genes, such as bax, bad, caspase-7, and caspase-3, as well as the activity of caspase-9 in ADI_br-treated AGS cells, was higher than those in untreated (culture medium-only) cells. The cell-scattering behavior of ADI_br-treated cells showed characteristics of apoptosis. Flow cytometry analyses of AGS cells treated with ADI_br for 24 and 28 h revealed apoptotic rates of 11.87 and 24.09, respectively, indicating the progression of apoptosis in AGS cells after ADI_br treatment. This study highlights the potential of ADI_br as an effective enzyme for anticancer applications.


Assuntos
Apoptose , Proliferação de Células , Hidrolases , Levilactobacillus brevis , Proteínas Recombinantes , Neoplasias Gástricas , Humanos , Apoptose/efeitos dos fármacos , Hidrolases/metabolismo , Hidrolases/genética , Hidrolases/farmacologia , Linhagem Celular Tumoral , Neoplasias Gástricas/patologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/genética , Proliferação de Células/efeitos dos fármacos , Levilactobacillus brevis/genética , Levilactobacillus brevis/enzimologia , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
10.
Chem Biol Drug Des ; 103(5): e14533, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38684373

RESUMO

Hirudin is one of the specific inhibitors of thrombin, which has been confirmed to have strong bioactivities, including inhibiting tumors. However, the function and mechanism of hirudin and protease-activated receptor 1 (PAR-1) in diffuse large B-cell lymphoma (DLBCL) have not been clear. Detecting the expression PAR-1 in DLBCL tissues and cells by RT-qPCR and IHC. Transfected sh-NC, sh-PAR-1, or pcDNA3.1-PAR-1 in DLBCL cells or processed DLBCL cells through added thrombin, Vorapaxar, Recombinant hirudin (RH), or Na2S2O4 and co-culture with EA.hy926. And built DLBCL mice observed tumor growth. Detecting the expression of related genes by RT-qPCR, Western blot, IHC, and immunofluorescence, measured the cellular hypoxia with Hypoxyprobe-1 Kit, and estimated the cell inflammatory factors, proliferation, migration, invasion, and apoptosis by ELISA, CCK-8, flow cytometry, wound-healing and Transwell. Co-immunoprecipitation and pull-down measurement were used to verify the relationship. PAR-1 was highly expressed in DLBCL tissues and cells, especially in SUDHL2. Na2S2O4 induced SUDHL2 hypoxia, and PAR-1 did not influence thrombin-activated hypoxia. PAR-1 could promote SUDHL2 proliferation, migration, and invasion, and it was unrelated to cellular hypoxia. PAR-1 promoted proliferation, migration, and angiogenesis of EA.hy926 or SUDHL2 through up-regulation vascular endothelial growth factor (VEGF). RH inhibited tumor growth, cell proliferation, and migration, promoted apoptosis of DLBCL, and inhibited angiogenesis by down-regulating PAR-1-VEGF. RH inhibits proliferation, migration, and angiogenesis of DLBCL cells by down-regulating PAR-1-VEGF.


Assuntos
Apoptose , Proliferação de Células , Hirudinas , Linfoma Difuso de Grandes Células B , Neovascularização Patológica , Receptor PAR-1 , Proteínas Recombinantes , Fator A de Crescimento do Endotélio Vascular , Humanos , Hirudinas/farmacologia , Receptor PAR-1/metabolismo , Receptor PAR-1/antagonistas & inibidores , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/patologia , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Camundongos , Linhagem Celular Tumoral , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Apoptose/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/metabolismo , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Angiogênese
11.
Commun Biol ; 7(1): 505, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678117

RESUMO

Alpha-fetoprotein (AFP), a serum glycoprotein, is expressed during embryonic development and the pathogenesis of liver cancer. It serves as a clinical tumor marker, function as a carcinogen, immune suppressor, and transport vehicle; but the detailed AFP structural information has not yet been reported. In this study, we used single-particle cryo-electron microscopy(cryo-EM) to analyze the structure of the recombinant AFP obtained a 3.31 Å cryo-EM structure and built an atomic model of AFP. We observed and identified certain structural features of AFP, including N-glycosylation at Asn251, four natural fatty acids bound to distinct domains, and the coordination of metal ions by residues His22, His264, His268, and Asp280. Furthermore, we compared the structural similarities and differences between AFP and human serum albumin. The elucidation of AFP's structural characteristics not only contributes to a deeper understanding of its functional mechanisms, but also provides a structural basis for developing AFP-based drug vehicles.


Assuntos
Microscopia Crioeletrônica , Ácidos Graxos , alfa-Fetoproteínas , alfa-Fetoproteínas/metabolismo , alfa-Fetoproteínas/química , Glicosilação , Sítios de Ligação , Humanos , Ácidos Graxos/metabolismo , Metais/metabolismo , Metais/química , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química
12.
J Agric Food Chem ; 72(18): 10439-10450, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38676695

RESUMO

Trypsin inhibitors derived from plants have various pharmacological activities and promising clinical applications. In our previous study, a Bowman-Birk-type major trypsin inhibitor from foxtail millet bran (FMB-BBTI) was extracted with antiatherosclerotic activity. Currently, we found that FMB-BBTI possesses a prominent anticolorectal cancer (anti-CRC) activity. Further, a recombinant FMB-BBTI (rFMB-BBTI) was successfully expressed in a soluble manner in host strain Escherichia coli. BL21 (DE3) was induced by isopropyl-ß-d-thiogalactoside (0.1 mM) at 37 °C for 3.5 h by the pET28a vector system. Fortunately, a purity greater than 93% of rFMB-BBTI with anti-CRC activity was purified by nickel-nitrilotriacetic acid affinity chromatography. Subsequently, we found that rFMB-BBTI displays a strikingly anti-CRC effect, characterized by the inhibition of cell proliferation and clone formation ability, cell cycle arrest at the G2/M phase, and induction of cell apoptosis. It is interesting that the rFMB-BBTI treatment had no obvious effect on normal colorectal cells in the same concentration range. Importantly, the anti-CRC activity of rFMB-BBTI was further confirmed in the xenografted nude mice model. Taken together, our study highlights the anti-CRC activity of rFMB-BBTI in vitro and in vivo, uncovering the clinical potential of rFMB-BBTI as a targeted agent for CRC in the future.


Assuntos
Apoptose , Proliferação de Células , Neoplasias Colorretais , Camundongos Nus , Setaria (Planta) , Inibidores da Tripsina , Animais , Humanos , Camundongos , Setaria (Planta)/genética , Setaria (Planta)/química , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Inibidores da Tripsina/farmacologia , Inibidores da Tripsina/isolamento & purificação , Inibidores da Tripsina/química , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Linhagem Celular Tumoral , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Expressão Gênica , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Masculino
13.
Biotechnol Lett ; 46(3): 459-467, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38523200

RESUMO

Solar ultraviolet radiations induced DNA damages in human skin cells with cyclobutane pyrimidine dimers (CPD) and (6-4) photoproducts (6-4PPs) as the most frequent lesions. CPDs are repaired much slower than 6-4PPs by the nucleotide excision repair pathway, which are thus the major lesions that interfere with key cellular processes and give rise to gene mutations, possibly resulting in skin cancer. In prokaryotes and multicellular eukaryotes other than placental mammals, CPDs can be rapidly repaired by CPD photolyases in one simple enzymatic reaction using the energy of blue light. In this study, we aim to construct recombinant CPD photolyases that can autonomously enter human cell nuclei to fix UV-induced CPDs. A fly cell penetration peptide and a viral nucleus localization signal peptide were recombined with a fungal CPD photolyase to construct a recombinant protein. This engineered CPD photolyase autonomously crosses cytoplasm and nuclear membrane of human cell nuclei, which then efficiently photo-repairs UV-induced CPD lesions in the genomic DNA. This further protects the cells by increasing SOD activity, and decreasing cellular ROSs, malondialdehyde and apoptosis.


Assuntos
Núcleo Celular , Dano ao DNA , Reparo do DNA , Desoxirribodipirimidina Fotoliase , Dímeros de Pirimidina , Proteínas Recombinantes , Raios Ultravioleta , Humanos , Desoxirribodipirimidina Fotoliase/metabolismo , Desoxirribodipirimidina Fotoliase/genética , Núcleo Celular/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Dímeros de Pirimidina/metabolismo , Dímeros de Pirimidina/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
14.
Protein Sci ; 33(4): e4974, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533540

RESUMO

Enveloped viruses carry one or multiple proteins with receptor-binding functionalities. Functional receptors can be glycans, proteinaceous, or both; therefore, recombinant protein approaches are instrumental in attaining new insights regarding viral envelope protein receptor-binding properties. Visualizing and measuring receptor binding typically entails antibody detection or direct labeling, whereas direct fluorescent fusions are attractive tools in molecular biology. Here, we report a suite of distinct fluorescent fusions, both N- and C-terminal, for influenza A virus hemagglutinins and SARS-CoV-2 spike RBD. The proteins contained three or six fluorescent protein barrels and were applied directly to cells to assess receptor binding properties.


Assuntos
Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral , Proteínas do Envelope Viral/química , Glicoproteína da Espícula de Coronavírus/química , Ligação Proteica , Polissacarídeos/metabolismo , Proteínas Recombinantes/metabolismo
15.
Biochem Pharmacol ; 223: 116157, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518995

RESUMO

Recombinant human relaxin-2 (serelaxin) has been widely proven as a novel drug with myriad effects at different cardiovascular levels, which support its potential therapeutic efficacy in several cardiovascular diseases (CVD). Considering these effects, together with the influence of relaxin-2 on adipocyte physiology and adipokine secretion, and the connection between visceral adipose tissue (VAT) dysfunction and the development of CVD, we could hypothesize that relaxin-2 may regulate VAT metabolism. Our objective was to evaluate the impact of a 2-week serelaxin treatment on the proteome and lipidome of VAT from Sprague-Dawley rats. We found that serelaxin increased 1 polyunsaturated fatty acid and 6 lysophosphatidylcholines and decreased 4 triglycerides in VAT employing ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) based platforms, and that regulates 47 phosphoproteins using SWATH/MS analysis. Through RT-PCR, we found that serelaxin treatment also caused an effect on VAT lipolysis through an increase in the mRNA expression of hormone-sensitive lipase (HSL) and a decrease in the expression of adipose triglyceride lipase (ATGL), together with a reduction in the VAT expression of the fatty acid transporter cluster of differentiation 36 (Cd36). Serelaxin also caused an anti-inflammatory effect in VAT by the decrease in the mRNA expression of tumor necrosis factor α (TNFα), interleukin-1ß (IL-1ß), chemerin, and its receptor. In conclusion, our results highlight the regulatory role of serelaxin in the VAT proteome and lipidome, lipolytic function, and inflammatory profile, suggesting the implication of several mechanisms supporting the potential benefit of serelaxin for the prevention of obesity and metabolic disorders.


Assuntos
Doenças Cardiovasculares , Relaxina , Humanos , Ratos , Animais , Metabolismo dos Lipídeos , Proteoma , Gordura Intra-Abdominal/metabolismo , Lipidômica , Relaxina/farmacologia , Relaxina/metabolismo , Ratos Sprague-Dawley , Vasodilatadores/farmacologia , Doenças Cardiovasculares/metabolismo , RNA Mensageiro/genética , Tecido Adiposo/metabolismo , Proteínas Recombinantes/metabolismo
16.
Cell Calcium ; 119: 102869, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484433

RESUMO

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic myelopoietic growth factor and proinflammatory cytokine, clinically used for multiple indications and serving as a promising target for treatment of many disorders, including cancer, multiple sclerosis, rheumatoid arthritis, psoriasis, asthma, COVID-19. We have previously shown that dimeric Ca2+-bound forms of S100A6 and S100P proteins, members of the multifunctional S100 protein family, are specific to GM-CSF. To probe selectivity of these interactions, the affinity of recombinant human GM-CSF to dimeric Ca2+-loaded forms of 18 recombinant human S100 proteins was studied by surface plasmon resonance spectroscopy. Of them, only S100A4 protein specifically binds to GM-CSF with equilibrium dissociation constant, Kd, values of 0.3-2 µM, as confirmed by intrinsic fluorescence and chemical crosslinking data. Calcium removal prevents S100A4 binding to GM-CSF, whereas monomerization of S100A4/A6/P proteins disrupts S100A4/A6 interaction with GM-CSF and induces a slight decrease in S100P affinity for GM-CSF. Structural modelling indicates the presence in the GM-CSF molecule of a conserved S100A4/A6/P-binding site, consisting of the residues from its termini, helices I and III, some of which are involved in the interaction with GM-CSF receptors. The predicted involvement of the 'hinge' region and F89 residue of S100P in GM-CSF recognition was confirmed by mutagenesis. Examination of S100A4/A6/P ability to affect GM-CSF signaling showed that S100A4/A6 inhibit GM-CSF-induced suppression of viability of monocytic THP-1 cells. The ability of the S100 proteins to modulate GM-CSF activity is relevant to progression of various neoplasms and other diseases, according to bioinformatics analysis. The direct regulation of GM-CSF signaling by extracellular forms of the S100 proteins should be taken into account in the clinical use of GM-CSF and development of the therapeutic interventions targeting GM-CSF or its receptors.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Proteínas S100 , Humanos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Proteínas S100/metabolismo , Proteínas Recombinantes/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/química , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Ligação Proteica , Sítios de Ligação
17.
Methods Enzymol ; 695: 1-27, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38521581

RESUMO

G-quadruplex (G4) DNA or RNA poses a unique nucleic acid structure in genomic transactions. Because of the unique topology presented by G4, cells have exquisite mechanisms and pathways to metabolize G4 that arise in guanine-rich regions of the genome such as telomeres, promoter regions, ribosomal DNA, and other chromosomal elements. G4 resolvases are often represented by a class of molecular motors known as helicases that disrupt the Hoogsteen hydrogen bonds in G4 by harnessing the chemical energy of nucleoside triphosphate hydrolysis. Of special interest to researchers in the field, including us, is the human FANCJ DNA helicase that efficiently resolves G4 DNA structures. Notably, FANCJ mutations are linked to Fanconi Anemia and are prominent in breast and ovarian cancer. Since our discovery that FANCJ efficiently resolves G4 DNA structures 15 years ago, we and other labs have characterized mechanistic aspects of FANCJ-catalyzed G4 resolution and its biological importance in genomic integrity and cellular DNA replication. In addition to its G4 resolvase function, FANCJ is also a classic DNA helicase that acts on conventional duplex DNA structures, which are relevant to the enzyme's role in interstrand cross link repair, double-strand break repair via homologous recombination, and response to replication stress. Here, we describe detailed procedures for the purification of recombinant FANCJ protein and characterization of its G4 resolvase and duplex DNA helicase activity.


Assuntos
DNA Helicases , Quadruplex G , Humanos , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Recombinases/genética , Recombinases/metabolismo , DNA/metabolismo , Reparo do DNA , Replicação do DNA , Proteínas Recombinantes/metabolismo
18.
Carbohydr Polym ; 332: 121844, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431385

RESUMO

Anti-viral and anti-tumor vaccines aim to induce cytotoxic CD8+ T cells (CTL) and antibodies. Conserved protein antigens, such as p24 from human immunodeficiency virus, represent promising component for elicitation CTLs, nevertheless with suboptimal immunogenicity, if formulated as recombinant protein. To enhance immunogenicity and CTL response, recombinant proteins may be targeted to dendritic cells (DC) for cross presentation on MHCI, where mannose receptor and/or other lectin receptors could play an important role. Here, we constructed liposomal carrier-based vaccine composed of recombinant p24 antigen bound by metallochelating linkage onto surface of nanoliposomes with surface mannans coupled by aminooxy ligation. Generated mannosylated proteonanoliposomes were analyzed by dynamic light scattering, isothermal titration, and electron microscopy. Using murine DC line MutuDC and murine bone marrow derived DC (BMDC) we evaluated their immunogenicity and immunomodulatory activity. We show that p24 mannosylated proteonanoliposomes activate DC for enhanced MHCI, MHCII and CD40, CD80, and CD86 surface expression both on MutuDC and BMDC. p24 mannosylated liposomes were internalized by MutuDC with p24 intracellular localization within 1 to 3 h. The combination of metallochelating and aminooxy ligation could be used simultaneously to generate nanoliposomal adjuvanted recombinant protein-based vaccines versatile for combination of recombinant antigens relevant for antibody and CTL elicitation.


Assuntos
Vacinas contra a AIDS , HIV-1 , Animais , Humanos , Camundongos , Antígenos , Células Dendríticas , Lipossomos/metabolismo , Mananas/metabolismo , Proteínas Recombinantes/metabolismo , Vacinas contra a AIDS/imunologia
19.
J Biol Chem ; 300(4): 107130, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432630

RESUMO

The actin cytoskeleton and reactive oxygen species (ROS) both play crucial roles in various cellular processes. Previous research indicated a direct interaction between two key components of these systems: the WAVE1 subunit of the WAVE regulatory complex (WRC), which promotes actin polymerization and the p47phox subunit of the NADPH oxidase 2 complex (NOX2), which produces ROS. Here, using carefully characterized recombinant proteins, we find that activated p47phox uses its dual Src homology 3 domains to bind to multiple regions within the WAVE1 and Abi2 subunits of the WRC, without altering WRC's activity in promoting Arp2/3-mediated actin polymerization. Notably, contrary to previous findings, p47phox uses the same binding pocket to interact with both the WRC and the p22phox subunit of NOX2, albeit in a mutually exclusive manner. This observation suggests that when activated, p47phox may separately participate in two distinct processes: assembling into NOX2 to promote ROS production and engaging with WRC to regulate the actin cytoskeleton.


Assuntos
NADPH Oxidase 2 , Família de Proteínas da Síndrome de Wiskott-Aldrich , Humanos , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Sítios de Ligação
20.
FEBS Open Bio ; 14(5): 726-739, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514457

RESUMO

Taenia solium can cause human taeniasis and/or cysticercosis. The latter can in some instances cause human neurocysticercosis which is considered a priority in disease-control strategies and the prevention of mental health problems. Glutathione transferases are crucial for the establishment and long-term survival of T. solium; therefore, we structurally analyzed the 24-kDa glutathione transferase gene (Ts24gst) of T. solium and biochemically characterized its product. The gene promoter showed potential binding sites for transcription factors and xenobiotic regulatory elements. The gene consists of a transcription start site, four exons split by three introns, and a polyadenylation site. The gene architecture is conserved in cestodes. Recombinant Ts24GST (rTs24GST) was active and dimeric. Anti-rTs24GST serum showed slight cross-reactivity with human sigma-class GST. A 3D model of Ts24GST enabled identification of putative residues involved in interactions of the G-site with GSH and of the H-site with CDNB and prostaglandin D2. Furthermore, rTs24GST showed optimal activity at 45 °C and pH 9, as well as high structural stability in a wide range of temperatures and pHs. These results contribute to the better understanding of this parasite and the efforts directed to fight taeniasis/cysticercosis.


Assuntos
Glutationa Transferase , Taenia solium , Taenia solium/genética , Taenia solium/enzimologia , Animais , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Glutationa Transferase/química , Humanos , Modelos Moleculares , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA