Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 722
Filtrar
1.
Clin Exp Pharmacol Physiol ; 51(6): e13861, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38724488

RESUMO

Relevant studies have indicated the association of HCG18 with tumour occurrence and progression. In this study, we observed that PM2.5 can enhance the growth of lung adenocarcinoma cells by modulating the expression of HCG18. Further investigations, including overexpression and knockout experiments, elucidated that HCG18 suppresses miR-195, which in turn upregulates the expression of ATG14, resulting in the upregulation of autophagy. Consequently, exposure to PM2.5 leads to elevated HCG18 expression in lung tissues, which in turn increases Atg14 expression and activates autophagy pathways through inhibition of miR-195, thereby contributing to oncogenesis.


Assuntos
Adenocarcinoma de Pulmão , Proteínas Relacionadas à Autofagia , Autofagia , Progressão da Doença , Neoplasias Pulmonares , MicroRNAs , Material Particulado , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Material Particulado/efeitos adversos , Autofagia/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proliferação de Células/genética , Células A549 , Linhagem Celular Tumoral , Proteínas Adaptadoras de Transporte Vesicular
2.
Traffic ; 25(4): e12933, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600522

RESUMO

Macroautophagy/autophagy is an essential catabolic process that targets a wide variety of cellular components including proteins, organelles, and pathogens. ATG7, a protein involved in the autophagy process, plays a crucial role in maintaining cellular homeostasis and can contribute to the development of diseases such as cancer. ATG7 initiates autophagy by facilitating the lipidation of the ATG8 proteins in the growing autophagosome membrane. The noncanonical isoform ATG7(2) is unable to perform ATG8 lipidation; however, its cellular regulation and function are unknown. Here, we uncovered a distinct regulation and function of ATG7(2) in contrast with ATG7(1), the canonical isoform. First, affinity-purification mass spectrometry analysis revealed that ATG7(2) establishes direct protein-protein interactions (PPIs) with metabolic proteins, whereas ATG7(1) primarily interacts with autophagy machinery proteins. Furthermore, we identified that ATG7(2) mediates a decrease in metabolic activity, highlighting a novel splice-dependent function of this important autophagy protein. Then, we found a divergent expression pattern of ATG7(1) and ATG7(2) across human tissues. Conclusively, our work uncovers the divergent patterns of expression, protein interactions, and function of ATG7(2) in contrast to ATG7(1). These findings suggest a molecular switch between main catabolic processes through isoform-dependent expression of a key autophagy gene.


Assuntos
Autofagia , Metabolismo Energético , Humanos , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Isoformas de Proteínas/metabolismo
3.
J Cell Mol Med ; 28(8): e18261, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526029

RESUMO

We aimed to explore the biological function of CPNE7 and determine the impact of CPNE7 on chemotherapy resistance in colorectal cancer (CRC) patients. According to the Gene Expression Profiling Interactive Analysis database and previously published data, CPNE7 was identified as a potential oncogene in CRC. RT-qPCR and Western blotting were performed to verify the expression of CPNE7. Chi-square test was used to evaluate the associations between CPNE7 and clinical features. Cell proliferation, colony formation, cell migration and invasion, cell cycle and apoptosis were assessed to determine the effects of CPNE7. Transcriptome sequencing was used to identify potential downstream regulatory genes, and gene set enrichment analysis was performed to investigate downstream pathways. The effect of CPNE7 on 5-fluorouracil chemosensitivity was verified by half maximal inhibitory concentration (IC50). Subcutaneous tumorigenesis assay was used to examine the role of CPNE7 in sensitivity of CRC to chemotherapy in vivo. Transmission electron microscopy was used to detect autophagosomes. CPNE7 was highly expressed in CRC tissues, and its expression was correlated with T stage and tumour site. Knockdown of CPNE7 inhibited the proliferation and colony formation of CRC cells and promoted apoptosis. Knockdown of CPNE7 suppressed the expression of ATG9B and enhanced the sensitivity of CRC cells to 5-fluorouracil in vitro and in vivo. Knockdown of CPNE7 reversed the induction of the autophagy pathway by rapamycin and reduced the number of autophagosomes. Depletion of CPNE7 attenuated the malignant proliferation of CRC cells and enhanced the chemosensitivity of CRC cells to 5-fluorouracil.


Assuntos
Neoplasias Colorretais , Fluoruracila , Humanos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Carcinogênese/genética , Proliferação de Células/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Membrana/genética
4.
Mol Biol Rep ; 51(1): 427, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498238

RESUMO

BACKGROUND: Drug resistance is one of the most critical problems in gastric cancer therapy. This study was performed to investigate the valproic acid effects on the proliferation of sensitive and resistant cell lines of human gastric cancer, and to explore the mechanism of the agent on multi drug resistance and apoptosis genes. METHODS: The cytotoxicity effect of valproic acid on the EPG85.257 and EPG85.257RDB cells was assessed by the MTT assay, and the IC50 concentration was evaluated. Apoptosis, genotoxicity, and drug resistance pump activity were evaluated using comet assay, Real-time PCR, and flow cytometry, respectively. Cell proliferation was assayed using a scratch test. RESULTS: Dose-dependent toxicity was recorded after treatment of cells with valproic acid. Valproic acid represented a significant growth inhibition on EPG85.257 cells with IC50 values of 5.84 µM and 4.78 µM after 48 h and 72 h treatment, respectively. In contrast, the drug-resistant counterpart represented 8.7 µM and 7.02 µM IC50 values after the same treatment time. Valproic acid induced PTEN, Bcl2, P53, Bax, P21, and caspase3 expression in EPG85.257 cells, whereas p21, p53, PTEN, and ABCB1 were overexpressed in EPG5.257RDB. Valproic acid hindered cell migration in both cell lines (P < 0.01). Valproate genotoxicity was significantly higher in the parent cells than in their resistant EPG85.257RDB counterparts. Valproate led to a 62% reduction in the daunorubicin efflux of the MDR1 pump activity. CONCLUSIONS: Valproate can affect drug resistance in gastric cancer via a unique mechanism independent of MDR1 expression.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Ácido Valproico/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteína Supressora de Tumor p53 , Resistência a Múltiplos Medicamentos/genética , Apoptose , Linhagem Celular Tumoral , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/farmacologia , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/farmacologia , Proteínas de Transporte Vesicular/uso terapêutico
5.
Dev Cell ; 59(7): 911-923.e4, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38447569

RESUMO

Autophagy eliminates cytoplasmic material by engulfment in membranous vesicles targeted for lysosome degradation. Nonselective autophagy coordinates sequestration of bulk cargo with the growth of the isolation membrane (IM) in a yet-unknown manner. Here, we show that in the budding yeast Saccharomyces cerevisiae, IMs expand while maintaining a rim sufficiently wide for sequestration of large cargo but tight enough to mature in due time. An obligate complex of Atg24/Snx4 with Atg20 or Snx41 assembles locally at the rim in a spatially extended manner that specifically depends on autophagic PI(3)P. This assembly stabilizes the open rim to promote autophagic sequestration of large cargo in correlation with vesicle expansion. Moreover, constriction of the rim by the PI(3)P-dependent Atg2-Atg18 complex and clearance of PI(3)P by Ymr1 antagonize rim opening to promote autophagic maturation and consumption of small cargo. Tight regulation of membrane rim aperture by PI(3)P thus couples the mechanism and physiology of nonselective autophagy.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Autofagia/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagossomos/metabolismo
6.
Nat Commun ; 15(1): 1621, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424448

RESUMO

Autophagy in eukaryotes functions to maintain homeostasis by degradation and recycling of long-lived and unwanted cellular materials. Autophagy plays important roles in pathogenicity of various fungal pathogens, suggesting that autophagy is a novel target for development of antifungal compounds. Here, we describe bioluminescence resonance energy transfer (BRET)-based high-throughput screening (HTS) strategy to identify compounds that inhibit fungal ATG4 cysteine protease-mediated cleavage of ATG8 that is critical for autophagosome formation. We identified ebselen (EB) and its analogs ebselen oxide (EO) and 2-(4-methylphenyl)-1,2-benzisothiazol-3(2H)-one (PT) as inhibitors of fungal pathogens Botrytis cinerea and Magnaporthe oryzae ATG4-mediated ATG8 processing. The EB and its analogs inhibit spore germination, hyphal development, and appressorium formation in Ascomycota pathogens, B. cinerea, M. oryzae, Sclerotinia sclerotiorum and Monilinia fructicola. Treatment with EB and its analogs significantly reduced fungal pathogenicity. Our findings provide molecular insights to develop the next generation of antifungal compounds by targeting autophagy in important fungal pathogens.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Virulência , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Esporos Fúngicos
7.
J Cell Biol ; 223(3)2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38227290

RESUMO

Leucine-rich repeat kinase 2 (LRRK2), a Rab kinase associated with Parkinson's disease and several inflammatory diseases, has been shown to localize to stressed lysosomes and get activated to regulate lysosomal homeostasis. However, the mechanisms of LRRK2 recruitment and activation have not been well understood. Here, we found that the ATG8 conjugation system regulates the recruitment of LRRK2 as well as LC3 onto single membranes of stressed lysosomes/phagosomes. This recruitment did not require FIP200-containing autophagy initiation complex, nor did it occur on double-membrane autophagosomes, suggesting independence from canonical autophagy. Consistently, LRRK2 recruitment was regulated by the V-ATPase-ATG16L1 axis, which requires the WD40 domain of ATG16L1 and specifically mediates ATG8 lipidation on single membranes. This mechanism was also responsible for the lysosomal stress-induced activation of LRRK2 and the resultant regulation of lysosomal secretion and enlargement. These results indicate that the V-ATPase-ATG16L1 axis serves a novel non-autophagic role in the maintenance of lysosomal homeostasis by recruiting LRRK2.


Assuntos
Adenosina Trifosfatases , Proteínas Relacionadas à Autofagia , Autofagia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Lisossomos , Adenosina Trifosfatases/metabolismo , Autofagossomos , Proteínas de Ciclo Celular , Humanos , Animais , Camundongos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo
8.
Sci Rep ; 14(1): 546, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177147

RESUMO

Selective degradation of dysfunctional or excess mitochondria is a fundamental process crucial for cell homeostasis in almost all eukaryotes. This process relies on autophagy, an intracellular self-eating system conserved from yeast to humans and is thus called mitophagy. Detailed mechanisms of mitophagy remain to be fully understood. Here we show that mitochondrial degradation in budding yeast, which requires the pro-mitophagic protein Atg32, is strongly reduced in cells lacking Egd1, a beta subunit of the nascent polypeptide-associated complex acting in cytosolic ribosome attachment and protein targeting to mitochondria. By contrast, loss of the sole alpha subunit Egd2 or the beta subunit paralogue Btt1 led to only a partial or slight reduction in mitophagy. We also found that phosphorylation of Atg32, a crucial step for priming mitophagy, is decreased in the absence of Egd1. Forced Atg32 hyperphosphorylation almost completely restored mitophagy in egd1-null cells. Together, we propose that Egd1 acts in Atg32 phosphorylation to facilitate mitophagy.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fatores de Transcrição , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Mitofagia , Peptídeos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Mitocôndrias , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
9.
J Virol ; 98(1): e0159923, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38169281

RESUMO

African swine fever virus (ASFV) causes a highly contagious and deadly disease in domestic pigs and European wild boars, posing a severe threat to the global pig industry. ASFV CP204L, a highly immunogenic protein, is produced during the early stages of ASFV infection. However, the impact of CP204L protein-interacting partners on the outcome of ASFV infection is poorly understood. To accomplish this, coimmunoprecipitation and mass spectrometry analysis were conducted in ASFV-infected porcine alveolar macrophages (PAMs). We have demonstrated that sorting nexin 32 (SNX32) is a CP204L-binding protein and that CP204L interacted and colocalized with SNX32 in ASFV-infected PAMs. ASFV growth and replication were promoted by silencing SNX32 and suppressed by overexpressing SNX32. SNX32 degraded CP204L by recruiting the autophagy-related protein Ras-related protein Rab-1b (RAB1B). RAB1B overexpression inhibited ASFV replication, while knockdown of RAB1B had the opposite effect. Additionally, RAB1B, SNX32, and CP204L formed a complex upon ASFV infection. Taken together, this study demonstrates that SNX32 antagonizes ASFV growth and replication by recruiting the autophagy-related protein RAB1B. This finding extends our understanding of the interaction between ASFV CP204L and its host and provides new insights into exploring the relationship between ASFV infection and autophagy.IMPORTANCEAfrican swine fever (ASF) is a highly contagious and acute hemorrhagic viral disease with a high mortality near 100% in domestic pigs. ASF virus (ASFV), which is the only member of the family Asfarviridae, is a dsDNA virus of great complexity and size, encoding more than 150 proteins. Currently, there are no available vaccines against ASFV. ASFV CP204L represents the most abundantly expressed viral protein early in infection and plays an important role in regulating ASFV replication. However, the mechanism by which the interaction between ASFV CP204L and host proteins affects ASFV replication remains unclear. In this study, we demonstrated that the cellular protein SNX32 interacted with CP204L and degraded CP204L by upregulating the autophagy-related protein RAB1B. In summary, this study will help us understand the interaction mechanism between CP204L and its host upon infection and provide new insights for the development of vaccines and antiviral drugs.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Fatores de Restrição Antivirais , Autofagia , Nexinas de Classificação , Proteínas rab1 de Ligação ao GTP , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Sus scrofa/virologia , Suínos/virologia , Nexinas de Classificação/metabolismo , Fatores de Restrição Antivirais/metabolismo , Proteínas rab1 de Ligação ao GTP/metabolismo , Macrófagos/virologia , Replicação Viral
10.
Reprod Biol ; 24(1): 100846, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38160586

RESUMO

Perfluorooctanesulfonate or perfluorooctane sulfonic acid (PFOS), a type of perfluorinated compound, is mainly found in consumer products. Exposure to PFOS could cause male reproductive toxicity by causing injury to the blood-testis barrier (BTB). However, the specific mechanisms through which PFOS affects male reproduction remain unclear. The mammalian target of rapamycin (mTOR) is a vital protein kinase that is believed to be a central regulator of autophagy. In this study, we established in vivo and in vitro models to explore the effects of PFOS on the BTB, autophagy, and the regulatory role of the mTOR signaling pathway. Adult mice were developmentally exposed to 0, 0.5, 5, and 10 mg/kg/day PFOS for five weeks. Thereafter, their testicular morphology, sperm counts, serum testosterone, expression of BTB-related proteins, and autophagy-related proteins were evaluated. Additionally, TM4 cells (a mouse Sertoli cell line) were used to delineate the molecular mechanisms that mediate the effects of PFOS on BTB. Our results demonstrated that exposure to PFOS induced BTB injury and autophagy, as evidenced by increased expression of autophagy-related proteins, accumulation of autophagosomes, observed through representative electron micrographs, and decreased activity of the PI3K/AKT/mTOR pathway. Moreover, treatment with chloroquine, an autophagy inhibitor, alleviated the effects of PFOS on the integrity of TM4 cells in the BTB and the PI3K/AKT/mTOR pathway. Overall, this study highlights that exposure to PFOS destroys the integrity of the BTB through PI3K/AKT/mTOR-mediated autophagy.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Proteínas Proto-Oncogênicas c-akt , Células de Sertoli , Animais , Masculino , Camundongos , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo , Barreira Hematotesticular , Mamíferos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sêmen/metabolismo , Células de Sertoli/metabolismo , Serina-Treonina Quinases TOR/metabolismo
11.
Pharm Biol ; 62(1): 42-52, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38112463

RESUMO

CONTEXT: Liuwei Dihuang pill (LWDH) has been used to treat postmenopausal osteoporosis (PMOP). OBJECTIVE: To explore the effects and mechanisms of action of LWDH in PMOP. MATERIALS AND METHODS: Forty-eight female Sprague-Dawley rats were divided into four groups: sham-operated (SHAM), ovariectomized (OVX), LWDH high dose (LWDH-H, 1.6 g/kg/d) and LWDH low dose (LWDH-L, 0.8 g/kg/d); the doses were administered after ovariectomy via gavage for eight weeks. After eight weeks, the bone microarchitecture was evaluated. The effect of LWDH on the differentiation of bone marrow mesenchymal stem cells (BMSCs) was assessed via osteogenesis- and lipogenesis-induced BMSC differentiation. The senescence-related biological indices were also detected using senescence staining, cell cycle analysis, quantitative real-time polymerase chain reaction and western blotting. Finally, the expression levels of autophagy-related proteins and Yes-associated protein (YAP) were evaluated. RESULTS: LWDH-L and LWDH-H significantly modified OVX-induced bone loss. LWDH promoted osteogenesis and inhibited adipogenesis in OVX-BMSCs. Additionally, LWDH decreased the positive ratio of senescence OVX-BMSCs and improved cell viability, cell cycle, and the mRNA and protein levels of p53 and p21. LWDH upregulated the expression of autophagy-related proteins, LC3, Beclin1 and YAP, in OVX-BMSCs and downregulated the expression of p62. DISCUSSION AND CONCLUSIONS: LWDH improves osteoporosis by delaying the BMSC senescence through the YAP-autophagy axis.


Assuntos
Células-Tronco Mesenquimais , Proteínas de Sinalização YAP , Animais , Feminino , Humanos , Ratos , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/farmacologia , Diferenciação Celular , Osteogênese , Ovariectomia , Ratos Sprague-Dawley
12.
Bioorg Chem ; 143: 107039, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134519

RESUMO

Autophagy is a ubiquitous pathological/physiological antioxidant cellular reaction in eukaryotic cells. Vacuolar protein sorting 34 (Vps34 or PIK3C3), which plays a crucial role in autophagy, has received much attention. As the only Class III phosphatidylinositol-3 kinase in mammals, Vps34 participates in vesicular transport, nutrient signaling and autophagy. Dysfunctionality of Vps34 induces carcinogenesis, and abnormal autophagy mediated by dysfunction of Vps34 is closely related to the pathological progression of various human diseases, which makes Vps34 a novel target for tumor immunotherapy. In this review, we summarize the molecular mechanisms underlying macroautophagy, and further discuss the structure-activity relationship of Vps34 inhibitors that have been reported in the past decade as well as their potential roles in anticancer immunotherapy to better understand the antitumor mechanism underlying the effects of these inhibitors.


Assuntos
Autofagia , Classe III de Fosfatidilinositol 3-Quinases , Animais , Humanos , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Transporte Proteico , Proteínas Relacionadas à Autofagia/metabolismo , Transdução de Sinais , Mamíferos/metabolismo
13.
Cells ; 12(20)2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37887330

RESUMO

Modulation of autophagy as an anticancer strategy has been widely studied and evaluated in several cell models. However, little attention has been paid to the metabolic changes that occur in a cancer cell when autophagy is inhibited or induced. In this review, we describe how the expression and regulation of various autophagy-related (ATGs) genes and proteins are associated with cancer progression and cancer plasticity. We present a comprehensive review of how deregulation of ATGs affects cancer cell metabolism, where inhibition of autophagy is mainly reflected in the enhancement of the Warburg effect. The importance of metabolic changes, which largely depend on the cancer type and form part of a cancer cell's escape strategy after autophagy modulation, is emphasized. Consequently, pharmacological strategies based on a dual inhibition of metabolic and autophagy pathways emerged and are reviewed critically here.


Assuntos
Glicólise , Neoplasias , Humanos , Proteínas Relacionadas à Autofagia/metabolismo , Neoplasias/metabolismo , Estresse Oxidativo
14.
J Cell Sci ; 136(19)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37701987

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) exhibits elevated levels of autophagy, which promote tumor progression and treatment resistance. ATG4B is an autophagy-related cysteine protease under consideration as a potential therapeutic target, but it is largely unexplored in PDAC. Here, we investigated the clinical and functional relevance of ATG4B expression in PDAC. Using two PDAC patient cohorts, we found that low ATG4B mRNA or protein expression is associated with worse patient survival outcomes, poorly differentiated PDAC tumors and a lack of survival benefit from adjuvant chemotherapy. In PDAC cell lines, ATG4B knockout reduced proliferation, abolished processing of LC3B (also known as MAP1LC3B), and reduced GABARAP and GABARAPL1 levels, but increased ATG4A levels. ATG4B and ATG4A double knockout lines displayed a further reduction in proliferation, characterized by delays in G1-S phase transition and mitosis. Pro-LC3B accumulated aberrantly at the centrosome with a concomitant increase in centrosomal proteins PCM1 and CEP131, which was rescued by exogenous ATG4B. The two-stage cell cycle defects following ATG4B and ATG4A loss have important therapeutic implications for PDAC.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Neoplasias Pancreáticas/genética , Autofagia/genética , Linhagem Celular Tumoral , Ciclo Celular/genética , Proliferação de Células/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas
15.
Autophagy ; 19(12): 3240-3241, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37565742

RESUMO

Lactate is a glycolysis product that is produced from pyruvate by LDH (lactate dehydrogenase) and plays an important role in physiological and pathological processes. However, whether lactate regulates autophagy is still unknown. We recently reported that LDHA is phosphorylated at serine 196 by ULK1 (unc-51 like kinase 1) under nutrient-deprivation conditions, promoting lactate production. Then, lactate mediates PIK3C3/VPS34 lactylation at lysine 356 and lysine 781 via acyltransferase KAT5/TIP60. PIK3C3/VPS34 lactylation enhances the association of PIK3C3/VPS34 with BECN1 (beclin 1, autophagy related), ATG14 and UVRAG, increases PIK3C3/VPS34 lipid kinase activity, promotes macroautophagy/autophagy and facilitates the endolysosomal degradation pathway. PIK3C3/VPS34 hyperlactylation induces autophagy and plays an essential role in skeletal muscle homeostasis and cancer progression. Overall, this study describes an autophagy regulation mechanism and the integration of two highly conserved life processes: glycolysis and autophagy.


Assuntos
Autofagia , Ácido Láctico , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Lisina/metabolismo , Proteína Beclina-1/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Glicólise
16.
Autophagy ; 19(12): 3251-3253, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37599471

RESUMO

Macroautophagy/autophagy and lipid droplet (LD) biology are intricately linked, with autophagosome-dependent degradation of LDs in response to different signals. LDs play crucial roles in forming autophagosomes possibly by providing essential lipids and serving as a supportive autophagosome assembly platform at the endoplasmic reticulum (ER)-LD interface. LDs and autophagosomes share common proteins, such as VPS13, ATG2, ZFYVE1/DFCP1, and ATG14, but their dual functions remain poorly understood. In our recent study, we found that prolonged starvation leads to ATG3 localizing to large LDs and lipidating LC3B, revealing a non-canonical autophagic role on LDs. In vitro, ATG3 associates with purified and artificial LDs, and conjugated Atg8-family proteins. In long-term starved cells, only LC3B is found on the specific large LDs, positioned near LC3B-positive membranes that undergo lysosome-mediated acidification. This implies that LD-lipidated LC3B acts as a tethering factor, connecting phagophores to LDs and promoting degradation. Our data also support the notion that certain LD surfaces may function as lipidation stations for LC3B, which may move to nearby sites of autophagosome formation. Overall, our study unveils an unknown non-canonical implication of LDs in autophagy processes.Abbreviation: ATG: autophagy-related enzyme, ATP: adenosine triphosphate, E2 enzyme: ubiquitin-conjugating enzyme, ER: endoplasmic reticulum, LD: lipid droplet, LIR motif: LC3-interacting region, MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta, PE: phosphatidylethanolamine, PLIN1: perilipin 1, PNPLA2/ATGL: patatin-like phospholipase domain containing 2, SQSTM1/p62: sequestosome 1, VSP13: vacuolar protein sorting 13, ZFYVE1/DFCP1: zinc finger, FYVE domain containing 1.


Assuntos
Autofagia , Gotículas Lipídicas , Gotículas Lipídicas/metabolismo , Autofagossomos/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo
17.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(7): 633-637, 2023 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-37403723

RESUMO

Objective To identify the relationship between nephritis activity, autophagy and inflammation in patients with SLE. Methods Western blot analysis was used to detect the expression of microtubule-associated protein 1 light chain 3 (LC3) and P62 in peripheral blood mononuclear cells (PBMCs) of SLE patients with lupus nephritis and non-lupus nephritis patients. Tumor necrosis factor α (TNF-α) and interferon γ (IFN-γ) in the serum of SLE patients were determined by ELISA. The correlation between LC3II/LC3I ratio and SLE disease activity score (SLEDAI), urinary protein, TNF-α and IFN-γ levels was analyzed by Pearson method. Results The expression of LC3 was increased and P62 was decreased in SLE patients. TNF-α and IFN-γ were increased in the serum of SLE patients. LC3II/LC3I ratio was positively correlated with SLEDAI (r=0.4560), 24 hour urine protein (r=0.3753), IFN-γ (r=0.5685), but had no correlation with TNF-α (r=0.04 683). Conclusion Autophagy is found in PBMCs of SLE, and the autophagy is correlated with renal damage and inflammation in patients with lupus nephritis.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Leucócitos Mononucleares/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Nefrite Lúpica/urina , Rim , Interferon gama/metabolismo , Inflamação/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo
18.
Autophagy ; 19(11): 2997-3013, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37424101

RESUMO

Proteolysis-targeting chimeras (PROTACs) based on the ubiquitin-proteasome system have made great progress in the field of drug discovery. There is mounting evidence that the accumulation of aggregation-prone proteins or malfunctioning organelles is associated with the occurrence of various age-related neurodegenerative disorders and cancers. However, PROTACs are inefficient for the degradation of such large targets due to the narrow entrance channel of the proteasome. Macroautophagy (hereafter referred to as autophagy) is known as a self-degradative process involved in the degradation of bulk cytoplasmic components or specific cargoes that are sequestered into autophagosomes. In the present study, we report the development of a generalizable strategy for the targeted degradation of large targets. Our results suggested that tethering large target models to phagophore-associated ATG16L1 or LC3 induced targeted autophagic degradation of the large target models. Furthermore, we successfully applied this autophagy-targeting degradation strategy to the targeted degradation of HTT65Q aggregates and mitochondria. Specifically, chimeras consisting of polyQ-binding peptide 1 (QBP) and ATG16L1-binding peptide (ABP) or LC3-interacting region (LIR) induced targeted autophagic degradation of pathogenic HTT65Q aggregates; and the chimeras consisting of mitochondria-targeting sequence (MTS) and ABP or LIR promoted targeted autophagic degradation of dysfunctional mitochondria, hence ameliorating mitochondrial dysfunction in a Parkinson disease cell model and protecting cells from apoptosis induced by the mitochondrial stress agent FCCP. Therefore, this study provides a new strategy for the selective proteolysis of large targets and enrich the toolkit for autophagy-targeting degradation.Abbreviations: ABP: ATG16L1-binding peptide; ATG16L1: autophagy related 16 like 1; ATTEC: autophagy-tethering compound; AUTAC: autophagy-targeting chimera; AUTOTAC: autophagy-targeting chimera; Baf A1: bafilomycin A1; BCL2: BCL2 apoptosis regulator; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CPP: cell-penetrating peptide; CQ: chloroquine phosphate; DAPI: 4',6-diamidino-2-phenylindole; DCM: dichloromethane; DMF: N,N-dimethylformamide; DMSO: dimethyl sulfoxide; EBSS: Earle's balanced salt solution; FCCP: carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; FITC: fluorescein-5-isothiocyanate; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HEK293: human embryonic kidney 293; HEK293T: human embryonic kidney 293T; HPLC: high-performance liquid chromatography; HRP: horseradish peroxidase; HTT: huntingtin; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFF: mitochondrial fission factor; MTS: mitochondria-targeting sequence; NBR1: NBR1 autophagy cargo receptor; NLRX1: NLR family member X1; OPTN: optineurin; P2A: self-cleaving 2A peptide; PB1: Phox and Bem1p; PBS: phosphate-buffered saline; PE: phosphatidylethanolamine; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; PROTACs: proteolysis-targeting chimeras; QBP: polyQ-binding peptide 1; SBP: streptavidin-binding peptide; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SPATA33: spermatogenesis associated 33; TIMM23: translocase of inner mitochondrial membrane 23; TMEM59: transmembrane protein 59; TOMM20: translocase of outer mitochondrial membrane 20; UBA: ubiquitin-associated; WT: wild type.


Assuntos
Autofagia , Agregados Proteicos , Humanos , Masculino , Proteínas Relacionadas à Autofagia/metabolismo , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona , Células HEK293 , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ubiquitinas/metabolismo
19.
Am J Physiol Gastrointest Liver Physiol ; 325(3): G265-G278, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37431575

RESUMO

Excessive alcohol intake is a major risk factor for pancreatitis, sensitizing the exocrine pancreas to stressors by mechanisms that remain obscure. Impaired autophagy drives nonalcoholic pancreatitis, but the effects of ethanol (EtOH) and alcoholic pancreatitis on autophagy are poorly understood. Here, we find that ethanol reduces autophagosome formation in pancreatic acinar cells, both in a mouse model of alcoholic pancreatitis induced by a combination of EtOH diet and cerulein (a CCK ortholog) and in EtOH+CCK-treated acinar cells (ex vivo model). Ethanol treatments decreased pancreatic level of LC3-II, a key mediator of autophagosome formation. This was caused by ethanol-induced upregulation of ATG4B, a cysteine protease that, cell dependently, regulates the balance between cytosolic LC3-I and membrane-bound LC3-II. We show that ATG4B negatively regulates LC3-II in acinar cells subjected to EtOH treatments. Ethanol raised ATG4B level by inhibiting its degradation, enhanced ATG4B enzymatic activity, and strengthened its interaction with LC3-II. We also found an increase in ATG4B and impaired autophagy in a dissimilar, nonsecretagogue model of alcoholic pancreatitis induced by EtOH plus palmitoleic acid. Adenoviral ATG4B overexpression in acinar cells greatly reduced LC3-II and inhibited autophagy. Furthermore, it aggravated trypsinogen activation and necrosis, mimicking key responses of ex vivo alcoholic pancreatitis. Conversely, shRNA Atg4B knockdown enhanced autophagosome formation and alleviated ethanol-induced acinar cell damage. The results reveal a novel mechanism, whereby ethanol inhibits autophagosome formation and thus sensitizes pancreatitis, and a key role of ATG4B in ethanol's effects on autophagy. Enhancing pancreatic autophagy, particularly by downregulating ATG4B, could be beneficial in mitigating the severity of alcoholic pancreatitis.NEW & NOTEWORTHY Ethanol sensitizes mice and humans to pancreatitis, but the underlying mechanisms remain obscure. Autophagy is important for maintaining pancreatic acinar cell homeostasis, and its impairment drives pancreatitis. This study reveals a novel mechanism, whereby ethanol inhibits autophagosome formation through upregulating ATG4B, a key cysteine protease. ATG4B upregulation inhibits autophagy in acinar cells and aggravates pathological responses of experimental alcoholic pancreatitis. Enhancing pancreatic autophagy, particularly by down-regulating ATG4B, could be beneficial for treatment of alcoholic pancreatitis.


Assuntos
Cisteína Proteases , Pancreatite Alcoólica , Animais , Humanos , Camundongos , Células Acinares/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Cisteína Proteases/metabolismo , Etanol/farmacologia , Pancreatite Alcoólica/genética , Regulação para Cima
20.
J Vis Exp ; (196)2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37458468

RESUMO

Growing evidence has shown that high autophagic flux is related to tumor progression and cancer therapy resistance. Assaying individual autophagy proteins is a prerequisite for therapeutic strategies targeting this pathway. Inhibition of the autophagy protease ATG4B has been shown to increase overall survival, suggesting that ATG4B could be a potential drug target for cancer therapy. Our laboratory has developed a selective luciferase-based assay for monitoring ATG4B activity in cells. For this assay, the substrate of ATG4B, LC3B, is tagged at the C-terminus with a secretable luciferase from the marine copepod Gaussia princeps (GLUC). This reporter is linked to the actin cytoskeleton, thus keeping it in the cytoplasm of cells when uncleaved. ATG4B-mediated cleavage results in the release of GLUC by non-conventional secretion, which then can be monitored by harvesting supernatants from cell culture as a correlate of cellular ATG4B activity. This paper presents the adaptation of this luciferase-based assay to automated high-throughput screening. We describe the workflow and optimization for exemplary high-throughput analysis of cellular ATG4B activity.


Assuntos
Cisteína , Neoplasias , Humanos , Proteínas Relacionadas à Autofagia/metabolismo , Avaliação Pré-Clínica de Medicamentos , Autofagia , Peptídeo Hidrolases , Luciferases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA