Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Phytomedicine ; 114: 154815, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37062136

RESUMO

BACKGROUND: The safety of herbs containing aristolochic acids (AAs) has become a widespread concern. Previous reports indicate that AAs are highly nephrotoxic and carcinogenic, although there are more than 170 analogues of aristolochic acid. Not all AAs have the same degree of nephrotoxicity or carcinogenicity. Previous studies have found that aristolochic acid IVa (AA-IVa), the principal component of AAs within members of the Aristolochiaceae family, especially Asarum, a commonly used herb in China, has essentially no significant nephrotoxicity. However, several studies, including ours, have shown that aristolochic acid I (AA-I) is clearly nephrotoxic. PURPOSE: The focus of the study was to elucidate the molecular mechanism responsible for the difference in nephrotoxicity between the AA-I and AA-IVa. STUDY DESIGN/METHOD: Mice were administered with AA-I or AA-IVa for 22 weeks through the oral route, followed by a 50-week recovery time. The kidney tissues of mice were extracted at the end of 22 weeks. Pathological examination and proteomic detection (tandem mass tagging (TMT) and phosphorylated proteomics) were performed on the kidney tissue to investigate the key signaling pathways and targets of AAs-induced renal interstitial fibrosis (RIF). The key signaling pathways and targets were verified by Western blot (WB), siRNA transfection, and luciferase assays. RESULTS: AA-I caused severe nephrotoxicity, high mortality, and extensive RIF. However, the same AA-IVa dosage exhibited almost no nephrotoxicity and does not trigger RIF. The activation of the p38-STAT3-S100A11 signaling pathway and upregulated expression of α smooth muscle actin (α-SMA) and Bcl2-associated agonist of cell death (Bad) proteins could be the molecular mechanism underlying AA-I-induced nephrotoxicity. On the other hand, AA-IVa did not regulate the activation of the p38-STAT3-S100A11 signaling pathway and had relatively little effect on the expression of α-SMA and Bad. Consequently, the difference in the regulation of p38-STAT3-S100A11 pathway, α-SMA, and Bad proteins between AA-I and AA-IVa may be responsible for the divergence in their level of nephrotoxicity. CONCLUSION: This is the first study to reveal the molecular mechanism underlying the difference in nephrotoxicity between AA-I and AA-IVa. Whether STAT3 is activated or not may be the key factor leading to the difference in nephrotoxicity between AA-I and AA-IVa.


Assuntos
Ácidos Aristolóquicos , Nefropatias , Camundongos , Animais , Ácidos Aristolóquicos/metabolismo , Ácidos Aristolóquicos/farmacologia , Proteômica , Nefropatias/metabolismo , Transdução de Sinais , Fibrose , Rim , Proteínas S100/metabolismo , Proteínas S100/farmacologia
2.
Arch Biochem Biophys ; 734: 109497, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36574914

RESUMO

NFIC is a potent transcriptional factor involved in many physiological and pathological processes, including tumorigenesis. However, the role of NFIC1, the longest isoform of NFIC, in the progression of triple negative breast cancer (TNBC) remains elusive. Our study demonstrates that overexpression of NFIC1 inhibits the migration and invasion of TNBC MDA-MB-231 cells. NFIC1 regulates the expression of S100A2, and knockdown of S100A2 reverses the inhibitive effects of NFIC1 on the migration and invasion of MDA-MB-231 cells. Furthermore, knockdown of S100A2 activates the MEK/ERK signaling transduction pathway that is inhibited by NFIC1 overexperssion. Treatment with MEK/ERK pathway inhibitor, U0126, abolishes the effects of S100A2 knockdown. In addition, overexpression of NFIC1 in MDA-MB-231 cells increases the expression of epithelial markers and decreases the expression of mesenchymal markers, and these effects could also be reversed by knockdown of S100A2. Collectively, these results demonstrate that NFIC1 inhibits the Epithelial-mesenchymal transition (EMT) of MDA-MB-231 cells by regulating S100A2 expression, which suppress the activation of MEK/ERK pathway. Therefore, our study confirms the role of NFIC1 as a tumor repressor in TNBC, and reveals the molecular mechanism through which NFIC1 inhibits the migration and invasion of MDA-MB-231 cells.


Assuntos
Sistema de Sinalização das MAP Quinases , Neoplasias de Mama Triplo Negativas , Humanos , Células MDA-MB-231 , Proliferação de Células , Movimento Celular , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Fatores Quimiotáticos/metabolismo , Fatores Quimiotáticos/farmacologia , Proteínas S100/metabolismo , Proteínas S100/farmacologia
3.
Cancer Chemother Pharmacol ; 90(6): 431-444, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224471

RESUMO

PURPOSE: Among children, glioblastomas (GBMs) are a relatively common type of brain tumor. BRD4 expression was elevated in GBM and negatively correlated with the prognosis of glioma. We investigated the anti-GBM effects of a novel BRD4 inhibitor GNE987. METHODS: We evaluated the anti-tumor effect of GNE987 in vitro and in vivo by Western blot, CCK8, flow cytometry detection, clone formation, the size of xenografts, and Ki67 immunohistochemical staining, and combined ChIP-seq with RNA-seq techniques to find its anti-tumor mechanism. RESULTS: In vitro experiments showed that GNE987 significantly degraded BRD4, inhibited the proliferation of GBM cells, blocked the cell cycle, and induced apoptosis. Similarly, in vivo experiments, GNE987 also inhibited GBM growth as seen from the size of xenografts and Ki67 immunohistochemical staining. Based on Western blotting, GNE987 can significantly reduce the protein level of C-Myc; meanwhile, we combined ChIP-seq with RNA-seq techniques to confirm that GNE987 downregulated the transcription of S100A16 by disturbing H3K27Ac. Furthermore, we validated that S100A16 is indispensable in GBM growth. CONCLUSION: GNE987 may be effective against GBM that targets C-Myc expression and influences S100A16 transcription through downregulation of BRD4.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Criança , Humanos , Apoptose , Neoplasias Encefálicas/patologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Antígeno Ki-67/metabolismo , Proteínas S100/metabolismo , Proteínas S100/farmacologia , Fatores de Transcrição/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Immunother Cancer ; 9(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33712445

RESUMO

BACKGROUND: High-mobility group box 1 (HMGB1) is a multifunctional redox-sensitive protein involved in various intracellular (eg, chromatin remodeling, transcription, autophagy) and extracellular (inflammation, autoimmunity) processes. Regarding its role in cancer development/progression, paradoxical results exist in the literature and it is still unclear whether HMGB1 mainly acts as an oncogene or a tumor suppressor. METHODS: HMGB1 expression was first assessed in tissue specimens (n=359) of invasive breast, lung and cervical cancer and the two distinct staining patterns detected (nuclear vs cytoplasmic) were correlated to the secretion profile of malignant cells, patient outcomes and the presence of infiltrating immune cells within tumor microenvironment. Using several orthotopic, syngeneic mouse models of basal-like breast (4T1, 67NR and EpRas) or non-small cell lung (TC-1) cancer, the efficacy of several HMGB1 inhibitors alone and in combination with immune checkpoint blockade antibodies (anti-PD-1/PD-L1) was then investigated. Isolated from retrieved tumors, 14 immune cell (sub)populations as well as the activation status of antigen-presenting cells were extensively analyzed in each condition. Finally, the redox state of HMGB1 in tumor-extruded fluids and the influence of different forms (oxidized, reduced or disulfide) on both dendritic cell (DC) and plasmacytoid DC (pDC) activation were determined. RESULTS: Associated with an unfavorable prognosis in human patients, we clearly demonstrated that targeting extracellular HMGB1 elicits a profound remodeling of tumor immune microenvironment for efficient cancer therapy. Indeed, without affecting the global number of (CD45+) immune cells, drastic reductions of monocytic/granulocytic myeloid-derived suppressor cells (MDSC) and regulatory T lymphocytes, a higher M1/M2 ratio of macrophages as well as an increased activation of both DC and pDC were continually observed following HMGB1 inhibition. Moreover, blocking HMGB1 improved the efficacy of anti-PD-1 cancer monoimmunotherapy. We also reported that a significant fraction of HMGB1 encountered within cancer microenvironment (interstitial fluids) is oxidized and, in opposite to its reduced isoform, oxidized HMGB1 acts as a tolerogenic signal in a receptor for advanced glycation endproducts-dependent manner. CONCLUSION: Collectively, we present evidence that extracellular HMGB1 blockade may complement first-generation cancer immunotherapies by remobilizing antitumor immune response.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ácido Glicirrízico/farmacologia , Proteína HMGB1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Fragmentos de Peptídeos/farmacologia , Proteínas S100/farmacologia , Microambiente Tumoral/imunologia , Neoplasias do Colo do Útero/tratamento farmacológico , Imunidade Adaptativa/efeitos dos fármacos , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Feminino , Proteína HMGB1/metabolismo , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Células RAW 264.7 , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
5.
J Neurochem ; 141(1): 86-99, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28112393

RESUMO

Antimicrobial peptides are an important part of the innate immune defense in the central nervous system (CNS). The expression of the antimicrobial peptides psoriasin (S100A7) is up-regulated during bacterial meningitis. However, the exact mechanisms induced by psoriasin to modulate glial cell activity are not yet fully understood. Our hypothesis is that psoriasin induced pro- and anti-inflammatory signaling pathways as well as regenerative factors to contribute in total to a balanced immune response. Therefore, we used psoriasin-stimulated glial cells and analyzed the translocation of the pro-inflammatory transcription factor nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NFκB) in murine glial cells and the expression of pro- and anti-inflammatory mediators by real time RT-PCR, ELISA technique, and western blotting. Furthermore, the relationship between psoriasin and the antioxidative stress transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) was investigated. Stimulation with psoriasin not only enhanced NFκB translocation and increased the expression of the pro-inflammatory cytokines, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF- α) but also neurotrophin expression. Evidence for functional interactions between psoriasin and Nrf2 were detected in the form of increased antioxidant response element (ARE) activity and induction of Nrf2/ARE-dependent heme oxygenase 1 (HO-1) expression in psoriasin-treated microglia and astrocytes. The results illustrate the ability of psoriasin to induce immunological functions in glia cells where psoriasin exerts divergent effects on the innate immune response.


Assuntos
Imunidade Inata/fisiologia , Neuroglia/imunologia , Neuroglia/metabolismo , Proteínas S100/imunologia , Proteínas S100/farmacologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Células HEK293 , Humanos , Imunidade Inata/efeitos dos fármacos , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/efeitos dos fármacos , Proteína A7 Ligante de Cálcio S100 , Proteínas S100/biossíntese
6.
J Neuroimmunol ; 293: 114-122, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27049571

RESUMO

The immunization with optic nerve homogenate antigen (ONA) or S100 induced retinal degeneration. Since many neurological diseases are reinforced or initiated by immune cells, leucocytes were analyzed. CD3(+) T-cells in the retina increased slightly in ONA rats, but not in S100 treated retinas. No CD45R(+) B-cells and granulocytes could be detected in the retinas. At early stages, CD3(+) cells, Iba1(+) macrophages and granulocytes of the secondary lymphoid organs were not affected. Yet, the sole injection of pertussis toxin led to a shift to fewer CD45R(+) cells and more granulocytes in spleens. Later, splenic Iba1(+) macrophages were increased in both groups. We conclude that the retinal infiltration of lymphocytes is not crucial for the degeneration process and rather an epiphenomenon.


Assuntos
Linfócitos B/imunologia , Imunização , Nervo Óptico/imunologia , Animais , Antígenos CD/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Bovinos , Movimento Celular/imunologia , Granulócitos/imunologia , Linfonodos/citologia , Macrófagos/metabolismo , Masculino , Proteínas dos Microfilamentos/metabolismo , Ratos , Ratos Endogâmicos Lew , Retina/citologia , Células Ganglionares da Retina/imunologia , Proteínas S100/farmacologia , Baço/citologia , Fatores de Tempo , Fator de Transcrição Brn-3/metabolismo
7.
Proc Natl Acad Sci U S A ; 112(42): 13039-44, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26438863

RESUMO

The unexpected resistance of psoriasis lesions to fungal infections suggests local production of an antifungal factor. We purified Trichophyton rubrum-inhibiting activity from lesional psoriasis scale extracts and identified the Cys-reduced form of S100A7/psoriasin (redS100A7) as a principal antifungal factor. redS100A7 inhibits various filamentous fungi, including the mold Aspergillus fumigatus, but not Candida albicans. Antifungal activity was inhibited by Zn(2+), suggesting that redS100A7 interferes with fungal zinc homeostasis. Because S100A7-mutants lacking a single cysteine are no longer antifungals, we hypothesized that redS100A7 is acting as a Zn(2+)-chelator. Immunogold electron microscopy studies revealed that it penetrates fungal cells, implicating possible intracellular actions. In support with our hypothesis, the cell-penetrating Zn(2+)-chelator TPEN was found to function as a broad-spectrum antifungal. Ultrastructural analyses of redS100A7-treated T. rubrum revealed marked signs of apoptosis, suggesting that its mode of action is induction of programmed cell death. TUNEL, SYTOX-green analyses, and caspase-inhibition studies supported this for both T. rubrum and A. fumigatus. Whereas redS100A7 can be generated from oxidized S100A7 by action of thioredoxin or glutathione, elevated redS100A7 levels in fungal skin infection indicate induction of both S100A7 and its reducing agent in vivo. To investigate whether redS100A7 and TPEN are antifungals in vivo, we used a guinea pig tinea pedes model for fungal skin infections and a lethal mouse Aspergillus infection model for lung infection and found antifungal activity in both in vivo animal systems. Thus, selective fungal cell-penetrating Zn(2+)-chelators could be useful as an urgently needed novel antifungal therapeutic, which induces programmed cell death in numerous fungi.


Assuntos
Antifúngicos/farmacologia , Apoptose/efeitos dos fármacos , Dissulfetos/química , Proteínas S100/farmacologia , Animais , Aspergilose/tratamento farmacológico , Aspergillus fumigatus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Modelos Animais de Doenças , Cobaias , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Oxirredução , Proteína A7 Ligante de Cálcio S100 , Proteínas S100/química , Proteínas S100/uso terapêutico
8.
Cancer Lett ; 366(1): 71-83, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26095603

RESUMO

Invasiveness is a hallmark of aggressive cancer like malignant melanoma, and factors involved in acquisition or maintenance of an invasive phenotype are attractive targets for therapy. We investigated melanoma phenotype modulation induced by the metastasis-promoting microenvironmental protein S100A4, focusing on the relationship between enhanced cellular motility, dedifferentiation and metabolic changes. In poorly motile, well-differentiated Melmet 5 cells, S100A4 stimulated migration, invasion and simultaneously down-regulated differentiation genes and modulated expression of metabolism genes. Metabolic studies confirmed suppressed mitochondrial respiration and activated glycolytic flux in the S100A4 stimulated cells, indicating a metabolic switch toward aerobic glycolysis, known as the Warburg effect. Reversal of the glycolytic switch by dichloracetate induced apoptosis and reduced cell growth, particularly in the S100A4 stimulated cells. This implies that cells with stimulated invasiveness get survival benefit from the glycolytic switch and, therefore, become more vulnerable to glycolysis inhibition. In conclusion, our data indicate that transition to the invasive phenotype in melanoma involves dedifferentiation and metabolic reprogramming from mitochondrial oxidation to glycolysis, which facilitates survival of the invasive cancer cells. Therapeutic strategies targeting the metabolic reprogramming may therefore be effective against the invasive phenotype.


Assuntos
Melanoma/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Melanoma/metabolismo , Mitocôndrias/efeitos dos fármacos , Invasividade Neoplásica , Fenótipo , Proteína A4 de Ligação a Cálcio da Família S100 , Proteínas S100/farmacologia
9.
Zygote ; 23(2): 229-36, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24152708

RESUMO

The oviduct is a dynamic organ in which final gamete maturation, fertilization and early embryo development take place. It is considered to be a sterile site; however the mechanism for sterility maintenance is still unknown. S100A7 is an anti-microbial peptide that has been reported in human reproductive tissues such as prostate, testicle, ovary, normal cervical epithelium and sperm. The current work reports the presence of S100A7 in the Fallopian tube and its localization at the apical surface of epithelial cells. For comparison, porcine S100A7 was used for antibody development and search for peptide in reproductive tissues. Although present in boar seminal vesicles and seminal plasma, S100A7 was not detected on female porcine organs. Also, in contrast with the human protein, porcine S100A7 did not show anti-microbial activity under the conditions tested. Phylogenetic analyses showed high divergence of porcine S100A7 from human, primate, bovine, ovine and equine sequences, being the murine sequence at a most distant branch. The differences in sequence homology, Escherichia coli-cidal activity, detectable presence and localization of S100A7 from human and pig, suggest that there are possible different functions in each organism.


Assuntos
Tubas Uterinas/metabolismo , Filogenia , Proteínas S100/metabolismo , Animais , Antibacterianos/farmacologia , Bovinos , Células Epiteliais/metabolismo , Escherichia coli/efeitos dos fármacos , Tubas Uterinas/citologia , Feminino , Regulação da Expressão Gênica , Cavalos , Masculino , Camundongos , Primatas , Proteína A7 Ligante de Cálcio S100 , Proteínas S100/química , Proteínas S100/genética , Proteínas S100/farmacologia , Sêmen/metabolismo , Homologia de Sequência de Aminoácidos , Ovinos , Sus scrofa
10.
Skin Pharmacol Physiol ; 28(3): 115-23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25502330

RESUMO

BACKGROUND/AIMS: Keloids result from aberrations in the normal wound healing cascade and can lead to pruritus, contractures and pain. The underlying mechanisms of excessive scarring are not yet understood, and most therapeutic strategies remain unsatisfactory. Psoriasin (S100A7) and koebnerisin (S100A15) are released by keratinocytes during physiological wound healing. We found S100 production is markedly decreased in keloid scar tissue. The disturbed epidermal S100 expression might contribute to keloid formation; thus, we studied their effect on dermal fibroblasts and extracellular matrix (ECM) production. METHODS: S100 peptides, ECM regulation and distribution were analysed in normal and keloid tissue by quantitative PCR (qPCR), immunoblotting and immunofluorescent staining. Isolated dermal fibroblasts were incubated with S100 proteins, and the regulation of ECM and transforming growth factor (TGF)-ß was determined using qPCR. Fibroblast proliferation and viability were determined by the 5-bromo-2'-deoxyuridine assay and crystal violet assay. RESULTS: Keloid tissue featured a pronounced expression of ECMs, such as collagen types 1 and 3, whereas the production of psoriasin and koebnerisin was markedly decreased in keloid-derived cells and keloid tissue. Both S100 proteins inhibited the expression of collagens, fibronectin-1, α-smooth-muscle actin and TGF-ß by fibroblasts. Further, they also suppressed fibroblast proliferation. CONCLUSION: Psoriasin and koebnerisin show antifibrotic effects and may lead to novel preventive and therapeutic strategies for fibroproliferative diseases.


Assuntos
Matriz Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Proteínas S100/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo III/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Queloide/metabolismo , Peptídeos/farmacologia , Proteínas Recombinantes/farmacologia , Proteína A7 Ligante de Cálcio S100 , Pele/metabolismo , Fator de Crescimento Transformador beta/metabolismo
11.
Int J Biochem Cell Biol ; 55: 298-303, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25256682

RESUMO

S100A6 is a calcium binding protein belonging to the S100 family. In this work we examined the function of extracellular S100A6. Using mesenchymal stem cells isolated from Wharton's jelly of the umbilical cord (WJMS cells) we have shown that S100A6 is secreted by these cells, and when added to the medium, increases their adhesion and inhibits proliferation. The search for a potential target/receptor of S100A6 in the membrane fraction of WJMS cells allowed us to identify some proteins, among them integrin ß1, which interacts with S100A6 in a calcium dependent manner. The interaction between S100A6 and integrin ß1, was then confirmed by ELISA using purified proteins. Applying specific antibodies against integrin ß1 reversed the effect on cell adhesion and proliferation observed in the presence of S100A6 which indicates that S100A6 exerts its function due to interaction with integrin ß1. Since the data show the influence of extracellular S100A6 on cells isolated from Wharton's jelly, our results might help to establish molecular mechanisms leading to some pathologies characteristic for this tissue.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Integrina beta1/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas S100/metabolismo , Geleia de Wharton/citologia , Adesão Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Humanos , Immunoblotting , Microscopia de Fluorescência , Ligação Proteica , Proteína A6 Ligante de Cálcio S100 , Proteínas S100/farmacologia
12.
Br J Dermatol ; 171(4): 742-53, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24842328

RESUMO

BACKGROUND: S100A7/psoriasin is a member of the S100 protein family and is encoded in the epidermal differentiation complex, which contains genes for markers of epidermal differentiation. S100A7/psoriasin is overexpressed in hyperproliferative skin diseases, where it is believed not only to exhibit antimicrobial functions, but also to induce immunomodulatory activities, including chemotaxis and cytokine/chemokine production. OBJECTIVES: To evaluate the effect of S100A7/psoriasin on keratinocyte differentiation and regulation of the tight junction (TJ) barrier. METHODS: Expression of differentiation markers and TJ proteins in human keratinocytes was determined by real-time polymerase chain reaction and Western blot. The changes in TJ barrier function were assessed by transepithelial electrical resistance and paracellular permeability assays. Glycogen synthase kinase-3 (GSK-3) and mitogen-activated protein kinase (MAPK) activation was analysed by Western blot, whereas ß-catenin and E-cadherin activation was evaluated by Western blot and immunofluorescence. RESULTS: S100A7/psoriasin enhanced the expression of several differentiation markers and selectively increased the expression of TJ proteins (e.g. claudins and occludin), which are known to strengthen the TJ barrier. Furthermore, S100A7/psoriasin increased ß-catenin and E-cadherin accumulation at cell-cell contact, and enhanced transepithelial electrical resistance while reducing the paracellular permeability of keratinocyte layers. The data suggest that S100A7/psoriasin-mediated regulation of the TJ barrier was via both the GSK-3 and MAPK pathways, as evidenced by the inhibitory effects of inhibitors for GSK-3 and MAPKs. CONCLUSIONS: Our finding that S100A7/psoriasin regulates differentiation and strengthens TJ barrier function provides novel evidence that, in addition to antimicrobial and immunoregulatory activities, S100A7/psoriasin is involved in skin innate immunity.


Assuntos
Antígenos de Diferenciação/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Proteínas S100/farmacologia , Pele/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Caderinas/metabolismo , Células Cultivadas , Dextranos/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteína A7 Ligante de Cálcio S100 , Proteínas de Junções Íntimas/metabolismo , beta Catenina/metabolismo
13.
J Immunol ; 192(12): 6102-10, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24795458

RESUMO

Simple stress or necrotic cell death with subsequent release of damage-associated molecular patterns (DAMPs) is a characteristic feature of most advanced tumors. DAMPs within the tumor microenvironment stimulate tumor-associated cells, including dendritic cells and mesenchymal stromal cells (MSCs). The presence of tumor-infiltrating MSCs is associated with tumor progression and metastasis. Oxidized necrotic material loses its stimulatory capacity for MSCs. As a DAMP, S100A4 is sensitive to oxidation whereas uric acid (UA) acts primarily as an antioxidant. We tested these two biologic moieties separately and in combination for their activity on MSCs. Similar to necrotic tumor material, S100A4 and UA both dose-dependently induced chemotaxis of MSCs with synergistic effects when combined. Substituting for UA, alternative antioxidants (vitamin C, DTT, and N-acetylcysteine) also enhanced the chemotactic activity of S100A4 in a synergistic manner. This emphasizes the reducing potential of UA being, at least in part, responsible for the observed synergy. With regard to MSC proliferation, both S100A4 and UA inhibited MSCs without altering survival or inducing differentiation toward adipo-, osteo-, or chondrocytes. In the presence of S100A4 or UA, MSCs gained an immunosuppressive capability and stably induced IL-10- and IDO-expressing lymphocytes that maintained their phenotype following proliferation. We have thus demonstrated that both S100A4 and UA act as DAMPs and, as such, may play a critical role in promoting some aspects of MSC-associated immunoregulation. Our findings have implications for therapeutic approaches targeting the tumor microenvironment and addressing the immunosuppressive nature of unscheduled cell death within the tumor microenvironment.


Assuntos
Antioxidantes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Interleucina-10/imunologia , Linfócitos/imunologia , Células-Tronco Mesenquimais/imunologia , Proteínas S100/farmacologia , Ácido Úrico/farmacologia , Diferenciação Celular/imunologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Linfócitos/citologia , Masculino , Células-Tronco Mesenquimais/citologia , Proteína A4 de Ligação a Cálcio da Família S100 , Proteínas S100/agonistas , Ácido Úrico/agonistas
14.
J Lipid Res ; 55(3): 443-54, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24367046

RESUMO

S100A8/9 and S100A12 are emerging biomarkers for disease activity of autoimmune and cardiovascular diseases. We demonstrated previously that S100A12 accelerates atherosclerosis accompanied by large cholesterol deposits in atherosclerotic lesions of apoE-null mice. The objective of this study was to ascertain whether S100/calgranulin influences cholesterol homeostasis in macrophages. Peritoneal macrophages from transgenic mice expressing human S100A8/9 and S100A12 in myeloid cells [human bacterial artificial chromosome (hBAC)/S100] have increased lipid content and reduced ABCG1 expression and [(3)H]cholesterol efflux compared with WT littermates. This was associated with a 6-fold increase in plasma interleukin (IL)-22 and increased IL-22 mRNA in splenic T cells. These findings are mediated by the receptor for advanced glycation endproducts (RAGE), because hBAC/S100 mice lacking RAGE had normal IL-22 expression and normal cholesterol efflux. In vitro, recombinant IL-22 reduced ABCG1 expression and [(3)H]cholesterol efflux in THP-1 macrophages, while recombinant S100A12 had no effect on ABCG1 expression. In conclusion, S100/calgranulin has no direct effect on cholesterol efflux in macrophages, but rather promotes the secretion of IL-22, which then directly reduces cholesterol efflux in macrophages by decreasing the expression of ABCG1.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Colesterol/metabolismo , Interleucinas/metabolismo , Macrófagos/metabolismo , Proteínas S100/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Transporte Biológico/efeitos dos fármacos , Western Blotting , Calgranulina A/genética , Calgranulina A/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Regulação para Baixo , Humanos , Interleucinas/genética , Interleucinas/farmacologia , Macrófagos/citologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas S100/genética , Proteínas S100/farmacologia , Proteína S100A12 , Interleucina 22
15.
Metabolism ; 62(8): 1149-58, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23523156

RESUMO

HYPOTHESIS: ATP Binding Cassette Transporter (ABC) A1 is one of the key regulators of HDL synthesis and reverse cholesterol transport. Activation of Receptors for Advanced Glycation End products (RAGE) is involved in the pathogenesis of diabetes, and its complications. The aim of the present study is to examine the effect of RAGE ligand S100B on ABCA1 expression. METHODS: S100B mediated regulation of LXR target genes like ABCA1, ABCG1, ABCG8, LXR-α and LXR-ß in THP-1 cells was analyzed by real-time PCR, RT-PCR and western blots. ABCA1 mRNA expression in monocytes from diabetic patients was studied. Effect of LXR ligand on S100B induced changes in LXR target genes was also studied. Luciferase reporter assay was used for S100B induced ABCA1 promoter regulation. RESULTS: S100B treatment resulted in a significant 2-3 fold reduction (p<0.01) in ABCA1 and ABCG1 mRNA in dose and time dependent manner in THP1 cells. ABCA1 protein level was also significantly (p<0.01) reduced. S100B-induced reduction on ABCA1 mRNA expression was blocked by treating THP-1 cell with anti-RAGE antibody. Reduced ABCA1 mRNA levels seen in peripheral blood monocytes from diabetes patients showed the in-vivo relevance of our in-vitro results. Effect of S100B on ABCA1 and ABCG1 expression was reversed by LXR ligand treatment. S100B treatment showed significant 2 fold (p<0.01) decrease in T1317 induced ABCA1 promoter activation. CONCLUSIONS: These results show for the first time that ligation of RAGE with S100B can attenuate the expression of ABCA1 and ABCG1 through the LXRs. This could reduce ApoA-I-mediated cholesterol efflux from monocytes.


Assuntos
Transportadores de Cassetes de Ligação de ATP/biossíntese , Monócitos/metabolismo , Fatores de Crescimento Neural/farmacologia , Receptores Imunológicos/efeitos dos fármacos , Proteínas S100/farmacologia , Transportador 1 de Cassete de Ligação de ATP , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Linhagem Celular , Separação Celular , Diabetes Mellitus/metabolismo , Humanos , Técnicas In Vitro , Receptores X do Fígado , Luciferases/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Monócitos/efeitos dos fármacos , Receptores Nucleares Órfãos/agonistas , Receptores Nucleares Órfãos/metabolismo , Plasmídeos/genética , RNA/biossíntese , RNA/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/genética , Subunidade beta da Proteína Ligante de Cálcio S100 , Transfecção
16.
Mol Med ; 19: 43-53, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23508572

RESUMO

We recently found that S100A4, a member of the multifunctional S100 protein family, protects neurons in the injured brain and identified two sequence motifs in S100A4 mediating its neurotrophic effect. Synthetic peptides encompassing these motifs stimulated neuritogenesis and survival in vitro and mimicked the S100A4-induced neuroprotection in brain trauma. Here, we investigated a possible function of S100A4 and its mimetics in the pathologies of the peripheral nervous system (PNS). We found that S100A4 was expressed in the injured PNS and that its peptide mimetic (H3) affected the regeneration and survival of myelinated axons. H3 accelerated electrophysiological, behavioral and morphological recovery after sciatic nerve crush while transiently delaying regeneration after sciatic nerve transection and repair. On the basis of the finding that both S100A4 and H3 increased neurite branching in vitro, these effects were attributed to the modulatory effect of H3 on initial axonal sprouting. In contrast to the modest effect of H3 on the time course of regeneration, H3 had a long-term neuroprotective effect in the myelin protein P0 null mice, a model of dysmyelinating neuropathy (Charcot-Marie-Tooth type 1 disease), where the peptide attenuated the deterioration of nerve conduction, demyelination and axonal loss. From these results, S100A4 mimetics emerge as a possible means to enhance axonal sprouting and survival, especially in the context of demyelinating neuropathies with secondary axonal loss, such as Charcot-Marie-Tooth type 1 disease. Moreover, our data suggest that S100A4 is a neuroprotectant in PNS and that other S100 proteins, sharing high homology in the H3 motif, may have important functions in PNS pathologies.


Assuntos
Regeneração Nervosa/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Peptídeos/farmacologia , Proteínas S100/farmacologia , Nervo Isquiático/efeitos dos fármacos , Animais , Células Cultivadas , Doença de Charcot-Marie-Tooth/tratamento farmacológico , Doença de Charcot-Marie-Tooth/fisiopatologia , Hipocampo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína P0 da Mielina/genética , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Fármacos Neuroprotetores/uso terapêutico , Peptídeos/uso terapêutico , Ratos , Ratos Wistar , Proteínas S100/uso terapêutico , Nervo Isquiático/lesões , Nervo Isquiático/fisiopatologia , Nervo Tibial/efeitos dos fármacos , Nervo Tibial/fisiopatologia
17.
Biochim Biophys Acta ; 1821(12): 1485-92, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22940078

RESUMO

OBJECTIVE: We investigated the effect of advanced glycated albumin (AGE-albumin) on macrophage sensitivity to inflammation elicited by S100B calgranulin and lipopolysaccharide (LPS) and the mechanism by which HDL modulates this response. We also measured the influence of the culture medium, isolated from macrophages treated with AGE-albumin, on reverse cholesterol transport (RCT). METHODS AND RESULTS: Macrophages were incubated with control (C) or AGE-albumin in the presence or absence of HDL, followed by incubations with S100B or LPS. Also, culture medium obtained from cells treated with C- or AGE-albumin, following S100B or LPS stimulation was utilized to treat naive macrophages in order to evaluate cholesterol efflux and the expression of HDL receptors. In comparison with C-albumin, AGE-albumin, promoted a greater secretion of cytokines after stimulation with S100B or LPS. A greater amount of cytokines was also produced by macrophages treated with AGE-albumin even in the presence of HDL. Cytokine-enriched medium, drawn from incubations with AGE-albumin and S100B or LPS impaired the cholesterol efflux mediated by apoA-I (23% and 37%, respectively), HDL(2) (43% and 47%, respectively) and HDL(3) (20% and 8.5%, respectively) and reduced ABCA-1 protein level (16% and 26%, respectively). CONCLUSIONS: AGE-albumin primes macrophages for an inflammatory response impairing the RCT. Moreover, AGE-albumin abrogates the anti-inflammatory role of HDL, which may aggravate the development of atherosclerosis in DM.


Assuntos
Colesterol/metabolismo , Citocinas/metabolismo , Produtos Finais de Glicação Avançada/farmacologia , Lipoproteínas HDL/farmacologia , Macrófagos/efeitos dos fármacos , Albumina Sérica/farmacologia , Transportador 1 de Cassete de Ligação de ATP , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Produtos Finais de Glicação Avançada/química , Immunoblotting , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Fatores de Crescimento Neural/farmacologia , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/farmacologia , Receptores Depuradores Classe B/metabolismo , Albumina Sérica/química
18.
Clin Cancer Res ; 18(16): 4356-64, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22718861

RESUMO

PURPOSE: The receptor for advanced glycation end products (RAGE) contributes to multiple pathologies, including diabetes, arthritis, neurodegenerative diseases, and cancer. Despite the obvious need, no RAGE inhibitors are in common clinical use. Therefore, we developed a novel small RAGE antagonist peptide (RAP) that blocks activation by multiple ligands. EXPERIMENTAL DESIGN: RAGE and its ligands were visualized by immunohistochemical analysis of human pancreatic tissues, and siRNA was used to analyze their functions. Interactions between RAGE and S100P, S100A4, and HMGB-1 were measured by ELISA. Three S100P-derived small antagonistic peptides were designed, synthesized, and tested for inhibition of RAGE binding. The effects of the peptide blockers on NFκB-luciferase reporter activity was used to assess effects on RAGE-mediated signaling. The most effective peptide was tested on glioma and pancreatic ductal adenocarcinoma (PDAC) models. RESULTS: Immunohistochemical analysis confirmed the expression of RAGE and its ligands S100P, S100A4, and HMGB-1 in human PDAC. siRNA silencing of RAGE or its ligands reduced the growth and migration of PDAC cells in vitro. The most effective RAP inhibited the interaction of S100P, S100A4, and HMGB-1 with RAGE at micromolar concentrations. RAP also reduced the ability of the ligands to stimulate RAGE activation of NFκB in cancer cells in vitro and in vivo. Importantly, systemic in vivo administration of RAP reduced the growth and metastasis of pancreatic tumors and also inhibited glioma tumor growth. CONCLUSION: RAP shows promise as a tool for the investigation of RAGE function and as an in vivo treatment for RAGE-related disorders.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ligação ao Cálcio/química , Proteínas de Neoplasias/química , Neoplasias/metabolismo , Fragmentos de Peptídeos/farmacologia , Peptídeos/farmacologia , Receptores Imunológicos/antagonistas & inibidores , Proteínas S100/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteína HMGB1/metabolismo , Humanos , Ligantes , Masculino , Camundongos , Camundongos Nus , NF-kappa B/metabolismo , Metástase Neoplásica , Neoplasias/genética , Neoplasias/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fragmentos de Peptídeos/química , Peptídeos/administração & dosagem , Ligação Proteica/efeitos dos fármacos , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100 , Proteínas S100/química , Proteínas S100/metabolismo
19.
Biochem Biophys Res Commun ; 422(3): 508-14, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22609404

RESUMO

S100A12 is a member of the S100 protein family, which are intracellular calcium-binding proteins. Although there are many reports on the involvement of S100A12 in inflammatory diseases, its presence in osteoarthritic cartilage has not been reported. The purpose of this study was to investigate the expression of S100A12 in human articular cartilage in osteoarthritis (OA) and to evaluate the role of S100A12 in human OA chondrocytes. We analyzed S100A12 expression by immunohistochemical staining of cartilage samples obtained from OA and non-OA patients. In addition, chondrocytes were isolated from knee cartilage of OA patients and treated with recombinant human S100A12. Real-time RT-PCR was performed to analyze mRNA expression. Protein production of matrix metalloproteinase 13 (MMP-13) and vascular endothelial growth factor (VEGF) in the culture medium were measured by ELISA. Immunohistochemical analyses revealed that S100A12 expression was markedly increased in OA cartilages. Protein production and mRNA expression of MMP-13 and VEGF in cultured OA chondrocytes were significantly increased by treatment with exogenous S100A12. These increases in mRNA expression and protein production were suppressed by administration of soluble receptor for advanced glycation end products (RAGE). Both p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) inhibitors also suppressed the increases in mRNA expression and protein production of MMP-13 and VEGF. We demonstrated marked up-regulation of S100A12 expression in human OA cartilages. Exogenous S100A12 increased the production of MMP-13 and VEGF in human OA chondrocytes. Our data indicate the possible involvement of S100A12 in the development of OA by up-regulating MMP-13 and VEGF via p38 MAPK and NF-κB pathways.


Assuntos
Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Osteoartrite/metabolismo , Proteínas S100/biossíntese , Células Cultivadas , Condrócitos/efeitos dos fármacos , Humanos , Metaloproteinase 13 da Matriz/biossíntese , Metaloproteinase 13 da Matriz/genética , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , RNA Mensageiro/biossíntese , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/metabolismo , Proteínas S100/genética , Proteínas S100/farmacologia , Proteína S100A12 , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Protein Expr Purif ; 83(1): 98-103, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22450162

RESUMO

S100A6, as a member of S100 protein family, have biological functions in cell proliferation, differentiation, morphology, cytoskeletal organization and apoptosis. In the last three decades, S100A6 has been caught more and more attention. Here, we introduced a simple and efficient method for producing high-purity recombinant human S100A6 from Escherichia coli culture with low level of endotoxin. We further demonstrated its biological activities for triggering SH-SY5Y cells apoptosis in vitro. These results can facilitate the study of physiological and pathological roles of S100A6 and other members of S100 family proteins.


Assuntos
Proteínas de Ciclo Celular/biossíntese , Escherichia coli/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas S100/biossíntese , Apoptose/efeitos dos fármacos , Sequência de Bases , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/isolamento & purificação , Proteínas de Ciclo Celular/farmacologia , Linhagem Celular Tumoral , Escherichia coli/genética , Humanos , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Proteína A6 Ligante de Cálcio S100 , Proteínas S100/química , Proteínas S100/isolamento & purificação , Proteínas S100/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA