Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 10(7)2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664359

RESUMO

N-terminal myristoylation is a common co-and post-translational modification of numerous eukaryotic and viral proteins, which affects their interaction with lipids and partner proteins, thereby modulating various cellular processes. Among those are neuronal calcium sensor (NCS) proteins, mediating transduction of calcium signals in a wide range of regulatory cascades, including reception, neurotransmission, neuronal growth and survival. The details of NCSs functioning are of special interest due to their involvement in the progression of ophthalmological and neurodegenerative diseases and their role in cancer. The well-established procedures for preparation of native-like myristoylated forms of recombinant NCSs via their bacterial co-expression with N-myristoyl transferase from Saccharomyces cerevisiae often yield a mixture of the myristoylated and non-myristoylated forms. Here, we report a novel approach to preparation of several NCSs, including recoverin, GCAP1, GCAP2, neurocalcin δ and NCS-1, ensuring their nearly complete N-myristoylation. The optimized bacterial expression and myristoylation of the NCSs is followed by a set of procedures for separation of their myristoylated and non-myristoylated forms using a combination of hydrophobic interaction chromatography steps. We demonstrate that the refolded and further purified myristoylated NCS-1 maintains its Са2+-binding ability and stability of tertiary structure. The developed approach is generally suited for preparation of other myristoylated proteins.


Assuntos
Aciltransferases/metabolismo , Bactérias/crescimento & desenvolvimento , Ácido Mirístico/química , Proteínas Sensoras de Cálcio Neuronal/química , Proteínas Sensoras de Cálcio Neuronal/genética , Animais , Bactérias/genética , Cromatografia , Proteínas Fúngicas/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia
2.
Biochim Biophys Acta Mol Cell Res ; 1865(11 Pt B): 1660-1667, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29746899

RESUMO

Neuronal Calcium Sensor-1 (NCS-1) is a highly conserved calcium binding protein which contributes to the maintenance of intracellular calcium homeostasis and regulation of calcium-dependent signaling pathways. It is involved in a variety of physiological cell functions, including exocytosis, regulation of calcium permeable channels, neuroplasticity and response to neuronal damage. Over the past 30 years, continuing investigation of cellular functions of NCS-1 and associated disease states have highlighted its function in the pathophysiology of several disorders and as a therapeutic target. Among the diseases that were found to be associated with NCS-1 are neurological disorders such as bipolar disease and non-neurological conditions such as breast cancer. Furthermore, alteration of NCS-1 expression is associated with substance abuse disorders and severe side effects of chemotherapeutic agents. The objective of this article is to summarize the current body of evidence describing NCS-1 and its interactions on a molecular and cellular scale, as well as describing macroscopic implications in physiology and medicine. Particular attention is paid to the role of NCS-1 in development and prevention of chemotherapy induced peripheral neuropathy (CIPN).


Assuntos
Sinalização do Cálcio , Suscetibilidade a Doenças , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Sensoras de Cálcio Neuronal/química , Proteínas Sensoras de Cálcio Neuronal/genética , Neuropeptídeos/química , Neuropeptídeos/genética
3.
J Biol Chem ; 290(30): 18744-56, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25979333

RESUMO

Neuronal calcium sensor-1 (NCS-1) is the primordial member of the neuronal calcium sensor family of EF-hand Ca(2+)-binding proteins. It interacts with both the G-protein-coupled receptor (GPCR) dopamine D2 receptor (D2R), regulating its internalization and surface expression, and the cognate kinases GRK1 and GRK2. Determination of the crystal structures of Ca(2+)/NCS-1 alone and in complex with peptides derived from D2R and GRK1 reveals that the differential recognition is facilitated by the conformational flexibility of the C-lobe-binding site. We find that two copies of the D2R peptide bind within the hydrophobic crevice on Ca(2+)/NCS-1, but only one copy of the GRK1 peptide binds. The different binding modes are made possible by the C-lobe-binding site of NCS-1, which adopts alternative conformations in each complex. C-terminal residues Ser-178-Val-190 act in concert with the flexible EF3/EF4 loop region to effectively form different peptide-binding sites. In the Ca(2+)/NCS-1·D2R peptide complex, the C-terminal region adopts a 310 helix-turn-310 helix, whereas in the GRK1 peptide complex it forms an α-helix. Removal of Ser-178-Val-190 generated a C-terminal truncation mutant that formed a dimer, indicating that the NCS-1 C-terminal region prevents NCS-1 oligomerization. We propose that the flexible nature of the C-terminal region is essential to allow it to modulate its protein-binding sites and adapt its conformation to accommodate both ligands. This appears to be driven by the variability of the conformation of the C-lobe-binding site, which has ramifications for the target specificity and diversity of NCS-1.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Receptor Quinase 1 Acoplada a Proteína G/química , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/metabolismo , Receptores de Dopamina D2/química , Sequência de Aminoácidos/genética , Sítios de Ligação , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Cristalografia por Raios X , Dopamina/genética , Dopamina/metabolismo , Receptor Quinase 1 Acoplada a Proteína G/genética , Receptor Quinase 1 Acoplada a Proteína G/metabolismo , Humanos , Proteínas Sensoras de Cálcio Neuronal/química , Proteínas Sensoras de Cálcio Neuronal/genética , Neuropeptídeos/química , Neuropeptídeos/genética , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína/genética , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Transdução de Sinais/genética
4.
Biochemistry ; 50(41): 8780-91, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21875085

RESUMO

Neuronal calcium sensor-1 (NCS-1) is a small calcium binding protein that plays a key role in the internalization and desensitization of activated D2 dopamine receptors (D2Rs). Here, we have used fluorescence anisotropy (FA) and a panel of NCS-1 EF-hand variants to interrogate the interaction between the D2R and NCS-1. Our data are consistent with the following conclusions. (1) FA titration experiments indicate that at low D2R peptide concentrations calcium-loaded NCS-1 binds to the D2R peptide in a monomeric form. At high D2R peptide concentrations, the FA titration data are best fit by a model in which the D2R peptide binds two NCS-1 monomers sequentially in a cooperative fashion. (2) Competition FA experiments in which unlabeled D2R peptide was used to compete with labeled peptide for binding to NCS-1 shifted titration curves to higher NCS-1 concentrations, suggesting that the binding of NCS-1 to the D2R is highly specific and that binding occurs in a cooperative fashion. (3) N-Terminally myristoylated NCS-1 dimerizes in a calcium-dependent manner. (4) Co-immunoprecipitation experiments in HEK-293 confirm that NCS-1 can oligomerize in cell lysates and that oligomerization is dependent on calcium binding and requires functionally intact EF-hand domains. (5) Ca(2+)/Mg(2+) FA titration experiments revealed that NCS-1 EF-hands 2-4 (EF2-4) contributed to binding with the D2R peptide. EF2 appears to have the highest affinity for Ca(2+), and occupancy of this site is sufficient to promote high-affinity binding of the NCS-1 monomer to the D2R peptide. Magnesium ions may serve as a physiological cofactor with calcium for NCS-1-D2R binding. Finally, we propose a structural model that predicts that the D2R peptide binds to the first 60 residues of NCS-1. Together, our results support the possibility of using FA to screen for small molecule drugs that can specifically block the interaction between the D2R and NCS-1.


Assuntos
Proteínas Sensoras de Cálcio Neuronal/química , Neuropeptídeos/química , Receptores de Dopamina D2/química , Espectrometria de Fluorescência/métodos , Anisotropia , Sítios de Ligação , Cálcio/química , Células HEK293 , Humanos , Cinética , Luz , Magnésio/química , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/metabolismo , Peptídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Dopamina D2/metabolismo , Espalhamento de Radiação
5.
Biochim Biophys Acta ; 1814(2): 334-44, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21035569

RESUMO

Information on the low-energy excited states of a given protein is important as this controls the structural adaptability and various biological functions of proteins such as co-operativity, response towards various external perturbations. In this article, we characterized individual residues in both non-myristoylated (non-myr) and myristoylated (myr) neuronal calcium sensor-1 (NCS-1) that access alternate states by measuring nonlinear temperature dependence of the backbone amide-proton (¹H(N)) chemical shifts. We found that ~20% of the residues in the protein access alternative conformations in non-myr case, which increases to ~28% for myr NCS-1. These residues are spread over the entire polypeptide stretch and include the edges of α-helices and ß-strands, flexible loop regions, and the Ca²(+)-binding loops. Besides, residues responsible for the absence of Ca²(+)-myristoyl switch are also found accessing alternative states. The C-terminal domain is more populated with these residues compared to its N-terminal counterpart. Individual EF-hands in NCS-1 show significantly different number of alternate states. This observation prompts us to conclude that this may lead to differences in their individual conformational flexibility and has implications on the functionality. Theoretical simulations reveal that these low-energy excited states are within an energy band of 2-4 kcal/mol with respect to the native state.


Assuntos
Proteínas Sensoras de Cálcio Neuronal/química , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/química , Neuropeptídeos/metabolismo , Sequência de Aminoácidos , Animais , Motivos EF Hand , Técnicas In Vitro , Modelos Moleculares , Dados de Sequência Molecular , Ácidos Mirísticos/química , Ácidos Mirísticos/metabolismo , Proteínas Sensoras de Cálcio Neuronal/genética , Neuropeptídeos/genética , Dinâmica não Linear , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Prótons , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Temperatura , Termodinâmica
6.
Cell Calcium ; 46(4): 257-62, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19732951

RESUMO

Neuronal calcium sensor-1 (NCS-1) is a high-affinity, low-capacity Ca(2+)-binding protein expressed in many cell types. We previously showed that NCS-1 interacts with inositol 1,4,5-trisphosphate receptor (InsP(3)R) and modulates Ca(2+)-signaling by enhancing InsP3-dependent InsP(3)R channel activity and intracellular Ca(2+) transients. Recently we reported that the chemotherapeutic agent, paclitaxel (taxol) triggers mu-calpain dependent proteolysis of NCS-1, leading to reduced Ca(2+)-signaling within the cell. Degradation of NCS-1 may be critical in the induction of peripheral neuropathy associated with taxol treatment for breast and ovarian cancer. To begin to design strategies to protect NCS-1, we treated NCS-1 with mu-calpain in vitro and identified the cleavage site by N-terminal sequencing and MALDI mass spectroscopy. mu-Calpain cleavage of NCS-1 occurs within an N-terminal pseudoEF-hand domain, which by sequence analysis appears to be unable to bind Ca(2+). Our results suggest a role for this pseudoEF-hand in stabilizing the three functional EF-hands within NCS-1. Using isothermal titration calorimetry (ITC) we found that loss of the pseudoEF-hand markedly decreased NCS-1's affinity for Ca(2+). Physiologically, this significant decrease in Ca(2+) affinity may render NCS-1 incapable of responding to changes in Ca(2+) levels in vivo. The reduced ability of mu-calpain treated NCS-1 to bind Ca(2+) may explain the altered Ca(2+) signaling in the presence of taxol and suggests a strategy for therapeutic intervention of peripheral neuropathy in cancer patients undergoing taxol treatment.


Assuntos
Cálcio/química , Calpaína/química , Proteínas Sensoras de Cálcio Neuronal/química , Neuropeptídeos/química , Proteínas Recombinantes/química , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Calpaína/metabolismo , Células Cultivadas , Cromatografia , Humanos , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Proteínas Sensoras de Cálcio Neuronal/genética , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neurônios/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Ligação Proteica , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
Biol Cell ; 101(2): 91-103, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18620543

RESUMO

BACKGROUND INFORMATION: Spermatozoa show several changes in flagellar waveform, such as upon fertilization. Ca(2+) has been shown to play critical roles in modulating the waveforms of sperm flagella. However, a Ca(2+)-binding protein in sperm flagella that regulates axonemal dyneins has not been fully characterized. RESULTS: We identified a novel neuronal calcium sensor family protein, named calaxin (Ca(2+)-binding axonemal protein), in sperm flagella of the ascidian Ciona intestinalis. Calaxin has three EF-hand Ca(2+)-binding motifs, and its orthologues are present in metazoan species, but not in yeast, green algae or plant. Immunolocalization revealed that calaxin is localized near the outer arm of the sperm flagellar axonemes. Moreover, it is distributed in adult tissues bearing epithelial cilia. An in vitro binding experiment indicated that calaxin binds to outer arm dynein. A cross-linking experiment showed that calaxin binds to beta-tubulin in situ. Overlay experiments further indicated that calaxin binds the beta-dynein heavy chain of outer arm dynein in the presence of Ca(2+). CONCLUSIONS: These results suggest that calaxin is a potential Ca(2+)-dependent modulator of outer arm dynein in metazoan cilia and flagella.


Assuntos
Chlamydomonas/metabolismo , Cílios/metabolismo , Dineínas/metabolismo , Flagelos/metabolismo , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Proteínas de Protozoários/metabolismo , Espermatozoides/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico , Cálcio/metabolismo , Chlamydomonas/química , Chlamydomonas/classificação , Chlamydomonas/genética , Cílios/genética , Dineínas/genética , Flagelos/genética , Masculino , Dados de Sequência Molecular , Família Multigênica , Proteínas Sensoras de Cálcio Neuronal/química , Proteínas Sensoras de Cálcio Neuronal/genética , Filogenia , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Espermatozoides/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA