Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.567
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nutrients ; 16(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38474775

RESUMO

Protein tyrosine phosphatases (PTPs) are pivotal contributors to the development of type 2 diabetes (T2DM). Hence, directing interventions towards PTPs emerges as a valuable therapeutic approach for managing type 2 diabetes. In particular, PTPN6 and PTPN9 are targets for anti-diabetic effects. Through high-throughput drug screening, quercetagitrin (QG) was recognized as a dual-target inhibitor of PTPN6 and PTPN9. We observed that QG suppressed the catalytic activity of PTPN6 (IC50 = 1 µM) and PTPN9 (IC50 = 1.7 µM) in vitro and enhanced glucose uptake by mature C2C12 myoblasts. Additionally, QG increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and insulin-dependent phosphorylation of Akt in mature C2C12 myoblasts. It further promoted the phosphorylation of Akt in the presence of palmitic acid, suggesting the attenuation of insulin resistance. In summary, our results indicate QG's role as a potent inhibitor targeting both PTPN6 and PTPN9, showcasing its potential as a promising treatment avenue for T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Insulina/metabolismo , Fosforilação , Proteínas Tirosina Fosfatases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo
2.
Biomolecules ; 14(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38540761

RESUMO

Protein phosphatases are primarily responsible for dephosphorylation modification within signal transduction pathways. Phosphatase of regenerating liver-3 (PRL-3) is a dual-specific phosphatase implicated in cancer pathogenesis. Understanding PRL-3's intricate functions and developing targeted therapies is crucial for advancing cancer treatment. This review highlights its regulatory mechanisms, expression patterns, and multifaceted roles in cancer progression. PRL-3's involvement in proliferation, migration, invasion, metastasis, angiogenesis, and drug resistance is discussed. Regulatory mechanisms encompass transcriptional control, alternative splicing, and post-translational modifications. PRL-3 exhibits selective expressions in specific cancer types, making it a potential target for therapy. Despite advances in small molecule inhibitors, further research is needed for clinical application. PRL-3-zumab, a humanized antibody, shows promise in preclinical studies and clinical trials. Our review summarizes the current understanding of the cancer-related cellular function of PRL-3, its prognostic value, and the research progress of therapeutic inhibitors.


Assuntos
Neoplasias , Transdução de Sinais , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Proteínas Tirosina Fosfatases/metabolismo , Processamento de Proteína Pós-Traducional , Fosfoproteínas Fosfatases , Linhagem Celular Tumoral
3.
BMC Cancer ; 24(1): 326, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461240

RESUMO

BACKGROUND: FLI1 is an oncogenic transcription factor that promotes diverse malignancies through mechanisms that are not fully understood. Herein, FLI1 is shown to regulate the expression of Ubiquitin Associated and SH3 Domain Containing A/B (UBASH3A/B) genes. UBASH3B and UBASH3A are found to act as an oncogene and tumor suppressor, respectively, and their combined effect determines erythroleukemia progression downstream of FLI1. METHODS: Promoter analysis combined with luciferase assays and chromatin immunoprecipitation (ChIP) analysis were applied on the UBASH3A/B promoters. RNAseq analysis combined with bioinformatic was used to determine the effect of knocking-down UBASH3A and UBASH3B in leukemic cells. Downstream targets of UBASH3A/B were inhibited in leukemic cells either via lentivirus-shRNAs or small molecule inhibitors. Western blotting and RT-qPCR were used to determine transcription levels, MTT assays to assess proliferation rate, and flow cytometry to examine apoptotic index. RESULTS: Knockdown of FLI1 in erythroleukemic cells identified the UBASH3A/B genes as potential downstream targets. Herein, we show that FLI1 directly binds to the UBASH3B promoter, leading to its activation and leukemic cell proliferation. In contrast, FLI1 indirectly inhibits UBASH3A transcription via GATA2, thereby antagonizing leukemic growth. These results suggest oncogenic and tumor suppressor roles for UBASH3B and UBASH3A in erythroleukemia, respectively. Mechanistically, we show that UBASH3B indirectly inhibits AP1 (FOS and JUN) expression, and that its loss leads to inhibition of apoptosis and acceleration of proliferation. UBASH3B also positively regulates the SYK gene expression and its inhibition suppresses leukemia progression. High expression of UBASH3B in diverse tumors was associated with worse prognosis. In contrast, UBASH3A knockdown in erythroleukemic cells increased proliferation; and this was associated with a dramatic induction of the HSP70 gene, HSPA1B. Accordingly, knockdown of HSPA1B in erythroleukemia cells significantly accelerated leukemic cell proliferation. Accordingly, overexpression of UBASH3A in different cancers was predominantly associated with good prognosis. These results suggest for the first time that UBASH3A plays a tumor suppressor role in part through activation of HSPA1B. CONCLUSIONS: FLI1 promotes erythroleukemia progression in part by modulating expression of the oncogenic UBASH3B and tumor suppressor UBASH3A.


Assuntos
Leucemia Eritroblástica Aguda , Proteína Proto-Oncogênica c-fli-1 , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , RNA Interferente Pequeno/genética , Proteína EWS de Ligação a RNA/genética , Proteínas Tirosina Fosfatases/metabolismo
4.
J Biomed Sci ; 31(1): 33, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532423

RESUMO

BACKGROUND: T cell receptor (TCR) signaling and T cell activation are tightly regulated by gatekeepers to maintain immune tolerance and avoid autoimmunity. The TRAIL receptor (TRAIL-R) is a TNF-family death receptor that transduces apoptotic signals to induce cell death. Recent studies have indicated that TRAIL-R regulates T cell-mediated immune responses by directly inhibiting T cell activation without inducing apoptosis; however, the distinct signaling pathway that regulates T cell activation remains unclear. In this study, we screened for intracellular TRAIL-R-binding proteins within T cells to explore the novel signaling pathway transduced by TRAIL-R that directly inhibits T cell activation. METHODS: Whole-transcriptome RNA sequencing was used to identify gene expression signatures associated with TRAIL-R signaling during T cell activation. High-throughput screening with mass spectrometry was used to identify the novel TRAIL-R binding proteins within T cells. Co-immunoprecipitation, lipid raft isolation, and confocal microscopic analyses were conducted to verify the association between TRAIL-R and the identified binding proteins within T cells. RESULTS: TRAIL engagement downregulated gene signatures in TCR signaling pathways and profoundly suppressed phosphorylation of TCR proximal tyrosine kinases without inducing cell death. The tyrosine phosphatase SHP-1 was identified as the major TRAIL-R binding protein within T cells, using high throughput mass spectrometry-based proteomics analysis. Furthermore, Lck was co-immunoprecipitated with the TRAIL-R/SHP-1 complex in the activated T cells. TRAIL engagement profoundly inhibited phosphorylation of Lck (Y394) and suppressed the recruitment of Lck into lipid rafts in the activated T cells, leading to the interruption of proximal TCR signaling and subsequent T cell activation. CONCLUSIONS: TRAIL-R associates with phosphatase SHP-1 and transduces a unique and distinct immune gatekeeper signal to repress TCR signaling and T cell activation via inactivating Lck. Thus, our results define TRAIL-R as a new class of immune checkpoint receptors for restraining T cell activation, and TRAIL-R/SHP-1 axis can serve as a potential therapeutic target for immune-mediated diseases.


Assuntos
Receptores de Antígenos de Linfócitos T , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Humanos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Células Jurkat , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Transdução de Sinais , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Fosforilação , Ativação Linfocitária , Tirosina/metabolismo
5.
Biochim Biophys Acta Rev Cancer ; 1879(3): 189098, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555001

RESUMO

The Eya family of proteins (consisting of Eyas1-4 in mammals) play vital roles in embryogenesis by regulating processes such as proliferation, migration/invasion, cellular survival and pluripotency/plasticity of epithelial and mesenchymal states. Eya proteins carry out such diverse functions through a unique combination of transcriptional co-factor, Tyr phosphatase, and PP2A/B55α-mediated Ser/Thr phosphatase activities. Since their initial discovery, re-expression of Eyas has been observed in numerous tumor types, where they are known to promote tumor progression through a combination of their transcriptional and enzymatic activities. Eya proteins thus reinstate developmental processes during malignancy and represent a compelling class of therapeutic targets for inhibiting tumor progression.


Assuntos
Neoplasias , Proteínas Tirosina Fosfatases , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/genética , Animais , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas do Olho/metabolismo , Proteínas do Olho/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
6.
Immunity ; 57(2): 256-270.e10, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38354703

RESUMO

Antibodies can block immune receptor engagement or trigger the receptor machinery to initiate signaling. We hypothesized that antibody agonists trigger signaling by sterically excluding large receptor-type protein tyrosine phosphatases (RPTPs) such as CD45 from sites of receptor engagement. An agonist targeting the costimulatory receptor CD28 produced signals that depended on antibody immobilization and were sensitive to the sizes of the receptor, the RPTPs, and the antibody itself. Although both the agonist and a non-agonistic anti-CD28 antibody locally excluded CD45, the agonistic antibody was more effective. An anti-PD-1 antibody that bound membrane proximally excluded CD45, triggered Src homology 2 domain-containing phosphatase 2 recruitment, and suppressed systemic lupus erythematosus and delayed-type hypersensitivity in experimental models. Paradoxically, nivolumab and pembrolizumab, anti-PD-1-blocking antibodies used clinically, also excluded CD45 and were agonistic in certain settings. Reducing these agonistic effects using antibody engineering improved PD-1 blockade. These findings establish a framework for developing new and improved therapies for autoimmunity and cancer.


Assuntos
Proteínas Tirosina Fosfatases , Transdução de Sinais , Proteínas Tirosina Fosfatases/metabolismo , Antígenos CD28 , Receptores Imunológicos
7.
Nat Commun ; 15(1): 1385, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360978

RESUMO

The Eyes Absent proteins (EYA1-4) are a biochemically unique group of tyrosine phosphatases known to be tumour-promoting across a range of cancer types. To date, the targets of EYA phosphatase activity remain largely uncharacterised. Here, we identify Polo-like kinase 1 (PLK1) as an interactor and phosphatase substrate of EYA4 and EYA1, with pY445 on PLK1 being the primary target site. Dephosphorylation of pY445 in the G2 phase of the cell cycle is required for centrosome maturation, PLK1 localization to centrosomes, and polo-box domain (PBD) dependent interactions between PLK1 and PLK1-activation complexes. Molecular dynamics simulations support the rationale that pY445 confers a structural impairment to PBD-substrate interactions that is relieved by EYA-mediated dephosphorylation. Depletion of EYA4 or EYA1, or chemical inhibition of EYA phosphatase activity, dramatically reduces PLK1 activation, causing mitotic defects and cell death. Overall, we have characterized a phosphotyrosine signalling network governing PLK1 and mitosis.


Assuntos
Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Tirosina/metabolismo , Mitose , Centrossomo/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Células HeLa , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transativadores/metabolismo
8.
Sci Adv ; 10(9): eadi7404, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416831

RESUMO

PTPN21 belongs to the four-point-one, ezrin, radixin, moesin (FERM) domain-containing protein tyrosine phosphatases (PTP) and plays important roles in cytoskeleton-associated cellular processes like cell adhesion, motility, and cargo transport. Because of the presence of a WPE loop instead of a WPD loop in the phosphatase domain, it is often considered to lack phosphatase activity. However, many of PTPN21's biological functions require its catalytic activity. To reconcile these findings, we have determined the structures of individual PTPN21 FERM, PTP domains, and a complex between FERM-PTP. Combined with biochemical analysis, we have found that PTPN21 PTP is weakly active and is autoinhibited by association with its FERM domain. Disruption of FERM-PTP interaction results in enhanced ERK activation. The oncogenic HPV18 E7 protein binds to PTP at the same location as PTPN21 FERM, indicating that it may act by displacing the FERM domain from PTP. Our results provide mechanistic insight into PTPN21 and benefit functional studies of PTPN21-mediated processes.


Assuntos
Domínios FERM , Proteínas Tirosina Fosfatases , Estrutura Terciária de Proteína , Proteínas Tirosina Fosfatases/metabolismo , Ligação Proteica , Citoesqueleto/metabolismo
9.
Cells ; 13(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38334623

RESUMO

Advances in immunotherapy have brought significant therapeutic benefits to many cancer patients. Nonetheless, many cancer types are refractory to current immunotherapeutic approaches, meaning that further targets are required to increase the number of patients who benefit from these technologies. Protein tyrosine phosphatases (PTPs) have long been recognised to play a vital role in the regulation of cancer cell biology and the immune response. In this review, we summarize the evidence for both the pro-tumorigenic and tumour-suppressor function of non-receptor PTPs in cancer cells and discuss recent data showing that several of these enzymes act as intracellular immune checkpoints that suppress effective tumour immunity. We highlight new data showing that the deletion of inhibitory PTPs is a rational approach to improve the outcomes of adoptive T cell-based cancer immunotherapies and describe recent progress in the development of PTP inhibitors as anti-cancer drugs.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Proteínas Tirosina Fosfatases/metabolismo , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Imunoterapia
10.
Bioorg Chem ; 144: 107121, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237392

RESUMO

Protein tyrosine phosphatases (PTPs) are the class of dephosphorylation enzymes that catalyze the removal of phosphate groups from tyrosine residues on proteins responsible for various cellular processes. Any disbalance in signal pathways mediated by PTPs leads to various disease conditions like diabetes, obesity, cancers, and autoimmune disorders. Amongst the PTP superfamily, PTP1B, SHP2, Cdc25, and LMW-PTP have been prioritized as druggable targets for developing medicinal agents. PTP1B is an intracellular PTP enzyme that downregulates insulin and leptin signaling pathways and is involved in insulin resistance and glucose homeostasis. SHP2 is involved in the RAS-MAPK pathway and T cell immunity. Cdk-cyclin complex activation occurs by Cdc25-PTPs involved in cell cycle regulation. LMW-PTPs are involved in PDGF/PDGFR, Eph/ephrin, and insulin signaling pathways, resulting in certain diseases like diabetes mellitus, obesity, and cancer. The signaling cascades of PTP1B, SHP2, Cdc25, and LMW-PTPs have been described to rationalize their medicinal importance in the pathophysiology of diabetes, obesity, and cancer. Their binding sites have been explored to overcome the hurdles in discovering target selective molecules with optimum potency. Recent developments in the synthetic molecules bearing heterocyclic moieties against these targets have been explored to gain insight into structural features. The elaborated SAR investigation revealed the effect of substituents on the potency and target selectivity, which can be implicated in the further discovery of newer medicinal agents targeting the druggable members of the PTP superfamily.


Assuntos
Diabetes Mellitus , Neoplasias , Humanos , Proteínas Tirosina Fosfatases/metabolismo , Neoplasias/metabolismo , Insulina , Diabetes Mellitus/tratamento farmacológico , Obesidade
11.
Sci Adv ; 10(5): eadg7887, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38295166

RESUMO

Protein tyrosine phosphatases (PTPs) play major roles in cancer and are emerging as therapeutic targets. Recent reports suggest low-molecular weight PTP (LMPTP)-encoded by the ACP1 gene-is overexpressed in prostate tumors. We found ACP1 up-regulated in human prostate tumors and ACP1 expression inversely correlated with overall survival. Using CRISPR-Cas9-generated LMPTP knockout C4-2B and MyC-CaP cells, we identified LMPTP as a critical promoter of prostate cancer (PCa) growth and bone metastasis. Through metabolomics, we found that LMPTP promotes PCa cell glutathione synthesis by dephosphorylating glutathione synthetase on inhibitory Tyr270. PCa cells lacking LMPTP showed reduced glutathione, enhanced activation of eukaryotic initiation factor 2-mediated stress response, and enhanced reactive oxygen species after exposure to taxane drugs. LMPTP inhibition slowed primary and bone metastatic prostate tumor growth in mice. These findings reveal a role for LMPTP as a critical promoter of PCa growth and metastasis and validate LMPTP inhibition as a therapeutic strategy for treating PCa through sensitization to oxidative stress.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Camundongos , Animais , Peso Molecular , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Tirosina , Proteínas Tirosina Fosfatases/metabolismo
12.
ChemMedChem ; 19(7): e202300669, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38233347

RESUMO

Protein tyrosine phosphatases (PTPs) are an important class of enzymes that regulate protein tyrosine phosphorylation levels of a large variety of proteins in cells. Anomalies in protein tyrosine phosphorylation have been associated with the development of numerous human diseases, leading to a heightened interest in PTPs as promising targets for drug development. However, therapeutic targeting of PTPs has faced skepticism about their druggability. Besides the conventional small molecule inhibitors, proteolysis-targeting chimera (PROTAC) technology offers an alternative approach to target PTPs. PROTAC molecules utilize the ubiquitin-proteasome system to degrade specific proteins and have unique advantages compared with inhibitors: 1) PROTACs are highly efficient and can work at much lower concentrations than that expected based on their biophysical binding affinity; 2) PROTACs may achieve higher selectivity for the targeted protein than that dictated by their binding affinity alone; and 3) PROTACs may engage any region of the target protein in addition to the functional site. This review focuses on the latest advancement in the development of targeted PTP degraders and deliberates on the obstacles and prospective paths of harnessing this technology for therapeutic targeting of the PTPs.


Assuntos
Inibidores Enzimáticos , Proteínas Tirosina Fosfatases , Humanos , Proteólise , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Estudos Prospectivos , Proteínas Tirosina Fosfatases/metabolismo , Proteínas/metabolismo , Tirosina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
13.
Cell Tissue Res ; 395(1): 53-62, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985496

RESUMO

Glomerular epithelial protein-1 (Glepp1), a R3 subtype family of receptor-type protein tyrosine phosphatases, plays important role in the activation of Src family kinases and regulates cellular processes such as cell proliferation, differentiation, and apoptosis. In this study, we firstly examined the functional evaluation of Glepp1 in tooth development and morphogenesis. The precise expression level and developmental function of Glepp1 were examined by RT-qPCR, in situ hybridization, and loss and gain of functional study using a range of in vitro organ cultivation methods. Expression of Glepp1 was detected in the developing tooth germs in cap and bell stage of tooth development. Knocking down Glepp1 at E13 for 2 days showed the altered expression levels of tooth development-related signaling molecules, including Bmps, Dspp, Fgf4, Lef1, and Shh. Moreover, transient knock down of Glepp1 revealed alterations in cellular physiology, examined by the localization patterns of Ki67 and E-cadherin. Similarly, knocking down of Glepp1 showed disrupted enamel rod and interrod formation in 3-week renal transplanted teeth. In addition, due to attrition of odontoblastic layers, the expression signals of Dspp and the localization of NESTIN were almost not detected after knock down of Glepp1; however, their expressions were increased after Glepp1 overexpression. Thus, our results suggested that Glepp1 plays modulating roles during odontogenesis by regulating the expression levels of signaling molecules and cellular events to achieve the proper structural formation of hard tissue matrices in mice molar development.


Assuntos
Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores , Dente , Animais , Camundongos , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese , Odontogênese , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Transdução de Sinais , Dente/metabolismo
14.
Int J Mol Sci ; 24(24)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38139370

RESUMO

The regulation of protein kinases by dephosphorylation is a key mechanism that defines the activity of immune cells. A balanced process of the phosphorylation/dephosphorylation of key protein kinases by dual-specificity phosphatases is required for the realization of the antitumor immune response. The family of dual-specificity phosphatases is represented by several isoforms found in both resting and activated macrophages. The main substrate of dual-specificity phosphatases are three components of mitogen-activated kinase signaling cascades: the extracellular signal-regulated kinase ERK1/2, p38, and Janus kinase family. The results of the study of model tumor-associated macrophages supported the assumption of the crucial role of dual-specificity phosphatases in the formation and determination of the outcome of the immune response against tumor cells through the selective suppression of mitogen-activated kinase signaling cascades. Since mitogen-activated kinases mostly activate the production of pro-inflammatory mediators and the antitumor function of macrophages, the excess activity of dual-specificity phosphatases suppresses the ability of tumor-associated macrophages to activate the antitumor immune response. Nowadays, the fundamental research in tumor immunology is focused on the search for novel molecular targets to activate the antitumor immune response. However, to date, dual-specificity phosphatases received limited discussion as key targets of the immune system to activate the antitumor immune response. This review discusses the importance of dual-specificity phosphatases as key regulators of the tumor-associated macrophage function.


Assuntos
Fosfatases de Especificidade Dupla , Proteínas Quinases Ativadas por Mitógeno , Fosfatases de Especificidade Dupla/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Macrófagos Associados a Tumor/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Mitógenos , Fosforilação , Proteínas Quinases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosfatase 1 de Especificidade Dupla/metabolismo
15.
Cancer Immunol Immunother ; 72(12): 4441-4456, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919522

RESUMO

BACKGROUND: Hypercholesterolemia is one of the risk factors for colorectal cancer (CRC). Cholesterol can participate in the regulation of human T cell function and affect the occurrence and development of CRC. OBJECTIVE: To elucidate the pathogenesis of CRC immune escape mediated by CD8+ T cell exhaustion induced by cholesterol. METHODS: CRC samples (n = 217) and healthy individuals (n = 98) were recruited to analyze the relationship between peripheral blood cholesterol levels and the clinical features of CRC. An animal model of CRC with hypercholesterolemia was established. Intraperitoneal intervention with endoplasmic reticulum stress (ERS) inhibitors in hypercholesterolemic CRC mice was performed. CD69, PD1, TIM-3, and CTLA-4 on CD8+ T cells of spleens from C57BL/6 J mice were detected by flow cytometry. CD8+ T cells were cocultured with MC38 cells (mouse colon cancer cell line). The proliferation, apoptosis, migration and invasive ability of MC38 cells were detected by CCK-8 assay, Annexin-V APC/7-AAD double staining, scratch assay and transwell assay, respectively. Transmission electron microscopy was used to observe the ER structure of CD8+ T cells. Western blotting was used to detect the expression of ERS and mitophagy-related proteins. Mitochondrial function and energy metabolism were measured. Immunoprecipitation was used to detect the interaction of endoplasmic reticulum-mitochondria contact site (ERMC) proteins. Immunofluorescence colocalization was used to detect the expression and intracellular localization of ERMC-related molecules. RESULTS: Peripheral blood cholesterol-related indices, including Tc, low density lipoproteins (LDL) and Apo(a), were all increased, and high density lipoprotein (HDL) was decreased in CRCs. The proliferation, migration and invasion abilities of MC38 cells were enhanced, and the proportion of tumor cell apoptosis was decreased in the high cholesterol group. The expression of IL-2 and TNF-α was decreased, while IFN-γ was increased in the high cholesterol group. It indicated high cholesterol could induce exhaustion of CD8+ T cells, leading to CRC immune escape. Hypercholesterolemia damaged the ER structure of CD8+ T cells and increased the expression of ER stress molecules (CHOP and GRP78), lead to CD8+ T cell exhaustion. The expression of mitophagy-related proteins (BNIP3, PINK and Parkin) in exhausted CD8+ T cells increased at high cholesterol levels, causing mitochondrial energy disturbance. High cholesterol enhanced the colocalization of Fis1/Bap31, MFN2/cox4/HSP90B1, VAPB/PTPIP51, VDAC1/IPR3/GRP75 in ERMCs, indicated that high cholesterol promoted the intermolecular interaction between ER and mitochondrial membranes in CD8+ T cells. CONCLUSION: High cholesterol regulated the ERS-ERMC-mitophagy axis to induce the exhaustion of CD8+ T cells in CRC.


Assuntos
Neoplasias Colorretais , Hipercolesterolemia , Humanos , Animais , Camundongos , Membranas Associadas à Mitocôndria , Linfócitos T CD8-Positivos/metabolismo , Hipercolesterolemia/metabolismo , Exaustão das Células T , Camundongos Endogâmicos C57BL , Colesterol , Mitocôndrias/metabolismo , Neoplasias Colorretais/patologia , Estresse do Retículo Endoplasmático , Apoptose , Proteínas Tirosina Fosfatases/metabolismo
16.
Int J Mol Sci ; 24(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37833951

RESUMO

The protein tyrosine phosphatase PTPN22 inhibits T cell activation by dephosphorylating some essential proteins in the T cell receptor (TCR)-mediated signaling pathway, such as the lymphocyte-specific protein tyrosine kinase (Lck), Src family tyrosine kinases Fyn, and the phosphorylation levels of Zeta-chain-associated protein kinase-70 (ZAP70). For the first time, we have successfully produced PTPN22 CS transgenic mice in which the tyrosine phosphatase activity of PTPN22 is suppressed. Notably, the number of thymocytes in the PTPN22 CS mice was significantly reduced, and the expression of cytokines in the spleen and lymph nodes was changed significantly. Furthermore, PTPN22 CS facilitated the positive and negative selection of developing thymocytes, increased the expression of the TCRαß-CD3 complex on the thymus cell surface, and regulated their internalization and recycling. ZAP70, Lck, Phospholipase C gamma1(PLCγ1), and other proteins were observed to be reduced in PTPN22 CS mouse thymocytes. In summary, PTPN22 regulates TCR internalization and recycling via the modulation of the TCR signaling pathway and affects TCR expression on the T cell surface to regulate negative and positive selection. PTPN22 affected the development of the thymus, spleen, lymph nodes, and other peripheral immune organs in mice. Our study demonstrated that PTPN22 plays a crucial role in T cell development and provides a theoretical basis for immune system construction.


Assuntos
Receptores de Antígenos de Linfócitos T , Quinases da Família src , Animais , Camundongos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Camundongos Transgênicos , Fosforilação , Proteínas Tirosina Fosfatases/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Quinases da Família src/metabolismo
17.
J Cell Mol Med ; 27(22): 3553-3564, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37860940

RESUMO

Approximately 40% of people will get cancer in their lifetime in the US, and 20% are predicted to die from the condition when it is invasive and metastatic. Targeted screening for drugs that interact with proteins that drive cancer cell growth and migration can lead to new therapies. We screened molecular libraries with the AtomNet® AI-based drug design tool to identify compounds predicted to interact with the cytoplasmic domain of protein tyrosine phosphatase mu. Protein tyrosine phosphatase mu (PTPmu) is proteolytically downregulated in cancers such as glioblastoma generating fragments that stimulate cell survival and migration. Aberrant nuclear localization of PTPmu intracellular fragments drives cancer progression, so we targeted a predicted drug-binding site between the two cytoplasmic phosphatase domains we termed a D2 binding pocket. The function of the D2 domain is controversial with various proposed regulatory functions, making the D2 domain an attractive target for the development of allosteric drugs. Seventy-five of the best-scoring and chemically diverse computational hits predicted to interact with the D2 binding pocket were screened for effects on tumour cell motility and growth in 3D culture as well as in a direct assay for PTPmu-dependent adhesion. We identified two high-priority hits that inhibited the migration and glioma cell sphere formation of multiple glioma tumour cell lines as well as aggregation. We also identified one activator of PTPmu-dependent aggregation, which was able to stimulate cell migration. We propose that the PTPmu D2 binding pocket represents a novel regulatory site and that inhibitors targeting this region may have therapeutic potential for treating cancer.


Assuntos
Glioblastoma , Glioma , Humanos , Adesão Celular , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Inteligência Artificial
18.
Microbiol Spectr ; 11(6): e0281323, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37819153

RESUMO

IMPORTANCE: Staphylococcus aureus uses numerous strategies to survive and persist in the intracellular environment of professional phagocytes, including modulation of the SUMOylation process. This study aims to understand how S. aureus alters host SUMOylation to enhance its intracellular survival in professional phagocytes. Our results indicate that S. aureus strain Newman utilizes PtpA-driven phosphorylation to decrease the amount of SUMOylated proteins in murine macrophages to facilitate its survival in this immune cell type.


Assuntos
Proteínas Tirosina Fosfatases , Staphylococcus aureus , Sumoilação , Animais , Camundongos , Macrófagos , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Staphylococcus aureus/metabolismo , Tirosina/metabolismo , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia
19.
Mol Cancer ; 22(1): 158, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777742

RESUMO

The Eyes Absent (EYA) family of proteins is an atypical group of four dual-functioning protein phosphatases (PP), which have been linked to many vital cellular processes and organogenesis pathways. The four family members of this PP family possess transcriptional activation and phosphatase functions, with serine/threonine and tyrosine phosphatase domains. EYA4 has been associated with several human cancers, with tumor-suppressing and tumor-promoting roles. However, EYA4 is the least well-characterized member of this unique family of PP, with its biological functions and molecular mechanisms in cancer progression, particularly in breast cancer, still largely unknown. In the present study, we found that the over-expression of EYA4 in breast tissue leads to an aggressive and invasive breast cancer phenotype, while the inhibition of EYA4 reduced tumorigenic properties of breast cancer cells in vitro and in vivo. Cellular changes downstream of EYA4, including cell proliferation and migration, may explain the increased metastatic power of breast cancer cells over-expressing EYA4. Mechanistically, EYA4 prevents genome instability by inhibiting the accumulation of replication-associated DNA damage. Its depletion results in polyploidy as a consequence of endoreplication, a phenomenon that can occur in response to stress. The absence of EYA4 leads to spontaneous replication stress characterized by the activation of the ATR pathway, sensitivity to hydroxyurea, and accumulation of endogenous DNA damage as indicated by increased γH2AX levels. In addition, we show that EYA4, specifically its serine/threonine phosphatase domain, plays an important and so far, unexpected role in replication fork progression. This phosphatase activity is essential for breast cancer progression and metastasis. Taken together, our data indicate that EYA4 is a novel potential breast cancer oncogene that supports primary tumor growth and metastasis. Developing therapeutics aimed at the serine/threonine phosphatase activity of EYA4 represents a robust strategy for killing breast cancer cells, to limit metastasis and overcome chemotherapy resistance caused by endoreplication and genomic rearrangements.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Transativadores/genética , Transativadores/metabolismo , Linhagem Celular Tumoral , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Fosfoproteínas Fosfatases/genética , Serina
20.
Sci Signal ; 16(792): eabn8668, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402225

RESUMO

Receptor-type protein phosphatase α (RPTPα) promotes fibroblast-dependent arthritis and fibrosis, in part, by enhancing the activation of the kinase SRC. Synovial fibroblasts lining joint tissue mediate inflammation and tissue damage, and their infiltration into adjacent tissues promotes disease progression. RPTPα includes an ectodomain and two intracellular catalytic domains (D1 and D2) and, in cancer cells, undergoes inhibitory homodimerization, which is dependent on a D1 wedge motif. Through single-molecule localization and labeled molecule interaction microscopy of migrating synovial fibroblasts, we investigated the role of RPTPα dimerization in the activation of SRC, the migration of synovial fibroblasts, and joint damage in a mouse model of arthritis. RPTPα clustered with other RPTPα and with SRC molecules in the context of actin-rich structures. A known dimerization-impairing mutation in the wedge motif (P210L/P211L) and the deletion of the D2 domain reduced RPTPα-RPTPα clustering; however, it also unexpectedly reduced RPTPα-SRC association. The same mutations also reduced recruitment of RPTPα to actin-rich structures and inhibited SRC activation and cellular migration. An antibody against the RPTPα ectodomain that prevented the clustering of RPTPα also inhibited RPTPα-SRC association and SRC activation and attenuated fibroblast migration and joint damage in arthritic mice. A catalytically inactivating RPTPα-C469S mutation protected mice from arthritis and reduced SRC activation in synovial fibroblasts. We conclude that RPTPα clustering retains it to actin-rich structures to promote SRC-mediated fibroblast migration and can be modulated through the extracellular domain.


Assuntos
Actinas , Artrite , Animais , Camundongos , Análise por Conglomerados , Fibroblastos/metabolismo , Fosfoproteínas Fosfatases , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA