Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Sci Signal ; 16(792): eabn8668, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402225

RESUMO

Receptor-type protein phosphatase α (RPTPα) promotes fibroblast-dependent arthritis and fibrosis, in part, by enhancing the activation of the kinase SRC. Synovial fibroblasts lining joint tissue mediate inflammation and tissue damage, and their infiltration into adjacent tissues promotes disease progression. RPTPα includes an ectodomain and two intracellular catalytic domains (D1 and D2) and, in cancer cells, undergoes inhibitory homodimerization, which is dependent on a D1 wedge motif. Through single-molecule localization and labeled molecule interaction microscopy of migrating synovial fibroblasts, we investigated the role of RPTPα dimerization in the activation of SRC, the migration of synovial fibroblasts, and joint damage in a mouse model of arthritis. RPTPα clustered with other RPTPα and with SRC molecules in the context of actin-rich structures. A known dimerization-impairing mutation in the wedge motif (P210L/P211L) and the deletion of the D2 domain reduced RPTPα-RPTPα clustering; however, it also unexpectedly reduced RPTPα-SRC association. The same mutations also reduced recruitment of RPTPα to actin-rich structures and inhibited SRC activation and cellular migration. An antibody against the RPTPα ectodomain that prevented the clustering of RPTPα also inhibited RPTPα-SRC association and SRC activation and attenuated fibroblast migration and joint damage in arthritic mice. A catalytically inactivating RPTPα-C469S mutation protected mice from arthritis and reduced SRC activation in synovial fibroblasts. We conclude that RPTPα clustering retains it to actin-rich structures to promote SRC-mediated fibroblast migration and can be modulated through the extracellular domain.


Assuntos
Actinas , Artrite , Animais , Camundongos , Análise por Conglomerados , Fibroblastos/metabolismo , Fosfoproteínas Fosfatases , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo
2.
Oncogene ; 42(14): 1058-1071, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36765146

RESUMO

Receptor-type protein tyrosine phosphatase α (RPTPα) is one of the typical PTPs that play indispensable roles in many cellular processes associated with cancers. It has been considered as the most powerful regulatory oncogene for Src activation, however it is unclear how its biological function is regulated by post-translational modifications. Here, we show that the extracellular segment of RPTPα is highly N-glycosylated precisely at N21, N36, N68, N80, N86, N104 and N124 sites. Such N-glycosylation modifications mediated by glucose concentration alter the subcellular localization of RPTPα from Golgi apparatus to plasma membrane, enhance the interaction of RPTPα with Src, which in turn enhances the activation of Src and ultimately promotes tumor development. Our results identified the N-glycosylation modifications of RPTPα, and linked it to glucose starvation and Src activation for promoting tumor development, which provides new evidence for the potential antitumor therapy.


Assuntos
Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores , Humanos , Membrana Celular/metabolismo , Glicosilação , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo , Processamento de Proteína Pós-Traducional
3.
Curr Cancer Drug Targets ; 23(6): 471-481, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36654463

RESUMO

BACKGROUND: Thyroid carcinoma (TC) is a common malignant tumor in human and its incidence has been increasing in recent years. Studies have shown that receptor type protein tyrosine phosphatase epsilon (PTPRE) is a key regulator of tumorigenesis in cancer progression, but its role in TC has not been revealed. OBJECTIVE: Here, in this work, we explored the essential role of PTPRE in TC progression. METHODS: The expression of PTPRE in TC clinical samples and cell lines was detected by RT-qPCR and Western blot. Cell proliferation was measured by MTT and cell cycle analysis. Cell migration, invasion and epithelial-mesenchymal transition (EMT) were analyzed by wound healing, transwell, and immunofluorescent staining assays. AKT and ERK1/2 signaling pathway related protein level was analyzed by Western blot. RESULTS: PTPRE was highly expressed in TC clinical samples and cell lines, especially anaplastic thyroid carcinoma (ATC). High level of PTPRE was associated with tumor size and TNM stage. Upregulated PTPRE promoted cell proliferation, and enhanced the migration, invasion and EMT of TC cells, whereas the knockdown of PTPRE suppressed these behaviors. Importantly, we confirmed that the AKT and ERK1/2 signaling pathways were activated by PTPRE, reflected by the enhanced protein level of phosphorylated AKT and ERK1/2. CONCLUSION: Accordingly, we indicated that PTPRE plays an oncogenic role in TC progression via activating the AKT and ERK1/2 signaling pathway. These findings indicated that modulation of PTPRE expression may as a potential strategy to interfere with the progression of TC.


Assuntos
Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores , Transdução de Sinais , Neoplasias da Glândula Tireoide , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia
4.
Biochem Genet ; 61(1): 187-201, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35817886

RESUMO

Atherosclerosis (AS) is a chronic inflammatory disease with high morbidity and mortality rates worldwide. This study aimed to investigate the role of circular RNA protein tyrosine phosphatase receptor type A (circRNA_PTPRA) in oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cell (HUVECs) injury and its underlying molecular mechanism. The expression of circRNA-PTPRA and microRNA (miR)-671-5p was assessed by quantitative reverse transcription PCR (qRT-PCR). The interaction between circRNA-PTPRA and miR-671-5p was predicted using bioinformatic analysis. Cell viability and apoptosis were determined using the Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. Inflammation in HUVECs was analyzed by measuring the secretion of tumor necrosis factor alpha (TNF-α), interleukin-1beta (IL-1ß), and IL-6 using enzyme-linked immunosorbent assay (ELISA). Cleaved-caspase-3 expression was assessed using western blotting. The results indicated that circRNA-PTPRA expression was significantly increased and miR-671-5p expression was decreased in the serum of patients with AS and in ox-LDL-treated HUVECs. The interaction between circRNA-PTPRA and miR-671-5p was verified by dual luciferase reporter and RNA pull-down assays. In HUVECs, downregulation of circRNA-PTPRA reversed ox-LDL-induced reduction in cell viability, increase in apoptosis, and enhanced inflammation, whereas all these effects mediated by circRNA-PTPRA downregulation in ox-LDL-treated HUVECs were abolished by miR-671-5p downregulation. In conclusion, circRNA-PTPRA downregulation protects against ox-LDL-induced HUVECs injury by upregulating miR-671-5p, thereby providing potential therapeutic targets for AS.


Assuntos
Aterosclerose , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Lipoproteínas LDL/farmacologia , Apoptose , Inflamação/genética , Inflamação/metabolismo , Aterosclerose/genética , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/farmacologia
5.
Anticancer Drugs ; 33(2): 167-177, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34657099

RESUMO

Hepatocellular carcinoma (HCC) is a major world public problem in the world, with high morbidity and mortality rates. Circular RNA (circRNA) circ_0073181 has been reported to be related to HCC development. However, the mechanism of circ_0073181 in HCC is far from being addressed. Circ_0073181, microRNA-548p (miR-548p) and protein tyrosine phosphatase receptor type E (PTPRE) level were detected by real-time quantitative PCR (RT-qPCR). Cell proliferation, migration, invasion and apoptosis were detected by Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine, wound healing, transwell and flow cytometry assay. Protein levels of proliferating cell nuclear antigen, Bcl-2 related X protein (Bax) and PTPRE were examined by western blot assay. The binding relationship between miR-548p and circ_0073181 or PTPRE was predicted by circular RNA interactome and targetScan and then verified by a dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. The biologic role of circ_0073181 on HCC tumor growth was examined by the xenograft tumor model in vivo. Circ_0073181 and PTPRE were upregulated, and miR-548p was decreased in HCC tissues and cells. Furthermore, circ_0073181 knockdown could boost proliferation, migration, invasion and repress apoptosis of HCC cells in vitro. The mechanical analysis suggested that circ_0073181 could regulate PTPRE expression by sponging miR-548p. In addition, circ_0073181 knockdown suppressed cell growth of HCC in vivo. Circ_0073181 silencing could inhibit HCC cell growth and metastasis partly by regulating the miR-548p/ PTPRE axis, providing a promising therapeutic target for the HCC treatment.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , MicroRNAs/metabolismo , RNA Circular/metabolismo , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Animais , Apoptose/fisiologia , Carcinogênese/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Pharm Pharmacol ; 73(12): 1630-1642, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34559878

RESUMO

OBJECTIVES: Ginkgolide C (GGC) isolated from Ginkgo biloba (Ginkgoaceae) leaf can demonstrate pleiotropic pharmacological actions. However, its anti-oncogenic impact in non-small cell lung cancer (NSCLC) model has not been reconnoitered. As signal transducer and activator of transcription 3 (STAT3) cascade can promote tumour growth and survival, we contemplated that GGC may interrupt this signalling cascade to expend its anti-cancer actions in NSCLC. METHODS: The effect of GGC on STAT3 activation, associated protein kinases, STAT3-regulated gene products, cellular proliferation and apoptosis was examined. The in-vivo effect of GGC on the growth of human NSCLC xenograft tumours in athymic nu/nu female mice was also investigated. KEY FINDINGS: GGC attenuated the phosphorylation of STAT3 and STAT3 upstream kinases effectively. Exposure to pervanadate modulated GGC-induced down-regulation of STAT3 activation and promoted an elevation in the level of PTPε protein. Indeed, silencing of the PTPε gene reversed the GGC-promoted abrogation of STAT3 activation and apoptosis. Moreover, GGC exposure significantly reduced NSCLC tumour growth without demonstrating significant adverse effects via decreasing levels of p-STAT3 in mice tissues. CONCLUSIONS: Overall, the findings support that GGC may exhibit anti-neoplastic actions by mitigation of STAT3 signalling cascade in NSCLC.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinogênese/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Ginkgo biloba/química , Ginkgolídeos/farmacologia , Lactonas/farmacologia , Extratos Vegetais/farmacologia , Fator de Transcrição STAT3/metabolismo , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Feminino , Ginkgolídeos/uso terapêutico , Humanos , Lactonas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Camundongos Knockout , Fosforilação , Fitoterapia , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Mol Cancer ; 20(1): 68, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33853613

RESUMO

BACKGROUND: Circular RNAs (circRNAs) have been found to have significant impacts on bladder cancer (BC) progression through various mechanisms. In this study, we aimed to identify novel circRNAs that regulate the function of IGF2BP1, a key m6A reader, and explore the regulatory mechanisms and clinical significances in BC. METHODS: Firstly, the clinical role of IGF2BP1 in BC was studied. Then, RNA immunoprecipitation sequencing (RIP-seq) analysis was performed to identify the circRNAs interacted with IGF2BP1 in BC cells. The overall biological roles of IGF2BP1 and the candidate circPTPRA were investigated in both BC cell lines and animal xenograft studies. Subsequently, we evaluated the regulation effects of circPTPRA on IGF2BP1 and screened out its target genes through RNA sequencing. Finally, we explored the underlying molecular mechanisms that circPTPRA might act as a blocker in recognition of m6A. RESULTS: We demonstrated that IGF2BP1 was predominantly binded with circPTPRA in the cytoplasm in BC cells. Ectopic expression of circPTPRA abolished the promotion of cell proliferation, migration and invasion of BC cells induced by IGF2BP1. Importantly, circPTPRA downregulated IGF2BP1-regulation of MYC and FSCN1 expression via interacting with IGF2BP1. Moreover, the recognition of m6A-modified RNAs mediated by IGF2BP1 was partly disturbed by circPTPRA through its interaction with KH domains of IGF2BP1. CONCLUSIONS: This study identifies exonic circular circPTPRA as a new tumor suppressor that inhibits cancer progression through endogenous blocking the recognition of IGF2BP1 to m6A-modified RNAs, indicating that circPTPRA may serve as an exploitable therapeutic target for patients with BC.


Assuntos
Adenosina/análogos & derivados , RNA Circular/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Adenosina/metabolismo , Animais , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Modelos Animais de Doenças , Progressão da Doença , Epigênese Genética , Imunofluorescência , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Imuno-Histoquímica , Camundongos , Modelos Biológicos , Ligação Proteica , RNA Circular/metabolismo , Neoplasias da Bexiga Urinária/mortalidade , Neoplasias da Bexiga Urinária/patologia
8.
Mol Biol Cell ; 32(7): 567-578, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33566639

RESUMO

The ability of cancer cells to invade surrounding tissues requires degradation of the extracellular matrix (ECM). Invasive structures, such as invadopodia, form on the plasma membranes of cancer cells and secrete ECM-degrading proteases that play crucial roles in cancer cell invasion. We have previously shown that the protein tyrosine phosphatase alpha (PTPα) regulates focal adhesion formation and migration of normal cells. Here we report a novel role for PTPα in promoting triple-negative breast cancer cell invasion in vitro and in vivo. We show that PTPα knockdown reduces ECM degradation and cellular invasion of MDA-MB-231 cells through Matrigel. PTPα is not a component of TKS5-positive structures resembling invadopodia; rather, PTPα localizes with endosomal structures positive for MMP14, caveolin-1, and early endosome antigen 1. Furthermore, PTPα regulates MMP14 localization to plasma membrane protrusions, suggesting a role for PTPα in intracellular trafficking of MMP14. Importantly, we show that orthotopic MDA-MB-231 tumors depleted in PTPα exhibit reduced invasion into the surrounding mammary fat pad. These findings suggest a novel role for PTPα in regulating the invasion of triple-negative breast cancer cells.


Assuntos
Metaloproteinase 14 da Matriz/metabolismo , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Membrana Celular , Movimento Celular/fisiologia , Matriz Extracelular/fisiologia , Feminino , Humanos , Metaloproteinase 14 da Matriz/fisiologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica/genética , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/fisiologia , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/fisiopatologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Int J Biochem Cell Biol ; 131: 105908, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33359015

RESUMO

Cells have developed a unique set of molecular mechanisms that allows them to probe mechanical properties of the surrounding environment. These systems are based on deformable primary mechanosensors coupled to tension transmitting proteins and enzymes generating biochemical signals. This modular setup enables to transform a mechanical load into more versatile biochemical information. Src kinase appears to be one of the central components of the mechanotransduction network mediating force-induced signalling across multiple cellular contexts. In tight cooperation with primary sensors and the cytoskeleton, Src functions as an effector molecule necessary for transformation of mechanical stimuli into biochemical outputs executing cellular response and adaptation to mechanical cues.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteína Substrato Associada a Crk/genética , Citoesqueleto/metabolismo , Mecanotransdução Celular/genética , Neoplasias/metabolismo , Fatores de Transcrição/genética , Quinases da Família src/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteína Substrato Associada a Crk/metabolismo , Citoesqueleto/patologia , Citoesqueleto/ultraestrutura , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Matriz Extracelular/ultraestrutura , Regulação da Expressão Gênica , Via de Sinalização Hippo , Humanos , Integrinas/genética , Integrinas/metabolismo , Neoplasias/genética , Neoplasias/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Estresse Mecânico , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP , Quinases da Família src/metabolismo
10.
Aging (Albany NY) ; 12(24): 24651-24670, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33351778

RESUMO

MYC overexpression is a common phenomenon in gastric carcinogenesis. In this study, we identified genes differentially expressed with a downregulated profile in gastric cancer (GC) cell lines with silenced MYC. The TTLL12, CDKN3, CDC16, PTPRA, MZT2B, UBE2T genes were validated using qRT-PCR, western blot and immunohistochemistry in tissues of 213 patients with diffuse and intestinal GC. We identified high levels of TTLL12, MZT2B, CDC16, UBE2T, associated with early and advanced stages, lymph nodes, distant metastases and risk factors such as H. pylori. Our results show that in the diffuse GC the overexpression of CDC16 and UBE2T indicate markers of poor prognosis higher than TTLL12. That is, patients with overexpression of these two genes live less than patients with overexpression of TTLL12. In the intestinal GC, patients who overexpressed CDC16 had a significantly lower survival rate than patients who overexpressed MZT2B and UBE2T, indicating in our data a worse prognostic value of CDC16 compared to the other two genes. PTPRA and CDKN3 proved to be important for assessing tumor progression in the early and advanced stages. In summary, in this study, we identified diagnostic and prognostic biomarkers of GC under the control of MYC, related to the cell cycle and the neoplastic process.


Assuntos
Adenocarcinoma/genética , Proteínas Proto-Oncogênicas c-myc/genética , Neoplasias Gástricas/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Subunidade Apc6 do Ciclossomo-Complexo Promotor de Anáfase/genética , Subunidade Apc6 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Linhagem Celular Tumoral , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Regulação para Baixo , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Feminino , Inativação Gênica , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Prognóstico , RNA Interferente Pequeno , RNA-Seq , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
11.
Am J Physiol Lung Cell Mol Physiol ; 319(2): L294-L311, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32491951

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive, often fatal, fibrosing lung disease for which treatment remains suboptimal. Fibrogenic cytokines, including transforming growth factor-ß (TGF-ß), are central to its pathogenesis. Protein tyrosine phosphatase-α (PTPα) has emerged as a key regulator of fibrogenic signaling in fibroblasts. We have reported that mice globally deficient in PTPα (Ptpra-/-) were protected from experimental pulmonary fibrosis, in part via alterations in TGF-ß signaling. The goal of this study was to determine the lung cell types and mechanisms by which PTPα controls fibrogenic pathways and whether these pathways are relevant to human disease. Immunohistochemical analysis of lungs from patients with IPF revealed that PTPα was highly expressed by mesenchymal cells in fibroblastic foci and by airway and alveolar epithelial cells. To determine whether PTPα promotes profibrotic signaling pathways in lung fibroblasts and/or epithelial cells, we generated mice with conditional (floxed) Ptpra alleles (Ptpraf/f). These mice were crossed with Dermo1-Cre or with Sftpc-CreERT2 mice to delete Ptpra in mesenchymal cells and alveolar type II cells, respectively. Dermo1-Cre/Ptpraf/f mice were protected from bleomycin-induced pulmonary fibrosis, whereas Sftpc-CreERT2/Ptpraf/f mice developed pulmonary fibrosis equivalent to controls. Both canonical and noncanonical TGF-ß signaling and downstream TGF-ß-induced fibrogenic responses were attenuated in isolated Ptpra-/- compared with wild-type fibroblasts. Furthermore, TGF-ß-induced tyrosine phosphorylation of TGF-ß type II receptor and of PTPα were attenuated in Ptpra-/- compared with wild-type fibroblasts. The phenotype of cells genetically deficient in PTPα was recapitulated with the use of a Src inhibitor. These findings suggest that PTPα amplifies profibrotic TGF-ß-dependent pathway signaling in lung fibroblasts.


Assuntos
Fibroblastos/metabolismo , Pulmão/metabolismo , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Bleomicina/farmacologia , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fibroblastos/efeitos dos fármacos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Transdução de Sinais/efeitos dos fármacos
12.
J Biol Chem ; 295(15): 4923-4936, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32139509

RESUMO

Receptor-type protein tyrosine phosphatase α (RPTPα) is an important positive regulator of SRC kinase activation and a known promoter of cancer growth, fibrosis, and arthritis. The domain structure of RPTPs comprises an extracellular region, a transmembrane helix, and two tandem intracellular catalytic domains referred to as D1 and D2. The D2 domain of RPTPs is believed to mostly play a regulatory function; however, no regulatory model has been established for RPTPα-D2 or other RPTP-D2 domains. Here, we solved the 1.8 Å resolution crystal structure of the cytoplasmic region of RPTPα, encompassing D1 and D2, trapped in a conformation that revealed a possible mechanism through which D2 can allosterically inhibit D1 activity. Using a D2-truncation RPTPα variant and mutational analysis of the D1/D2 interfaces, we show that D2 inhibits RPTPα phosphatase activity and identified a 405PFTP408 motif in D1 that mediates the inhibitory effect of D2. Expression of the gain-of-function F406A/T407A RPTPα variant in HEK293T cells enhanced SRC activation, supporting the relevance of our proposed D2-mediated regulation mechanism in cell signaling. There is emerging interest in the development of allosteric inhibitors of RPTPs but a scarcity of validated allosteric sites for RPTPs. The results of our study not only shed light on the regulatory role of RPTP-D2 domains, but also provide a potentially useful tool for the discovery of chemical probes targeting RPTPα and other RPTPs.


Assuntos
Membrana Celular/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/química , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteínas Tirosina Fosfatases/química , Homologia de Sequência
13.
Hepatology ; 72(3): 997-1012, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31903610

RESUMO

BACKGROUND AND AIMS: Transforming growth factor beta (TGF-ß) suppresses early stages of tumorigenesis, but contributes to the migration and metastasis of cancer cells. However, the role of TGF-ß signaling in invasive prometastatic hepatocellular carcinoma (HCC) is poorly understood. In this study, we investigated the roles of canonical TGF-ß/mothers against decapentaplegic homolog 3 (SMAD3) signaling and identified downstream effectors on HCC migration and metastasis. APPROACH AND RESULTS: By using in vitro trans-well migration and invasion assays and in vivo metastasis models, we demonstrated that SMAD3 and protein tyrosine phosphatase receptor epsilon (PTPRε) promote migration, invasion, and metastasis of HCC cells in vitro and in vivo. Further mechanistic studies revealed that, following TGF-ß stimulation, SMAD3 binds directly to PTPRε promoters to activate its expression. PTPRε interacts with TGFBR1/SMAD3 and facilitates recruitment of SMAD3 to TGFBR1, resulting in a sustained SMAD3 activation status. The tyrosine phosphatase activity of PTPRε is important for binding with TGFBR1, recruitment and activation of SMAD3, and its prometastatic role in vitro. A positive correlation between pSMAD3/SMAD3 and PTPRε expression was determined in HCC samples, and high expression of SMAD3 or PTPRε was associated with poor prognosis of patients with HCC. CONCLUSIONS: PTPRε positive feedback regulates TGF-ß/SMAD3 signaling to promote HCC metastasis.


Assuntos
Carcinogênese/metabolismo , Carcinoma Hepatocelular , Neoplasias Hepáticas , Metástase Neoplásica , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Transdução de Sinais , Proteína Smad3/metabolismo
14.
Radiat Res ; 192(6): 621-629, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31560641

RESUMO

MicroRNAs (miRNAs) have been shown to play a pivotal role in the pathogenesis and maintenance of liver fibrosis by altering expression of their downstream target genes. However, their role in radiation-induced liver fibrosis has not been assessed in detail. Here, we investigated the role of miR-146a-5p and the target gene in regulation of fibrosis-related markers in the human hepatic stellate cell line LX2. LX2 cells were stimulated with 8 Gy of X rays and various concentrations of TGF-ß1 (0-5 ng/ml). Expression of α-SMA, collagen 1 and miR-146a-5p was evaluated. The MiR-146a-5p target gene predictions were performed using bioinformatics analysis and confirmed by dual-luciferase reporter experiment. The effect of miR-146a-5p and the involved target gene on the expression of these fibrogenic molecules was also assessed. Expression of α-SMA and collagen 1 were upregulated in response to radiation and/or TGF-ß1 treatment and miR-146a-5p levels were altered in LX2 cells. Restoration of miR-146a-5p expression suppressed expression of α-SMA and collagen 1 in irradiated and TGF-ß1-treated LX2 cells. Subsequent mechanism experiments revealed that miR-146a-5p overexpression inhibited PTPRA expression by binding to its 3'-untrans-lated region and reduced SRC activation. In addition, enhancement of PTPRA partially reversed the suppressive effect of miR-146a-5p on α-SMA and collagen 1 expression in LX2 cells. In conclusion, miR-146a-5p may negatively regulate the PTPRA-SRC signaling to inhibit expression of fibrosis-related markers in irradiated and TGF-ß1-stimulated LX2 cells.


Assuntos
Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , MicroRNAs/genética , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/farmacologia , Regiões 3' não Traduzidas , Actinas/metabolismo , Linhagem Celular , Proliferação de Células , Colágeno/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células Estreladas do Fígado/efeitos da radiação , Humanos , Cirrose Hepática/radioterapia , Raios X , Quinases da Família src/metabolismo
15.
J Pharmacol Exp Ther ; 369(2): 270-281, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30867226

RESUMO

Phosphorylation on tyrosine residues is recognized as an important mechanism for connecting extracellular stimuli to cellular events and defines a variety of physiologic responses downstream of G protein-coupled receptor (GPCR) activation. To date, few protein tyrosine phosphatases (PTPs) have been shown to associate with GPCRs, and little is known about their role in GPCR signaling. To discover potential cysteinyl-leukotriene receptor (CysLT1R)-interacting proteins, we identified protein tyrosine phosphatase ε (PTPε) in a yeast two-hybrid assay. Since both proteins are closely linked to asthma, we further investigated their association. Using a human embryonic kidney cell line 293 (HEK-293) cell line stably transfected with the receptor (HEK-LT1), as well as human primary monocytes, we found that PTPε colocalized with CysLT1R in both resting and leukotriene D4 (LTD4)-stimulated cells. Cotransfection of HEK-LT1 with PTPε had no effect on CysLT1R expression or LTD4-induced internalization, but it inhibited LTD4-induced CXC chemokine 8 (CXCL8) promoter transactivation, protein expression, and secretion. Moreover, reduced phosphorylation of extracellular signal regulated kinase 1/2 (ERK1/2), but not of p38 or c-Jun-N-terminal kinase 1 or 2 mitogen-activated protein kinases (MAPKs), was observed upon LTD4 stimulation of HEK-LT1 coexpressing cytosolic (cyt-) PTPε, but not receptor (R) PTPε The increased interaction of cyt-PTPε and ERK1/2 after LTD4 stimulation was shown by coimmunoprecipitation. In addition, enhanced ERK1/2 phosphorylation and CXCL8 secretion were found in LTD4-stimulated human monocytes transfected with PTPε-specific siRNAs, adding support to a regulatory/inhibitory role of PTPε in CysLT1R signaling. Given that the prevalence of severe asthma is increasing, the identification of PTPε as a new potential therapeutic target may be of interest.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-8/metabolismo , Leucotrieno D4/farmacologia , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Isoenzimas/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Transporte Proteico/efeitos dos fármacos , Receptores de Leucotrienos/metabolismo
16.
J Cell Sci ; 131(15)2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29991512

RESUMO

Extrinsic signals that regulate oligodendrocyte maturation and subsequent myelination are essential for central nervous system development and regeneration. Deficiency in the extracellular factor laminin-2 (Lm2, comprising the α2ß1γ1 chains), as occurs in congenital muscular dystrophy, can lead to impaired oligodendroglial development and aberrant myelination, but many aspects of Lm2-regulated oligodendroglial signaling and differentiation remain undefined. We show that receptor-like protein tyrosine phosphatase α (PTPα, also known as PTPRA) is essential for myelin basic protein expression and cell spreading during Lm2-induced oligodendrocyte differentiation. PTPα complexes with the Lm2 receptors α6ß1 integrin and dystroglycan to transduce Fyn activation upon Lm2 engagement. In this way, PTPα mediates a subset of Lm2-induced signals required for differentiation, includeing mTOR-dependent Akt activation but not Erk1/2 activation. We identify N-myc downstream regulated gene-1 (NDRG1) as a PTPα-regulated molecule during oligodendrocyte differentiation, and distinguish Lm2 receptor-specific modes of Fyn-Akt-dependent and -independent NDRG1 phosphorylation. Altogether, this reveals an Lm2-regulated PTPα-Fyn-Akt signaling axis that is critical for key aspects of the gene expression and morphological changes that mark oligodendrocyte maturation.


Assuntos
Laminina/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Feminino , Immunoblotting , Imuno-Histoquímica , Imunoprecipitação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
17.
Mol Cell ; 65(2): 347-360, 2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28065597

RESUMO

Receptor tyrosine kinases (RTKs) and protein phosphatases comprise protein families that play crucial roles in cell signaling. We used two protein-protein interaction (PPI) approaches, the membrane yeast two-hybrid (MYTH) and the mammalian membrane two-hybrid (MaMTH), to map the PPIs between human RTKs and phosphatases. The resulting RTK-phosphatase interactome reveals a considerable number of previously unidentified interactions and suggests specific roles for different phosphatase families. Additionally, the differential PPIs of some protein tyrosine phosphatases (PTPs) and their mutants suggest diverse mechanisms of these PTPs in the regulation of RTK signaling. We further found that PTPRH and PTPRB directly dephosphorylate EGFR and repress its downstream signaling. By contrast, PTPRA plays a dual role in EGFR signaling: besides facilitating EGFR dephosphorylation, it enhances downstream ERK signaling by activating SRC. This comprehensive RTK-phosphatase interactome study provides a broad and deep view of RTK signaling.


Assuntos
Receptores ErbB/metabolismo , Mapas de Interação de Proteínas , Transdução de Sinais , Quinases da Família src/metabolismo , Animais , Ativação Enzimática , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/agonistas , Receptores ErbB/genética , Células HEK293 , Humanos , Camundongos , Mutação , Fosforilação , Mapeamento de Interação de Proteínas , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Transfecção , Técnicas do Sistema de Duplo-Híbrido , Quinases da Família src/genética
18.
Biochem Biophys Res Commun ; 482(4): 1455-1461, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27965091

RESUMO

Receptor-like protein tyrosine phosphatase alpha (RPTPα or PTPα), a type I transmembrane glycoprotein with complex N-glycans, executes multifunction roles on cell behaviors. However, its effect on tumorigenesis and metastasis remains controversial. In this study, PTPα is identified as a novel substrate of N-Acetylglucosaminyltransferase V (GnT-V). Immunofluorescence results showed that addition of ß1,6 GlcNAc branches on PTPα enhanced PTPα's cytomembrane assemble in GnT-V-MCF-7 compared with Mock-MCF-7 (MCF7 cells transfected with the vector pcDNA3). Then we found the alleviating degradation of PTPα was observed in GnT-V-MCF-7 while PTPα in Mock-MCF-7 was prone to quick degradation. Increased cell-surface retention subsequently enhanced PTPα's catalytic activity on the dephosphorylation of Src kinase at Tyr529 and promoted focal adhesion formation and mature. Therefore, our findings could provide an insight into the molecular mechanism of how GnT-V promoted cell migration, suggesting that PTPα could be one of factors regulating promote migration of breast cancer cell.


Assuntos
Adesões Focais/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Neoplasias da Mama/metabolismo , Carcinogênese , Catálise , Linhagem Celular Tumoral , Movimento Celular , Feminino , Glicosilação , Humanos , Integrina beta1/metabolismo , Lectinas/química , Células MCF-7 , Metástase Neoplásica , Fosforilação , Plasmídeos/metabolismo , Polissacarídeos/química , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Quinases da Família src/metabolismo
19.
Oncotarget ; 8(11): 17700-17711, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-27458171

RESUMO

Persistent STAT3 activation is seen in many tumor cells and promotes malignant transformation. Here, we investigated whether capsazepine (Capz), a synthetic analogue of capsaicin, exerts anticancer effects by inhibiting STAT3 activation in prostate cancer cells. Capz inhibited both constitutive and induced STAT3 activation in human prostate carcinoma cells. Capz also inhibited activation of the upstream kinases JAK1/2 and c-Src. The phosphatase inhibitor pervanadate reversed Capz-induced STAT3 inhibition, indicating that the effect of Capz depends on a protein tyrosine phosphatase. Capz treatment increased PTPε protein and mRNA levels. Moreover, siRNA-mediated knockdown of PTPε reversed the Capz-induced induction of PTPε and inhibition of STAT3 activation, indicating that PTPε is crucial for Capz-dependent STAT3 dephosphorylation. Capz also decreased levels of the protein products of various oncogenes, which in turn inhibited proliferation and invasion and induced apoptosis. Finally, intraperitoneal Capz administration decreased tumor growth in a xenograft mouse prostate cancer model and reduced p-STAT3 and Ki-67 expression. These data suggest that Capz is a novel pharmacological inhibitor of STAT3 activation with several anticancer effects in prostate cancer cells.


Assuntos
Antineoplásicos/farmacologia , Capsaicina/análogos & derivados , Janus Quinase 1/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Fator de Transcrição STAT3/antagonistas & inibidores , Células A549 , Animais , Apoptose/efeitos dos fármacos , Capsaicina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Janus Quinase 1/metabolismo , Antígeno Ki-67/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/patologia , Fosforilação , Neoplasias da Próstata/patologia , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Fator de Transcrição STAT3/metabolismo , Vanadatos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Dis Model Mech ; 9(12): 1473-1481, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27935824

RESUMO

Helicobacter pylori, a major cause of gastroduodenal diseases, produces vacuolating cytotoxin (VacA) and cytotoxin-associated gene A (CagA), which seem to be involved in virulence. VacA exhibits pleiotropic actions in gastroduodenal disorders via its specific receptors. Recently, we found that VacA induced the phosphorylation of cellular Src kinase (Src) at Tyr418 in AZ-521 cells. Silencing of receptor protein tyrosine phosphatase (RPTP)α, a VacA receptor, reduced VacA-induced Src phosphorylation. Src is responsible for tyrosine phosphorylation of CagA at its Glu-Pro-Ile-Tyr-Ala (EPIYA) variant C (EPIYA-C) motif in Helicobacter pylori-infected gastric epithelial cells, resulting in binding of CagA to SHP-2 phosphatase. Challenging AZ-521 cells with wild-type H. pylori induced phosphorylation of CagA, but this did not occur when challenged with a vacA gene-disrupted mutant strain. CagA phosphorylation was observed in cells infected with a vacA gene-disrupted mutant strain after addition of purified VacA, suggesting that VacA is required for H. pylori-induced CagA phosphorylation. Following siRNA-mediated RPTPα knockdown in AZ-521 cells, infection with wild-type H. pylori and treatment with VacA did not induce CagA phosphorylation. Taken together, these results support our conclusion that VacA mediates CagA phosphorylation through RPTPα in AZ-521 cells. These data indicate the possibility that Src phosphorylation induced by VacA is mediated through RPTPα, resulting in activation of Src, leading to CagA phosphorylation at Tyr972 in AZ-521 cells.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Neoplasias Duodenais/metabolismo , Neoplasias Duodenais/microbiologia , Helicobacter pylori/metabolismo , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Linhagem Celular Tumoral , Neoplasias Duodenais/patologia , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Humanos , Imunoprecipitação , Modelos Biológicos , Fosforilação , Fosfotirosina/metabolismo , RNA Interferente Pequeno/metabolismo , Transfecção , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA