Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000048

RESUMO

Bisphenols are dangerous endocrine disruptors that pollute the environment. Due to their chemical properties, they are globally used to produce plastics. Structural similarities to oestrogen allow bisphenols to bind to oestrogen receptors and affect internal body systems. Most commonly used in the plastic industry is bisphenol A (BPA), which also has negative effects on the nervous, immune, endocrine, and cardiovascular systems. A popular analogue of BPA-bisphenol S (BPS) also seems to have harmful effects similar to BPA on living organisms. Therefore, with the use of double immunofluorescence labelling, this study aimed to compare the effect of BPA and BPS on the enteric nervous system (ENS) in mouse jejunum. The study showed that both studied toxins impact the number of nerve cells immunoreactive to substance P (SP), galanin (GAL), vasoactive intestinal polypeptide (VIP), the neuronal isoform of nitric oxide synthase (nNOS), and vesicular acetylcholine transporter (VAChT). The observed changes were similar in the case of both tested bisphenols. However, the influence of BPA showed stronger changes in neurochemical coding. The results also showed that long-term exposure to BPS significantly affects the ENS.


Assuntos
Compostos Benzidrílicos , Sistema Nervoso Entérico , Jejuno , Fenóis , Sulfonas , Animais , Fenóis/toxicidade , Compostos Benzidrílicos/toxicidade , Camundongos , Jejuno/efeitos dos fármacos , Jejuno/metabolismo , Sistema Nervoso Entérico/efeitos dos fármacos , Sistema Nervoso Entérico/metabolismo , Sulfonas/farmacologia , Sulfonas/toxicidade , Substância P/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Masculino , Galanina/metabolismo , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/farmacologia , Óxido Nítrico Sintase Tipo I/metabolismo
2.
Nutrients ; 16(14)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39064711

RESUMO

Plastics are present in almost every aspect of our lives. Polyethylene terephthalate (PET) is commonly used in the food industry. Microparticles can contaminate food and drinks, posing a threat to consumers. The presented study aims to determine the effect of microparticles of PET on the population of neurons positive for selected neurotransmitters in the enteric nervous system of the jejunum and histological structure. An amount of 15 pigs were divided into three groups (control, receiving 0.1 g, and 1 g/day/animal orally). After 28 days, fragments of the jejunum were collected for immunofluorescence and histological examination. The obtained results show that histological changes (injury of the apical parts of the villi, accumulations of cellular debris and mucus, eosinophil infiltration, and hyperaemia) were more pronounced in pigs receiving a higher dose of microparticles. The effect on neuronal nitric oxide synthase-, and substance P-positive neurons, depends on the examined plexus and the dose of microparticles. An increase in the percentage of galanin-positive neurons and a decrease in cocaine and amphetamine-regulated transcript-, vesicular acetylcholine transporter-, and vasoactive intestinal peptide-positive neurons do not show such relationships. The present study shows that microparticles can potentially have neurotoxic and pro-inflammatory effects, but there is a need for further research to determine the mechanism of this process and possible further effects.


Assuntos
Jejuno , Microplásticos , Neurônios , Animais , Jejuno/efeitos dos fármacos , Jejuno/metabolismo , Suínos , Microplásticos/toxicidade , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Sistema Nervoso Entérico/efeitos dos fármacos , Sistema Nervoso Entérico/metabolismo , Substância P/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Polietilenotereftalatos , Óxido Nítrico Sintase Tipo I/metabolismo , Galanina/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Administração Oral , Neurotransmissores/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Masculino , Proteínas do Tecido Nervoso
3.
Neurosci Lett ; 807: 137281, 2023 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-37120008

RESUMO

The cholinergic transmission in the medial septum and ventral limb of the diagonal band of broca (MS/VDB)-hippocampal circuit and its associated theta oscillations play a crucial role in chronic cerebral hypoperfusion (CCH)-related cognitive impairment. However, the contribution and mechanism of the vesicular acetylcholine transporter (VAChT), a vital protein that regulates acetylcholine (ACh) release, in CCH-related cognitive impairment are not well understood. To investigate this, we established a rat model of CCH by performing 2-vessel occlusion (2-VO) and overexpressed VAChT in the MS/VDB via stereotaxic injection of adeno-associated virus (AAV). We evaluated the cognitive function of the rats using the Morris Water Maze (MWM) and Novel Object Recognition Test (NOR). We employed enzyme-linked immunosorbent assay (ELISA), Western blot (WB), and immunohistochemistry (IHC) to assess hippocampal cholinergic levels. We also conducted in vivo local field potentials (LFPs) recording experiments to evaluate changes in hippocampal theta oscillations and synchrony. Our findings showed that VAChT overexpression shortened the escape latency in the hidden platform test, increased swimming time in the platform quadrant in probe trains, and increased the recognition index (RI) in NOR. Moreover, VAChT overexpression increased hippocampal cholinergic levels, improved theta oscillations, and improved the synchrony of theta oscillations between CA1 and CA3 in CCH rats. These results suggest that VAChT plays a protective role in CCH-induced cognitive deficits by regulating cholinergic transmission in the MS/VDB-hippocampal circuit and promoting hippocampal theta oscillations. Therefore, VAChT could be a promising therapeutic target for treating CCH-related cognitive impairments.


Assuntos
Prosencéfalo Basal , Isquemia Encefálica , Disfunção Cognitiva , Ratos , Animais , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Prosencéfalo Basal/metabolismo , Hipocampo/metabolismo , Isquemia Encefálica/metabolismo , Disfunção Cognitiva/metabolismo , Colinérgicos
4.
J Agric Food Chem ; 70(34): 10490-10505, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35973126

RESUMO

Neurodegenerative diseases (NDs) such as Alzheimer's disease, Parkinson's disease, and Huntington's disease are incurable diseases with progressive loss of neural function and require urgent development of effective treatments. Carnosol (CL) reportedly has a pharmacological effect in the prevention of dementia. Nevertheless, the mechanisms of CL's neuroprotection are not entirely clear. The present study aimed to investigate the effects and mechanisms of CL-mediated neuroprotection through Caenorhabditis elegans models. First, CL restored ND protein homeostasis via inhibiting the IIS pathway, regulating MAPK signaling, and simultaneously activating molecular chaperone, thus inhibiting amyloid peptide (Aß), polyglutamine (polyQ), and α-synuclein (α-syn) deposition and reducing protein disruption-mediated behavioral and cognitive impairments as well as neuronal damages. Furthermore, CL could repair mitochondrial structural damage via improving the mitochondrial membrane protein function and mitochondrial structural homeostasis and improve mitochondrial functional defects via increasing adenosine triphosphate contents, mitochondrial membrane potential, and reactive oxygen species levels, suggesting that CL could improve the ubiquitous mitochondrial defects in NDs. More importantly, we found that CL activated mitochondrial kinetic homeostasis related genes to improve the mitochondrial homeostasis and dysfunction in NDs. Meanwhile, CL up-regulated unc-17, cho-1, and cha-1 genes to alleviate Aß-mediated cholinergic neurological disorders and activated Notch signaling and the Wnt pathway to diminish polyQ- and α-syn-induced ASH neurons as well as dopaminergic neuron damages. Overall, our study clarified the beneficial anti-ND neuroprotective effects of CL in different aspects and provided new insights into developing CL into products with preventive and therapeutic effects on NDs.


Assuntos
Proteínas de Caenorhabditis elegans , Disfunção Cognitiva , Doenças Mitocondriais , Doenças Neurodegenerativas , Abietanos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Agregados Proteicos , Proteostase , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
5.
PLoS One ; 17(8): e0271131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35939438

RESUMO

Estrogens are thought to contribute to cognitive function in part by promoting the function of basal forebrain cholinergic neurons that project to the hippocampus and cortical regions including the entorhinal cortex. Reductions in estrogens may alter cognition by reducing the function of cholinergic inputs to both the hippocampus and entorhinal cortex. In the present study, we assessed the effects of ovariectomy on proteins associated with cholinergic synapses in the entorhinal cortex. Ovariectomy was conducted at PD63, and tissue was obtained on PD84 to 89 to quantify changes in the degradative enzyme acetylcholinesterase, the vesicular acetylcholine transporter, and muscarinic M1 receptor protein. Although the vesicular acetylcholine transporter was unaffected, ovariectomy reduced both acetylcholinesterase and M1 receptor protein, and these reductions were prevented by chronic replacement of 17ß-estradiol following ovariectomy. We also assessed the effects of ovariectomy on the cholinergic modulation of excitatory transmission, by comparing the effects of the acetylcholinesterase inhibitor eserine on evoked excitatory synaptic field potentials in brain slices obtained from intact rats, and from ovariectomized rats with or without 17ß-estradiol replacement. Eserine is known to prolong the effects of endogenously released acetylcholine, resulting in an M1-like mediated reduction of glutamate release at excitatory synapses. The reduction in excitatory synaptic potentials in layer II of the entorhinal cortex induced by 15-min application of 10 µM eserine was greatly reduced in slices from ovariectomized rats as compared to intact rats and ovariectomized rats with replacement of 17ß-estradiol. The reduced modulatory effect of eserine is consistent with the observed changes in cholinergic proteins, and suggests that reductions in 17ß-estradiol following ovariectomy lead to impaired cholinergic function within the entorhinal cortex.


Assuntos
Acetilcolinesterase , Córtex Entorrinal , Animais , Colinérgicos/farmacologia , Córtex Entorrinal/fisiologia , Estradiol/farmacologia , Estrogênios/farmacologia , Potenciais Pós-Sinápticos Excitadores , Feminino , Humanos , Ovariectomia , Fisostigmina/farmacologia , Ratos , Receptor Muscarínico M1 , Transmissão Sináptica/fisiologia , Proteínas Vesiculares de Transporte de Acetilcolina
6.
Tissue Cell ; 78: 101872, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35930993

RESUMO

OBJECTIVES: To observe the changes in the bladder of fetal rats with myelomeningocele (MMC) induced by all-trans retinoic acid (atRA) during the embryonic development stages. METHODS: The fetal rat model of MMC was induced by intragastric administration of atRA to pregnant rats on embryonic day 10 (E10). Fetal rats were harvested at E16, E18, E20, and E21 for observation and further testing. Those with MMC were classified as the MMC group, while those without MMC as the RA group. The areas of MMC skin defect, the crown-rump length (CRL), and body weight in different groups were compared. The histopathological changes in the bladder were compared. The expression levels of alpha-smooth muscle actin (αSMA), smooth muscle myosin heavy chain (SMMHC), connexin 43 (Cx43), desmin, ß3 tubulin, and vesicular acetylcholine transporter (VAChT) in the bladder were investigated by immunohistochemical staining and Western blotting. Pregnant rats given intragastric administration with olive oil (OIL group) at E10 were set as the blank control group. RESULTS: A total of 415 fetal rats of different gestational ages were harvested with an MMC incidence of 56.05 % (139/248). The incidence rate increased with embryonic days (p < 0.001). Compared with the other two control groups, the CRL and bodyweight of MMC fetal rats were significantly delayed at E21 (p < 0.001). The expression levels of αSMA, SMMHC, Cx43, desmin, ß3 tubulin and VAChT in the bladder of MMC fetal rats were significantly decreased at E21 (p < 0.05). CONCLUSIONS: In atRA-induced MMC fetal rats, there is neural, muscular, and stromal dysplasia in the bladder at an early gestational age. Further investigations on neurogenic bladder secondary to MMC are applicable using this animal model.


Assuntos
Meningomielocele , Actinas/metabolismo , Animais , Conexina 43/metabolismo , Desmina/metabolismo , Feminino , Meningomielocele/induzido quimicamente , Meningomielocele/metabolismo , Azeite de Oliva , Gravidez , Ratos , Miosinas de Músculo Liso/metabolismo , Tretinoína , Tubulina (Proteína) , Bexiga Urinária , Proteínas Vesiculares de Transporte de Acetilcolina
7.
Life Sci ; 301: 120599, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35513085

RESUMO

Lung inflammation is modulated by cholinergic signaling and exercise training protects mice against pulmonary emphysema development; however, whether exercise training engages cholinergic signaling is unknown. AIMS: As cholinergic signaling is directly linked to the vesicular acetylcholine transporter (VAChT) levels, we evaluated whether the effects of aerobic exercise training depend on the VAChT levels in mice with pulmonary emphysema. MAIN METHODS: Wild-type (WT) and mutant (KDHOM) mice (65-70% of reduction in VAChT levels) were exposed to cigarette smoke (30 min, 2×/day, 5×/week, 12 weeks) and submitted or not to aerobic exercise training on a treadmill (60 min/day, 5×/week, 12 weeks). Lung function and inflammation were evaluated. KEY FINDINGS: Cigarette smoke reduced body mass in mice (p < 0.001) and increased alveolar diameter (p < 0.001), inflammation (p < 0.001) and collagen deposition (p < 0.01) in lung tissue. Both trained groups improved their performance in the final physical test compared to the initial test (p < 0.001). In WT mice, exercise training protected against emphysema development (p < 0.05), reduced mononuclear cells infiltrate (p < 0.001) and increased MAC-2 positive cells in lung parenchyma (p < 0.05); however, these effects were not observed in KDHOM mice. The exercise training reduced iNOS-positive cells (p < 0.001) and collagen fibers deposition (p < 0.05) in lung parenchyma of WT and KDHOM mice, although KDHOM mice showed higher levels of iNOS-positive cells. SIGNIFICANCE: Our data suggest that the protective effects of aerobic exercise training on pulmonary emphysema are, at least in part, dependent on the integrity of the lung cholinergic signaling.


Assuntos
Fumar Cigarros , Enfisema , Enfisema Pulmonar , Animais , Colinérgicos , Inflamação , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/prevenção & controle , Proteínas Vesiculares de Transporte de Acetilcolina
8.
Int J Mol Sci ; 23(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628371

RESUMO

Menopause is associated with memory deficits attributed to reduced serum estrogen levels. We evaluated whether an increase in brain-derived neurotrophic factor (BDNF) and nerve-growth factor (NGF) levels, through transplantation of choline acetyltransferase (ChAT)-overexpressing neural stem cells (F3.ChAT), improved learning and memory in ovariectomized rats. PD13 mouse neuronal primary culture cells were treated with estradiol or co-cultured with F3.ChAT cells; choline transporter1 (CHT1), ChAT, and vesicular acetylcholine transporter (VAChT) expression was evaluated using real-time PCR. The relationship between estrogen receptors (ERs) and neurotrophin family members was analyzed using immunohistochemistry. After the transplantation of F3.ChAT cells into OVx rats, we evaluated the memory, ACh level, and the expression of ER, neurotrophin family proteins, and cholinergic system. Estradiol upregulated CHT1, ChAT, and VAChT expression in ER; they were co-localized with BDNF, NGF, and TrkB. Co-culture with F3.ChAT upregulated CHT1, ChAT, and VAChT by activating the neurotrophin signalling pathway. Transplantation of F3.ChAT cells in OVX animals increased the ACh level in the CSF and improved memory deficit. In addition, it increased the expression of ERs, neurotrophin signaling, and the cholinergic system in the brains of OVX animals. Therefore, the estradiol deficiency induced memory loss by the down-regulation of the neurotrophin family and F3.ChAT could ameliorate the cognitive impairment owing to the loss or reduction of estradiol.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Colina O-Acetiltransferase , Cognição , Células-Tronco Neurais , Acetilcolina/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Colina/metabolismo , Colina O-Acetiltransferase/biossíntese , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Colinérgicos/metabolismo , Cognição/fisiologia , Estradiol/metabolismo , Humanos , Transtornos da Memória/metabolismo , Camundongos , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Ratos , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
9.
Food Funct ; 13(8): 4624-4640, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35357374

RESUMO

Amyloid-ß peptide (Aß)-induced cholinergic system and mitochondrial dysfunction are major risk factors for Alzheimer's disease (AD). Our previous studies found that carnosic acid (CA), an important polyphenol antioxidant, could significantly delay Aß1-42-mediated acute paralysis. However, many details and underlying mechanisms of CA's neuroprotection against Aß-induced cholinergic system defects and mitochondrial dysfunction remain unclear. Herein, we deeply investigated the effects and the possible mechanisms of CA-mediated protection against Aß toxicity in vivo through several AD Caenorhabditis elegans strains. The results showed CA delayed age-related paralysis and Aß deposition, and significantly protected neurons from Aß-induced toxicity. CA might downgrade the expression of ace-1 and ace-2 genes, and upregulate cha-1 and unc-17 genes to inhibit acetylcholinesterase activity and relieve Aß-caused cholinergic system defects. Furthermore, CA might also ameliorate Aß-induced mitochondrial imbalance and oxidative stress through up-regulating the expression of phb-1, phb-2, eat-3, and drp-1 genes. The enhancements of the cholinergic system and mitochondrial function might be the reasons for the amelioration of Aß-mediated toxicity and Aß aggregation mediated by CA. These findings have helped us to understand the CA anti-Aß activity in C. elegans and the potential mechanism of action.


Assuntos
Doença de Alzheimer , Proteínas de Caenorhabditis elegans , Abietanos , Acetilcolinesterase/metabolismo , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Colinérgicos/farmacologia , Modelos Animais de Doenças , Mitocôndrias/metabolismo , Paralisia/induzido quimicamente , Fragmentos de Peptídeos/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina
10.
Cells ; 10(12)2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34943989

RESUMO

BACKGROUND: Presynaptic forms of congenital myasthenic syndromes (CMS) due to pathogenic variants in SLC18A3 impairing the synthesis and recycling of acetylcholine (ACh) have recently been described. SLC18A3 encodes the vesicular ACh transporter (VAChT), modulating the active transport of ACh at the neuromuscular junction, and homozygous loss of VAChT leads to lethality. METHODS: Exome sequencing (ES) was carried out to identify the molecular genetic cause of the disease in a 5-year-old male patient and histological, immunofluorescence as well as electron- and CARS-microscopic studies were performed to delineate the muscle pathology, which has so far only been studied in VAChT-deficient animal models. RESULTS: ES unraveled compound heterozygous missense and nonsense variants (c.315G>A, p.Trp105* and c.1192G>C, p.Asp398His) in SLC18A3. Comparison with already-published cases suggests a more severe phenotype including impaired motor and cognitive development, possibly related to a more severe effect of the nonsense variant. Therapy with pyridostigmine was only partially effective while 3,4 diaminopyridine showed no effect. Microscopic investigation of the muscle biopsy revealed reduced fibre size and a significant accumulation of lipid droplets. CONCLUSIONS: We suggest that nonsense variants have a more detrimental impact on the clinical manifestation of SLC18A3-associated CMS. The impact of pathogenic SLC18A3 variants on muscle fibre integrity beyond the effect of denervation is suggested by the build-up of lipid aggregates. This in turn implicates the importance of proper VAChT-mediated synthesis and recycling of ACh for lipid homeostasis in muscle cells. This hypothesis is further supported by the pathological observations obtained in previously published VAChT-animal models.


Assuntos
Síndromes Miastênicas Congênitas/genética , Junção Neuromuscular/genética , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Acetilcolina/biossíntese , Acetilcolina/genética , Animais , Pré-Escolar , Códon sem Sentido/genética , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Mutação de Sentido Incorreto/genética , Síndromes Miastênicas Congênitas/patologia , Junção Neuromuscular/patologia , Sequenciamento do Exoma
11.
Brain Res Bull ; 176: 1-7, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34358612

RESUMO

Nicotine is a strong psychoactive and addictive compound found in tobacco. Use of nicotine in the form of smoking, vaping or other less common methods during pregnancy has been shown to be related to poor health conditions, including cognitive problems, in babies and children. However, mechanisms of such cognitive deficits are not fully understood. In this study we analyzed hippocampus dependent cognitive deficits using a mouse model of developmental nicotine exposure. Pregnant dams were exposed to nicotine and experiments were performed in one month old offspring. Our results show that nicotine exposure did not affect locomotor behavior in mice. Hippocampus dependent working memory and object location memory were diminished in nicotine exposed mice. Furthermore, acetylcholine levels in the hippocampus of nicotine exposed mice were reduced along with reduced activity of acetylcholinesterase enzyme. Analysis of transcripts for proteins that are known to regulate acetylcholine levels revealed a decline in mRNA levels of high affinity choline transporters in the hippocampus of nicotine exposed mice but those of vesicular acetylcholine transporter, choline acetyltransferase, and α7-nicotinic acetylcholine receptors were not altered. These results suggest that developmental nicotine exposure impairs hippocampus dependent memory forms and this effect is likely mediated by altered cholinergic function.


Assuntos
Acetilcolina/metabolismo , Hipocampo/efeitos dos fármacos , Memória/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Acetilcolinesterase/metabolismo , Animais , Cognição/efeitos dos fármacos , Feminino , Hipocampo/metabolismo , Camundongos , Gravidez , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
12.
Sci Rep ; 11(1): 15918, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354132

RESUMO

Acetylcholine (ACh), the neurotransmitter of the cholinergic system, regulates inflammation in several diseases including pulmonary diseases. ACh is also involved in a non-neuronal mechanism that modulates the innate immune response. Because inflammation and release of pro-inflammatory cytokines are involved in pulmonary emphysema, we hypothesized that vesicular acetylcholine transport protein (VAChT) deficiency, which leads to reduction in ACh release, can modulate lung inflammation in an experimental model of emphysema. Mice with genetical reduced expression of VAChT (VAChT KDHOM 70%) and wild-type mice (WT) received nasal instillation of 50 uL of porcine pancreatic elastase (PPE) or saline on day 0. Twenty-eight days after, animals were evaluated. Elastase instilled VAChT KDHOM mice presented an increase in macrophages, lymphocytes, and neutrophils in bronchoalveolar lavage fluid and MAC2-positive macrophages in lung tissue and peribronchovascular area that was comparable to that observed in WT mice. Conversely, elastase instilled VAChT KDHOM mice showed significantly larger number of NF-κB-positive cells and isoprostane staining in the peribronchovascular area when compared to elastase-instilled WT-mice. Moreover, elastase-instilled VAChT-deficient mice showed increased MCP-1 levels in the lungs. Other cytokines, extracellular matrix remodeling, alveolar enlargement, and lung function were not worse in elastase-instilled VAChT deficiency than in elastase-instilled WT-controls. These data suggest that decreased VAChT expression may contribute to the pathogenesis of emphysema, at least in part, through NF-κB activation, MCP-1, and oxidative stress pathways. This study highlights novel pathways involved in lung inflammation that may contribute to the development of chronic obstrutive lung disease (COPD) in cholinergic deficient individuals such as Alzheimer's disease patients.


Assuntos
Acetilcolina/deficiência , Enfisema/imunologia , Pneumonia/etiologia , Acetilcolina/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/metabolismo , Modelos Animais de Doenças , Enfisema/metabolismo , Inflamação/patologia , Pulmão/patologia , Macrófagos/metabolismo , Masculino , Camundongos , NF-kappa B/metabolismo , Neutrófilos/metabolismo , Elastase Pancreática/efeitos adversos , Elastase Pancreática/farmacologia , Pneumonia/fisiopatologia , Enfisema Pulmonar/metabolismo , Transdução de Sinais , Proteínas Vesiculares de Transporte de Acetilcolina/deficiência , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
13.
PLoS One ; 16(1): e0245974, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33497400

RESUMO

Autonomic neurons innervating uterine horn is probably the only nerve cell population capable of periodical physiological degeneration and regeneration. One of the main sources of innervation of the uterus is paracervical ganglion (PCG). PCG is a unique structure of the autonomic nervous system. It contains components of both the sympathetic and parasympathetic nervous system. The present study examines the response of neurons of PCG innervating uterine horn to axotomy caused by partial hysterectomy in the domestic pig animal model. The study was performed using a neuronal retrograde tracing and double immunofluorescent staining for tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DßH), choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), neuronal nictric oxide synthase (nNOS), galanin, neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), somatostatin and substance P (SP). Our study showed that virtually all neurons of the porcine PCG innervating uterine horn are adrenergic and we did not confirm that PCG is the source of cholinergic fibers innervating uterine horn of the pig. After axotomy there was a decrease in expression of catecholamine-synthesizing enzymes (TH, DßH) and a strong increase in the galanin expression. The increase of the number of NPY-IR neurons in the ganglia after axotomy was observed. There were no changes in the expression of other studied substances in the PCG neurons innervating the uterine horn, what was often found in rodents studies. This indicates that neurons can respond to damage in a species-specific way.


Assuntos
Gânglios Espinais/metabolismo , Histerectomia/métodos , Neurônios/metabolismo , Útero/inervação , Animais , Colina O-Acetiltransferase/metabolismo , Dopamina beta-Hidroxilase/metabolismo , Feminino , Óxido Nítrico Sintase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Somatostatina/metabolismo , Substância P/metabolismo , Suínos , Tirosina 3-Mono-Oxigenase/metabolismo , Útero/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
14.
Am J Physiol Cell Physiol ; 320(4): C602-C612, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33296286

RESUMO

Cholinesterase inhibitors are used in postmenopausal women for the treatment of neurodegenerative diseases. Despite their widespread use in the clinical practice, little is known about the impact of augmented cholinergic signaling on cardiac function under reduced estrogen conditions. To address this gap, we subjected a genetically engineered murine model of systemic vesicular acetylcholine transporter overexpression (Chat-ChR2) to ovariectomy and evaluated cardiac parameters. Left-ventricular function was similar between Chat-ChR2 and wild-type (WT) mice. Following ovariectomy, WT mice showed signs of cardiac hypertrophy. Conversely, ovariectomized (OVX) Chat-ChR2 mice evolved to cardiac dilation and failure. Transcript levels for cardiac stress markers atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) were similarly upregulated in WT/OVX and Chat-ChR2/OVX mice. 17ß-Estradiol (E2) treatment normalized cardiac parameters in Chat-ChR2/OVX to the Chat-ChR2/SHAM levels, providing a link between E2 status and the aggravated cardiac response in this model. To investigate the cellular basis underlying the cardiac alterations, ventricular myocytes were isolated and their cellular area and contractility were assessed. Myocytes from WT/OVX mice were wider than WT/SHAM, an indicative of concentric hypertrophy, but their fractional shortening was similar. Conversely, Chat-ChR2/OVX myocytes were elongated and presented contractile dysfunction. E2 treatment again prevented the structural and functional changes in Chat-ChR2/OVX myocytes. We conclude that hypercholinergic mice under reduced estrogen conditions do not develop concentric hypertrophy, a critical compensatory adaptation, evolving toward cardiac dilation and failure. This study emphasizes the importance of understanding the consequences of cholinesterase inhibition, used clinically to treat dementia, for cardiac function in postmenopausal women.


Assuntos
Acetilcolina/metabolismo , Fibras Colinérgicas/metabolismo , Estrogênios/deficiência , Coração/inervação , Hipertrofia Ventricular Esquerda/metabolismo , Miócitos Cardíacos/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Animais , Estradiol/farmacologia , Terapia de Reposição de Estrogênios , Feminino , Frequência Cardíaca , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ovariectomia , Transdução de Sinais , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Proteínas Vesiculares de Transporte de Acetilcolina/genética
15.
Histol Histopathol ; 35(11): 1363-1377, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33269806

RESUMO

The present study investigated the development of the paracervical ganglion in 5-, 7- and 10-week-old porcine foetuses using double labelling immunofluorescence method. In 5-week-old foetuses single PGP-positive perikarya were visible only along the mesonephric ducts. They contained DßH or VAChT, and nerve fibres usually were PGP/VAChT-positive. The perikarya were mainly oval. In 7-week-old foetuses, a compact group of PGP-positive neurons (3144±213) was visible on both sides and externally to the uterovaginal canal mesenchyme of paramesonephric ducts. Nerve cell bodies contained only DßH (36.40±1.63%) or VAChT (17.31±1.13%). In the 10-week-old foetuses, the compact group of PGP-positive neurons divided into several large and many small clusters of nerve cells and also became more expanded along the whole uterovaginal canal mesenchyme reaching the initial part of the uterine canal of the paramesonephric duct. The number of neurons located in these neuronal structures increased to 4121±259. Immunohistochemistry revealed that PGP-positive nerve cell bodies contained DßH (40.26±0,73%) and VAChT (30.73±1.34%) and were also immunoreactive for NPY (33.24±1,27%), SOM (23.6±0,44%) or VIP (22.9±1,13%). Other substances studied (GAL, NOS, CGRP, SP) were not determined at this stage of the development. In this study, for the first time, the morphology of PCG formation in the porcine foetus has been described in three stages of development. Dynamic changes in the number of neurons and their sizes were also noted, as well as the changes in immunochistochemical coding of maturing neurons.


Assuntos
Gânglios Autônomos/metabolismo , Neurogênese , Neurônios/metabolismo , Animais , Biomarcadores/metabolismo , Dopamina beta-Hidroxilase/metabolismo , Feminino , Gânglios Autônomos/embriologia , Idade Gestacional , Imuno-Histoquímica , Neuropeptídeo Y/metabolismo , Somatostatina/metabolismo , Sus scrofa , Ubiquitina Tiolesterase/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
16.
Eur J Pharm Sci ; 150: 105329, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32360768

RESUMO

Overactive bladder is a troublesome disease that affects 15% of the population in developed countries. Since pharmacotherapy of this condition is frequently associated with side effects, the better tolerated drugs are being searched for. The main objective of our study was to check whether activation of the atypical cannabinoid receptor GPR55 would normalize the changes in cystometric, cardiovascular and biochemical parameters in the hypertensive female Wistar-Kyoto rats presenting the symptoms of overactive bladder accompanied by inflammation and oxidative damage in the urinary tracts. A 14-day intra-arterial administration of O-1602 (0.25 mg/kg/day), a potent agonist of GRP55 receptors, was able to abolish the signs of detrusor overactivity, inflammation and oxidative damage in the urinary bladder of the spontaneously hypertensive animals. Moreover, it increased their heart rate, reduced the mean blood pressure, and normalized the levels of several proteins that play a significant role in the proper functioning of the urinary bladder (i.e., calcitonin gene related peptide, organic cation transporter 3, extracellular signal-regulated kinase 1/2, vesicular acetylcholine transporter, RhoA). Based on the outcomes of our experiments, the atypical cannabinoid receptor GPR55 has emerged as a potential drug target for the treatment of overactive bladder in female subjects. It could be particularly attractive in the cases in which this condition is accompanied with elevated blood pressure, though further studies on this subject are needed.


Assuntos
Canabidiol/análogos & derivados , Hipertensão/tratamento farmacológico , Receptores Acoplados a Proteínas G/agonistas , Bexiga Urinária Hiperativa/tratamento farmacológico , Bexiga Urinária/efeitos dos fármacos , Animais , Aorta/efeitos dos fármacos , Aorta/fisiologia , Peptídeo Relacionado com Gene de Calcitonina/fisiologia , Canabidiol/farmacologia , Canabidiol/uso terapêutico , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Feminino , Hipertensão/fisiopatologia , Fator 3 de Transcrição de Octâmero/fisiologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptores de Canabinoides/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Bexiga Urinária/fisiopatologia , Bexiga Urinária Hiperativa/fisiopatologia , Proteínas Vesiculares de Transporte de Acetilcolina/fisiologia
17.
J Alzheimers Dis ; 73(2): 723-739, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31868669

RESUMO

Epidemiological, preclinical, and clinical studies have suggested a role for microdose lithium in reducing Alzheimer's disease (AD) risk by modulating key mechanisms associated with AD pathology. The novel microdose lithium formulation, NP03, has disease-modifying effects in the McGill-R-Thy1-APP transgenic rat model of AD-like amyloidosis at pre-plaque stages, before frank amyloid-ß (Aß) plaque deposition, during which Aß is primarily intraneuronal. Here, we are interested in determining whether the positive effects of microdose lithium extend into early Aß post-plaque stages. We administered NP03 (40µg Li/kg; 1 ml/kg body weight) to McGill-R-Thy1-APP transgenic rats for 12 weeks spanning the transition phase from plaque-free to plaque-bearing. The effect of NP03 on remote working memory was assessed using the novel object recognition task. Levels of human Aß38, Aß40, and Aß42 as well as levels of pro-inflammatory mediators were measured in brain-extracts and plasma using electrochemiluminescent assays. Mature Aß plaques were visualized with a thioflavin-S staining. Vesicular acetylcholine transporter (VAChT) bouton density and levels of chemokine (C-X-C motif) ligand 1 (CXCL1), interleukin-6 (IL-6), and 4-hydroxynonenal (4-HNE) were probed using quantitative immunohistochemistry. During the early Aß post-plaque stage, we find that NP03 rescues functional deficits in object recognition, reduces loss of cholinergic boutons in the hippocampus, reduces levels of soluble and insoluble cortical Aß42 and reduces hippocampal Aß plaque number. In addition, NP03 reduces markers of neuroinflammation and cellular oxidative stress. Together these results indicate that microdose lithium NP03 is effective at later stages of amyloid pathology, after appearance of Aß plaques.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/prevenção & controle , Citratos/uso terapêutico , Compostos de Lítio/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Placa Amiloide/patologia , Placa Amiloide/prevenção & controle , Aldeídos/metabolismo , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Animais , Quimiocinas/metabolismo , Composição de Medicamentos , Encefalite/metabolismo , Encefalite/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Interleucina-6/metabolismo , Memória de Curto Prazo/efeitos dos fármacos , Terminações Pré-Sinápticas/patologia , Ratos , Ratos Transgênicos , Reconhecimento Psicológico , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
18.
Sci Rep ; 9(1): 16982, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31740757

RESUMO

The autonomic innervation of the skin includes different subsets of adrenergic and cholinergic fibers both in humans and animals. The corresponding chemical code is complex and often difficult to ascertain. Accordingly, a detailed histochemical description of skin autonomic fiber subtypes is lacking in humans. To characterize skin autonomic nerve subtypes may help to better understand the selective damage of specific skin autonomic fibers affecting human diseases such as the adrenergic fibers directed to skin vessels in Parkinson's disease or the cholinergic sudomotor fibers in Ross Syndrome. The present study aimed at characterizing subtypes of autonomic fibers in relation to their target organs by means of an immunofluorescent technique and confocal microscopy. We studied 8 healthy subjects (5 males and 3 females) aged 45 ± 2 (mean ± SE) years without predisposing causes for peripheral neuropathy or autonomic disorders. They underwent skin biopsy from proximal (thigh) and distal (leg) hairy skin. A combination of adrenergic (i.e. tyrosine-hydroxylase- TH and dopamine beta-hydroxylase- DbH) and cholinergic (vesicular acetylcholine transporter- VACHT) autonomic markers and neuropeptidergic (i.e. neuropeptide Y- NPY, calcitonin gene-related peptide- CGRP, substance P- SP, and vasoactive intestinal peptide- VIP) markers were used to characterize skin autonomic fibers. The analysed skin autonomic structures included: 58 sweat glands, 91 skin arterioles and 47 arrector pili muscles. Our results showed that all skin structures presented a sympathetic adrenergic but also cholinergic innervation although in different proportions. Sympathetic adrenergic fibers were particularly abundant around arterioles and arrector pili muscles whereas sympathetic cholinergic fibers were mainly found around sweat glands. Neuropeptides were differently expressed in sympathetic fibers: NPY were found in sympathetic adrenergic fibers around skin arterioles and very seldom sweat glands but not in adrenergic fibers of arrector pili muscles. By contrast CGRP, SP and VIP were expressed in sympathetic cholinergic fibers. Cholinergic fibers expressing CGRP, SP or VIP without TH or DbH staining were found in arterioles and arrector pili muscles and they likely represent parasympathetic fibers. In addition, all skin structures contained a small subset of neuropeptidergic fibers devoid of adrenergic and cholinergic markers with a likely sensory function. No major differences were found between males and females and proximal and distal sites. In summary hairy skin contains sympathetic adrenergic and cholinergic fibers differently distributed around skin structures with a specific distribution of neuropeptides. The autonomic skin innervation also contains a small amount of fibers, likely to be parasympathetic and sensory.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Cabelo/metabolismo , Pele/inervação , Pele/metabolismo , Fibras Adrenérgicas/metabolismo , Adulto , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Feminino , Humanos , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Neuropeptídeo Y/metabolismo , Substância P/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
19.
Biochem Biophys Res Commun ; 520(2): 359-365, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31604527

RESUMO

AIMS: Shikonin is a naphthoquinone compound extracted from the root of Lithospermum with various pharmacological activities. Sympathetic neural remodeling greatly contributes to chronic heart failure. Growing evidence has identified a critical role of microRNAs (miRNAs) in a variety of cardiac biological processes. This study aimed to verify whether shikonin could attenuate sympathetic neural remodeling and explore the possible regulatory role of miRNAs in this process. MAIN METHODS: Shikonin was administered to mice after transverse aortic constriction (TAC). Immunohistochemistry and western blotting were used to assess the expression of TAC-induced sympathetic remodeling-related proteins. KEY FINDINGS: TAC-induced expression of the sympathetic remodeling-related proteins, tyrosine hydroxylase (TH), growth associated protein 43 (GAP43), choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), and nerve growth factor (NGF), was significantly decreased in cardiac tissues. MiR-124 expression significantly increased after heart failure and decreased after shikonin treatment. An adeno-associated virus 9 (AAV9) vector was packaged and used to transfect myocardial tissues of aortic-constricted mice with miR-124, resulting in increased heart miR-124 levels and inhibition of the effects of shikonin on sympathetic neural remodeling. Immunohistochemical staining showed that the density of TH-, GAP43-, and ChAT-positive nerves was significantly increased in aortic-constricted mice after transfection with AAV9-miR-124. SIGNIFICANCE: Our data demonstrate that shikonin administration prevents sympathetic neural remodeling in mice with TAC-induced heart failure. The effects of shikonin on heart failure may be partly due to miR-124-mediated attenuation of sympathetic remodeling. Our results reveal a novel mechanism underlying the therapeutic effect of shikonin in heart failure.


Assuntos
Cardiotônicos/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , MicroRNAs/genética , Naftoquinonas/farmacologia , Animais , Doença Crônica , Constrição Patológica , Proteína GAP-43/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Sistema Nervoso Simpático/efeitos dos fármacos , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
20.
J Neurophysiol ; 122(4): 1623-1633, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31411938

RESUMO

Many neurons receive synchronous input from heterogeneous presynaptic neurons with distinct properties. An instructive example is the crustacean stomatogastric pyloric circuit pacemaker group, consisting of the anterior burster (AB) and pyloric dilator (PD) neurons, which are active synchronously and exert a combined synaptic action on most pyloric follower neurons. Previous studies in lobster have indicated that AB is glutamatergic, whereas PD is cholinergic. However, although the stomatogastric system of the crab Cancer borealis has become a preferred system for exploration of cellular and synaptic basis of circuit dynamics, the pacemaker synaptic output has not been carefully analyzed in this species. We examined the synaptic properties of these neurons using a combination of single-cell mRNA analysis, electrophysiology, and pharmacology. The crab PD neuron expresses high levels of choline acetyltransferase and the vesicular acetylcholine transporter mRNAs, hallmarks of cholinergic neurons. In contrast, the AB neuron expresses neither cholinergic marker but expresses high levels of vesicular glutamate transporter mRNA, consistent with a glutamatergic phenotype. Notably, in the combined synapses to follower neurons, 70-75% of the total current was blocked by putative glutamatergic blockers, but short-term synaptic plasticity remained unchanged, and although the total pacemaker current in two follower neuron types was different, this difference did not contribute to the phasing of the follower neurons. These findings provide a guide for similar explorations of heterogeneous synaptic connections in other systems and a baseline in this system for the exploration of the differential influence of neuromodulators.NEW & NOTEWORTHY The pacemaker-driven pyloric circuit of the Jonah crab stomatogastric nervous system is a well-studied model system for exploring circuit dynamics and neuromodulation, yet the understanding of the synaptic properties of the two pacemaker neuron types is based on older analyses in other species. We use single-cell PCR and electrophysiology to explore the neurotransmitters used by the pacemaker neurons and their distinct contribution to the combined synaptic potentials.


Assuntos
Relógios Biológicos , Gânglios dos Invertebrados/fisiologia , Neurônios/classificação , Piloro/inervação , Transmissão Sináptica , Acetilcolina/metabolismo , Animais , Braquiúros , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Gânglios dos Invertebrados/citologia , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Piloro/fisiologia , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/genética , Proteínas Vesiculares de Transporte de Glutamato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA