Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
1.
Food Funct ; 15(10): 5579-5595, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38713055

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a developmental disorder and dopaminergic dysfunction in the prefrontal cortex (PFC) may play a role. Our previous research indicated that theobromine (TB), a methylxanthine, enhances cognitive function in rodents via the PFC. This study investigates TB's effects on hyperactivity and cognitive function in stroke-prone spontaneously hypertensive rats (SHR), an ADHD animal model. Male SHRs (6-week old) received a diet containing 0.05% TB for 40 days, while control rats received normal diets. Age-matched male Wistar-Kyoto rats (WKY) served as genetic controls. During the TB administration period, we conducted open-field tests and Y-maze tasks to evaluate hyperactivity and cognitive function, then assessed dopamine concentrations and tyrosine hydroxylase (TH), dopamine receptor D1-5 (DRD1-5), dopamine transporter (DAT), vesicular monoamine transporter-2 (VMAT-2), synaptosome-associated protein-25 (SNAP-25), and brain-derived neurotrophic factor (BDNF) expressions in the PFC. Additionally, the binding affinity of TB for the adenosine receptors (ARs) was evaluated. Compared to WKY, SHR exhibited hyperactivity, inattention and working memory deficits. However, chronic TB administration significantly improved these ADHD-like behaviors in SHR. TB administration also normalized dopamine concentrations and expression levels of TH, DRD2, DRD4, SNAP-25, and BDNF in the PFC of SHR. No changes were observed in DRD1, DRD3, DRD5, DAT, and VMAT-2 expression between SHR and WKY rats, and TB intake had minimal effects. TB was found to have affinity binding to ARs. These results indicate that long-term TB supplementation mitigates hyperactivity, inattention and cognitive deficits in SHR by modulating dopaminergic nervous function and BDNF levels in the PFC, representing a potential adjunctive treatment for ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Dopamina , Memória de Curto Prazo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Teobromina , Animais , Masculino , Ratos , Teobromina/farmacologia , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Memória de Curto Prazo/efeitos dos fármacos , Dopamina/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Lobo Frontal/metabolismo , Lobo Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Modelos Animais de Doenças , Proteína 25 Associada a Sinaptossoma/metabolismo
2.
J Neurosci Res ; 101(10): 1651-1661, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37394966

RESUMO

Dopamine transporter knockout (DAT-KO) rats represent a valuable rodent model for studying the molecular and phenotypical outcomes of the effects of excessive dopamine accumulation in the synaptic cleft and the prolonged action of dopamine on neurons. Animals with DAT deficiency are characterized by hyperactivity, stereotypy, cognitive deficits, and impairments in behavioral and biochemical indicators. Several key pathophysiological mechanisms are known to be common to psychiatric, neurodegenerative, metabolic, and other diseases. Among these mechanisms, oxidative stress systems play a particularly important role. One of the main antioxidant systems in the brain is glutathione: specifically, glutathione S-transferase, glutathione reductase, and catalase play a significant role in the regulation of vital oxidative processes, and their dysfunction has been shown in Parkinson's disease, Alzheimer's disease, and other neurodegenerative diseases. The current study aimed to analyze the dynamics of the activity levels of glutathione reductase and glutathione S-transferase in erythrocytes, as well as catalase in the blood plasma, of DAT-deficient, homo- and heterozygous, neonatal and juvenile rats (both male and female). Their behavioral and physiological parameters were evaluated at the age of 1.5 months. For the first time, changes in physiological and biochemical parameters were shown in DAT-KO rats at 1.5 months of postnatal life. The key role of glutathione S-transferase, glutathione reductase, and catalase in the regulation of oxidative stress in DAT-KO rats at the 5th week of life was demonstrated. A positive effect of a slightly increased dopamine level on memory function was shown in DAT-heterozygous animals.


Assuntos
Antioxidantes , Proteínas da Membrana Plasmática de Transporte de Dopamina , Ratos , Masculino , Feminino , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Catalase/metabolismo , Dopamina/metabolismo , Glutationa/metabolismo , Glutationa Transferase/metabolismo
3.
J Biol Chem ; 299(8): 105063, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37468107

RESUMO

Amphetamines (AMPHs) are substrates of the dopamine transporter (DAT) and reverse the direction of dopamine (DA) transport. This has been suggested to depend on activation of Ca2+-dependent pathways, but the mechanism underlying reverse transport via endogenously expressed DAT is still unclear. Here, to enable concurrent visualization by live imaging of extracellular DA dynamics and cytosolic Ca2+ levels, we employ the fluorescent Ca2+ sensor jRGECO1a expressed in cultured dopaminergic neurons together with the fluorescent DA sensor GRABDA1H expressed in cocultured "sniffer" cells. In the presence of the Na+-channel blocker tetrodotoxin to prevent exocytotic DA release, AMPH induced in the cultured neurons a profound dose-dependent efflux of DA that was blocked both by inhibition of DAT with cocaine and by inhibition of the vesicular monoamine transporter-2 with Ro-4-1284 or reserpine. However, the AMPH-induced DA efflux was not accompanied by an increase in cytosolic Ca2+ and was unaffected by blockade of voltage-gated calcium channels or chelation of cytosolic Ca2+. The independence of cytosolic Ca2+ was further supported by activation of N-methyl-D-aspartate-type ionotropic glutamate receptors leading to a marked increase in cytosolic Ca2+ without affecting AMPH-induced DA efflux. Curiously, AMPH elicited spontaneous Ca2+ spikes upon blockade of the D2 receptor, suggesting that AMPH can regulate intracellular Ca2+ in an autoreceptor-dependent manner regardless of the apparent independence of Ca2+ for AMPH-induced efflux. We conclude that AMPH-induced DA efflux in dopaminergic neurons does not require cytosolic Ca2+ but is strictly dependent on the concerted action of AMPH on both vesicular monoamine transporter-2 and DAT.


Assuntos
Anfetamina , Proteínas da Membrana Plasmática de Transporte de Dopamina , Dopamina , Anfetamina/metabolismo , Anfetamina/farmacologia , Cocaína/metabolismo , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Proteínas Vesiculares de Transporte de Monoamina , Humanos , Linhagem Celular Tumoral
4.
Behav Brain Res ; 450: 114494, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37182741

RESUMO

Prader-Willi syndrome (PWS), a neurodevelopmental disorder based on the loss of paternally derived but maternally imprinted genes on chromosome 15q11-13, is typically associated with hyperphagia-related behavior leading to massive obesity. Recently, there has been increasing evidence for dysregulated expression patterns of genes outside the PWS locus that influence the behavioral phenotype and for alterations in the dopaminergic system associated with weight regulation in PWS. In this study, we investigated the epigenetic regulation of the promoter regions of the dopamine transporter (DAT) and dopamine receptor D2 (DRD2) genes and their association with hyperphagia-related behavior in PWS. Methylation of the DAT and DRD2 promoter regions was examined by DNA bisulfite sequencing in 32 individuals with PWS and compared with a control group matched for sex, age, and body mass index (BMI). Hyperphagia-related behavior was assessed using the Hyperphagia Questionnaire for Clinical Trials (HQ-CT). Analysis by linear mixed models revealed a significant effect of factor group on mean DAT promoter methylation rate with decreased mean methylation in PWS (7.3 ± 0.4%) compared to controls (18.8 ± 0.6%), p < 0.001. In the PWS group, we further identified effects of HQ-CT score and BMI on DAT promoter methylation. Although also statistically significantly different (8.4 ± 0.2 in PWS, 10.5 ± 0.3 in controls, p < 0.001), DRD2 promoter methylation visually appeared to be evenly distributed between groups, raising concerns regarding a biological effect. Here, we provide evidence for altered epigenetic regulation of the DAT gene in PWS, which is associated with PWS-typical hyperphagia-related behaviors.


Assuntos
Síndrome de Prader-Willi , Humanos , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/complicações , Síndrome de Prader-Willi/tratamento farmacológico , Epigênese Genética , Estudos de Casos e Controles , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Hiperfagia/genética , Hiperfagia/metabolismo , Regiões Promotoras Genéticas/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-37247803

RESUMO

Chronic stress is a key factor in psychiatric and neurological disorders often worsening disease symptoms. In this study, a unique animal model, the dopamine transporter knockout (DAT-KO) rat exhibiting behavioral signs resembling those occurring in mania, schizophrenia, attention deficit hyperactivity disorder, and obsessive-compulsive disorder was used. We have tested the hypothesis that the hyperdopaminergic state in DAT-KO rats (i) modulates behavioral response to the NMDA antagonist MK-801 (dizocilpine) and (ii) leads to abnormal endocrine and immune activation under subchronic stress induced by an immune challenge. Glutamatergic modulation with MK-801 induced a different behavioral pattern. While the WT rats responded to MK-801 injection with a robust rise in their locomotor activity, the hyperactive DAT-KO rats exhibited reduced locomotion. Signs of chronic stress including increased basal corticosterone and aldosterone but blunted anxiety were demonstrated in rats lacking the DAT. Repeated injections of increasing doses of lipopolysaccharide (LPS, 5 days) did not modify plasma prolactin concentrations which were however significantly lower in DAT-KO than in WT rats. Concentrations of plasma high mobility group box 1 (HMGB1) protein were significantly higher in LPS-treated DAT-KO than in WT rats. The gene expression of interleukin-6 in the anterior pituitary increased under the stress induced by the immune challenge in the WT but not the DAT-KO rats. The most evident differences between the genotypes were revealed in the spleen. The splenic gene expression of interleukin-1ß, interleukin-6, and HMGB1 was lower and that of ferritin was higher in DAT-KO compared to WT rats. Obtained results emphasize the functional interaction of the endocrine and immune systems with monoamine and glutamatergic neurotransmission in the mechanisms leading to behavioral alterations and psychiatric disorders associated with dopamine dysfunction.


Assuntos
Maleato de Dizocilpina , Proteína HMGB1 , Ratos , Feminino , Animais , Camundongos , Maleato de Dizocilpina/farmacologia , Proteína HMGB1/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Knockout
6.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982343

RESUMO

DNA methylation (leading to gene silencing) is one of the best-studied epigenetic mechanisms. It is also essential in regulating the dynamics of dopamine release in the synaptic cleft. This regulation relates to the expression of the dopamine transporter gene (DAT1). We examined 137 people addicted to nicotine, 274 addicted subjects, 105 sports subjects and 290 people from the control group. After applying the Bonferroni correction, our results show that as many as 24 out of 33 examined CpG islands had statistically significantly higher methylation in the nicotine-dependent subjects and athletes groups compared to the control group. Analysis of total DAT1 methylation revealed a statistically significant increase in the number of total methylated CpG islands in addicted subjects (40.94%), nicotine-dependent subjects (62.84%) and sports subjects (65.71%) compared to controls (42.36%). The analysis of the methylation status of individual CpG sites revealed a new direction of research on the biological aspects of regulating dopamine release in people addicted to nicotine, people practicing sports and people addicted to psychoactive substances.


Assuntos
Metilação de DNA , Proteínas da Membrana Plasmática de Transporte de Dopamina , Humanos , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Nicotina , Dopamina , Epigênese Genética , Ilhas de CpG
7.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36293205

RESUMO

The effects of second-generation antipsychotics on prenatal neurodevelopment, apoptotic neurodegeneration, and postnatal developmental delays have been poorly investigated. Even at standard doses, the use of quetiapine fumarate (QEPF) in pregnant women might be detrimental to fetal development. We used primary mouse embryonic neurons to evaluate the disruption of morphogenesis and differentiation of ventral midbrain (VM) neurons after exposure to QEPF. The dopaminergic VM neurons were deliberately targeted due to their roles in cognition, motor activity, and behavior. The results revealed that exposure to QEPF during early brain development decreased the effects of the dopaminergic lineage-related genes Tyrosine hydroxylase(Th), Dopamine receptor D1 (Drd1), Dopamine transporter (Dat), LIM homeobox transcription factor 1 alfa (Lmx1a), and Cell adhesion molecule L1 (Chl1), and the senescent dopaminergic gene Pituitary homeobox 3 (Pitx3). In contrast, Brain derived neurotrophic factor (Bdnf) and Nuclear receptor-related 1 (Nurr1) expressions were significantly upregulated. Interestingly, QEPF had variable effects on the development of non-dopaminergic neurons in VM. An optimal dose of QEPF (10 µM) was found to insignificantly affect the viability of neurons isolated from the VM. It also instigated a non-significant reduction in adenosine triphosphate formation in these neuronal populations. Exposure to QEPF during the early stages of brain development could also hinder the formation of VM and their structural phenotypes. These findings could aid therapeutic decision-making when prescribing 2nd generation antipsychotics in pregnant populations.


Assuntos
Molécula L1 de Adesão de Célula Nervosa , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Camundongos , Animais , Feminino , Humanos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Fumarato de Quetiapina/farmacologia , Fumarato de Quetiapina/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Mesencéfalo/metabolismo , Neurônios Dopaminérgicos/metabolismo , Fatores de Transcrição/metabolismo , Diferenciação Celular/genética , Trifosfato de Adenosina/metabolismo , Receptores Dopaminérgicos/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-35886451

RESUMO

The dopaminergic system is a crucial element of the addiction processes. The dopamine transporter modulates the dynamics and levels of released dopamine in the synaptic cleft. Therefore, regulation of dopamine transporter (DAT1) gene expression is critical for maintaining homeostasis in the dopaminergic system. The aim of our study is evaluation of the methylation status of 33 CpG islands located in the DAT1 gene promoter region related to nicotine dependency. We investigated 142 nicotine-dependent subjects and 238 controls. Our results show that as many as 14 of the 33 CpG islands tested had statistically significantly higher methylation in the nicotine-dependent group compared to the control group. After applying Bonferroni correction, the total number of methylation sites was also significantly higher in the dependent subjects group. The analysis of the methylation status of particular CpG sites revealed a new direction of research regarding the biological aspects of nicotine addiction.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Tabagismo , Ilhas de CpG , Metilação de DNA , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Humanos , Nicotina , Regiões Promotoras Genéticas , Tabagismo/genética
9.
Eat Weight Disord ; 27(7): 2605-2616, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35508584

RESUMO

PURPOSE: Eating disturbances are complex heritable conditions that can be influenced by both genetic and environmental factors but are poorly studied in early development. The aim of this research was to investigate the association of genetic polymorphisms within dopaminergic pathways with early feeding problems. METHODS: We analyzed the presence of VNTR polymorphisms of DRD4 (rs1805186) and DAT1 (rs28363170) in overeating (N = 45), undereating (N = 48) and control (N = 44) young children. We also assessed presence of externalizing, internalizing and dysregulation symptoms by the Child Behavior Checklist and quality of mother-child interactions during feeding by the Italian adaptation of the Scale for the Assessment of Feeding Interaction, respectively. RESULTS: Both polymorphisms were associated with children's eating behavior, psychological symptoms and quality of interaction with their mothers, suggesting that: (a) the DRD4 4-repeat allele behaves as a protective factor, the 2-repeats and 7-repeats alleles as risk factors, for undereating behavior, the general quality of mother-child interaction and internalizing, externalizing and dysregulated symptoms; and (b) the DAT1 9-repeats allele behaves as a protective factor, the 10-repeats allele as a risk factor, for overeating behavior, the general quality of mother-child interaction, internalizing, externalizing and dysregulated symptoms. Finally, a gene x gene interaction is suggested between the DAT1 9-repeat or 10-repeat allele and the DRD4 4-repeat allele. CONCLUSIONS: Our results suggest a role for DRD4 and DAT1 in an early susceptibility to eating disturbances. LEVEL OF EVIDENCE III: Evidence obtained from well-designed case-control analytic study.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Transtornos da Alimentação e da Ingestão de Alimentos , Receptores de Dopamina D4 , Alelos , Pré-Escolar , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Hiperfagia , Relações Mãe-Filho , Polimorfismo Genético , Receptores de Dopamina D4/genética
10.
Dis Markers ; 2022: 3736104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401884

RESUMO

Background: Liver hepatocellular carcinoma (LIHC) is the second leading cause of tumor-related death in the world. Carvacrol was also found to inhibit multiple cancer types. Here, we proposed that Carvacrol inhibited LIHC. Methods: We used MTT assay to determine the inhibition of Carvacrol on LIHC cells. BATMAN-TCM was used to predict targets of Carvacrol. These targets were further screened by their survival association and expression in cancer using TCGA data. The bioinformatic screened candidates were further validated in in vitro experiments and clinical samples. Finally, docking models of the interaction of Carvacrol and target protein were conducted. Results: Carvacrol inhibited the viability of LIHC cell lines. 40 target genes of Carvacrol were predicted, 8 of them associated with survival. 4 genes were found differentially expressed in LIHC vs. normal liver. Among these genes, the expression of SLC6A3 and SCN4A was found affected by Carvacrol in LIHC cells, but only SLC6A3 correlated with the viability inhibition of Carvacrol on LIHC cell lines. A docking model of the interaction of Carvacrol and SLC6A3 was established with a good binding affinity. SLC6A3 knockdown and expression revealed that SLC6A3 promoted the viability of LIHC cells. Conclusion: Carvacrol inhibited the viability of LIHC cells by downregulating SLC6A3.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Cimenos , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo
11.
JCI Insight ; 7(4)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35015729

RESUMO

Monocyte-derived macrophages (MDMs) are key players in tissue homeostasis and diseases regulated by a variety of signaling molecules. Recent literature has highlighted the ability for biogenic amines to regulate macrophage functions, but the mechanisms governing biogenic amine signaling in and around immune cells remain nebulous. In the CNS, biogenic amine transporters are regarded as the master regulators of neurotransmitter signaling. While we and others have shown that macrophages express these transporters, relatively little is known of their function in these cells. To address these knowledge gaps, we investigated the function of norepinephrine transporter (NET) and dopamine transporter (DAT) on human MDMs. We found that both NET and DAT are present and can uptake substrate from the extracellular space at baseline. Not only was DAT expressed in cultured MDMs, but it was also detected in a subset of intestinal macrophages in situ. Surprisingly, we discovered a NET-independent, DAT-mediated immunomodulatory mechanism in response to LPS. LPS induced reverse transport of dopamine through DAT, engaging an autocrine/paracrine signaling loop that regulated the macrophage response. Removing this signaling loop enhanced the proinflammatory response to LPS. Our data introduce a potential role for DAT in the regulation of innate immunity.


Assuntos
Aminas Biogênicas/metabolismo , Transporte Biológico/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Regulação da Expressão Gênica , Macrófagos/metabolismo , RNA/genética , Adulto , Idoso , Proteínas da Membrana Plasmática de Transporte de Dopamina/biossíntese , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Feminino , Humanos , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
Mov Disord ; 37(1): 106-118, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34596920

RESUMO

BACKGROUND: Glucosylceramidase (GBA) mutations are considered the most common genetic risk factors for developing Parkinson's disease (PD). OBJECTIVES: We aimed to assess, at different time points, the integrity of brain striatal and extra-striatal dopamine pathways and clinical phenotype of a group of PD subjects bearing heterozygous GBA mutations (GBA-PD), compared with a group of idiopathic PD patients (iPD) stratified by age at disease onset. A longitudinal approach was adopted to evaluate the progression over time for clinical and 123 I-FP-CIT SPECT imaging features. METHODS: We considered 46 GBA-PD patients and 339 iPD patients, subdivided into two groups according to age at PD onset (n = 58 < 50 years and n = 281 > 50 years). We measured differences in the occurrence/severity/progression of motor and non-motor features, 123 I-FP-CIT standard uptake value ratios (SUVr) in striatal and extra-striatal regions, and global cognitive deterioration over time in a subset of 168 cases with available follow-up. RESULTS: At baseline, the GBA-PD cohort showed more severe motor and cognitive deficits than the early-iPD cohort. The 123 I-FP-CIT SUVr reduction in the striatal and the extra-striatal regions was more marked in the GBA-PD than the early- and late-iPD cohorts. Both GBA-PD and late-iPD patients had a significant annual deterioration in their global cognitive performance, while the early-iPD group showed global cognitive stability over time. At follow-up, the iPD cohorts became similar to the GBA-PD group in 123 I-FP-CIT SUVr reduction. CONCLUSION: These new findings support the hypothesis of a biological role of GBA mutations in accelerating the early neurodegenerative processes in PD, leading to the malignant clinical phenotype. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Glucosilceramidase , Imagem Molecular , Doença de Parkinson , Estudos de Coortes , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Humanos , Mutação/genética , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único/métodos
13.
Psychopharmacology (Berl) ; 239(2): 489-507, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34854936

RESUMO

RATIONALE: Nicotine has been widely studied for its pro-dopaminergic effects. However, at the behavioural level, past investigations have yielded heterogeneous results concerning effects on cognitive, affective, and motor outcomes, possibly linked to individual differences at the level of genetics. A candidate polymorphism is the 40-base-pair variable number of tandem repeats polymorphism (rs28363170) in the SLC6A3 gene coding for the dopamine transporter (DAT). The polymorphism has been associated with striatal DAT availability (9R-carriers > 10R-homozygotes), and 9R-carriers have been shown to react more strongly to dopamine agonistic pharmacological challenges than 10R-homozygotes. OBJECTIVES: In this preregistered study, we hypothesized that 9R-carriers would be more responsive to nicotine due to genotype-related differences in DAT availability and resulting dopamine activity. METHODS: N=194 non-smokers were grouped according to their genotype (9R-carriers, 10R-homozygotes) and received either 2-mg nicotine or placebo gum in a between-subject design. Spontaneous blink rate (SBR) was obtained as an indirect measure of striatal dopamine activity and smooth pursuit, stop signal, simple choice and affective processing tasks were carried out in randomized order. RESULTS: Reaction times were decreased under nicotine compared to placebo in the simple choice and stop signal tasks, but nicotine and genotype had no effects on any of the other task outcomes. Conditional process analyses testing the mediating effect of SBR on performance and how this is affected by genotype yielded no significant results. CONCLUSIONS: Overall, we could not confirm our main hypothesis. Individual differences in nicotine response could not be explained by rs28363170 genotype.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Nicotina , Regiões 3' não Traduzidas , Cognição , Corpo Estriado/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Genótipo , Repetições Minissatélites/genética , Nicotina/farmacologia
14.
J Biotechnol ; 342: 28-35, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34648893

RESUMO

The dopamine transporter (DAT) is targeted in substance use disorders (SUDs), and "non-classical"" DAT inhibitors with low abuse potential are therapeutic candidates. Lobinaline, from Lobelia cardinalis, is an atypical DAT inhibitor lead. Chemical synthesis of lobinaline is challenging; thus, "target-directed evolution" was used for lead optimization. A target protein is expressed in plant cells, and a mutant cell population is selected under conditions where target protein functional inhibition confers a survival advantage. Surviving mutants are "mined" for the targeted activity. Applied to a mutant L. cardinalis cell population expressing the human DAT, we identified 20 mutants overproducing DAT inhibitors. Microanalysis prioritized novel lobinaline derivatives, and we first investigated the more water-soluble lobinaline N-oxide. It inhibited rat synaptosomal [3H]DA uptake with an IC50 similar to lobinaline. Against repeated DA microinjections into the rat striatum, lobinaline produced transient DA clearance reductions. In contrast, lobinaline N-oxide prolongingly increased DA peak amplitudes, particularly in the ventral striatum. Lobinaline N-oxide also produced complex changes in post-peak DA clearance inconsistent with simple DAT inhibition. This unusual DAT interaction may prove therapeutically useful for treating SUDs. This study demonstrates the value of target-directed evolution of plant cells for optimizing lead compounds difficult to synthesize chemically.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Lobelia , Animais , Corpo Estriado , Dopamina , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Lobelia/genética , Ratos , Sinaptossomos
15.
Sci Transl Med ; 13(594)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011628

RESUMO

Most inherited neurodegenerative disorders are incurable, and often only palliative treatment is available. Precision medicine has great potential to address this unmet clinical need. We explored this paradigm in dopamine transporter deficiency syndrome (DTDS), caused by biallelic loss-of-function mutations in SLC6A3, encoding the dopamine transporter (DAT). Patients present with early infantile hyperkinesia, severe progressive childhood parkinsonism, and raised cerebrospinal fluid dopamine metabolites. The absence of effective treatments and relentless disease course frequently leads to death in childhood. Using patient-derived induced pluripotent stem cells (iPSCs), we generated a midbrain dopaminergic (mDA) neuron model of DTDS that exhibited marked impairment of DAT activity, apoptotic neurodegeneration associated with TNFα-mediated inflammation, and dopamine toxicity. Partial restoration of DAT activity by the pharmacochaperone pifithrin-µ was mutation-specific. In contrast, lentiviral gene transfer of wild-type human SLC6A3 complementary DNA restored DAT activity and prevented neurodegeneration in all patient-derived mDA lines. To progress toward clinical translation, we used the knockout mouse model of DTDS that recapitulates human disease, exhibiting parkinsonism features, including tremor, bradykinesia, and premature death. Neonatal intracerebroventricular injection of human SLC6A3 using an adeno-associated virus (AAV) vector provided neuronal expression of human DAT, which ameliorated motor phenotype, life span, and neuronal survival in the substantia nigra and striatum, although off-target neurotoxic effects were seen at higher dosage. These were avoided with stereotactic delivery of AAV2.SLC6A3 gene therapy targeted to the midbrain of adult knockout mice, which rescued both motor phenotype and neurodegeneration, suggesting that targeted AAV gene therapy might be effective for patients with DTDS.


Assuntos
Terapia Genética , Células-Tronco Pluripotentes Induzidas , Transtornos Parkinsonianos , Animais , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/terapia , Substância Negra/metabolismo
16.
Toxicol Lett ; 344: 1-10, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33647392

RESUMO

Methylphenidate (MPD) is used as a first-line treatment for attention-deficit/hyperactivity disorder (ADHD). The number of prescriptions for ADHD patients is increasing, suggesting that the number of fertile women using such medication might be also increasing. The purpose of this study was to clarify the effects of MPD exposure during the fetal period on infant development, behavior, learning, and memory in mice. Expression levels of candidate genes associated with ADHD were also determined in the brain of pups born to MDP-treated dams who were administered MPD orally at a dose of 2.5, 7.5, or 15 mg/kg daily from gestational day 1 to the day before delivery. Offspring aged 6-8 weeks were subjected to the spontaneous locomotor activity, elevated plus-maze, and passive avoidance tests and therapeutic treatments with MPD or atomoxetine. Fetal MPD exposure induced ADHD-like phenotypes, such as hyperactivity and impulsivity, in mouse offspring, which were suppressed by treatment with MPD and atomoxetine. These mice showed decreased Drd2 and Slc6a3 expression levels in the brain, which are often observed in ADHD model animals. Our results suggest that continuous use of MPD during pregnancy induces ADHD phenotypes in the offspring.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/induzido quimicamente , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Metilfenidato/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Receptores de Dopamina D2/metabolismo , Animais , Animais Recém-Nascidos , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Aprendizagem , Masculino , Metilfenidato/administração & dosagem , Camundongos , Camundongos Endogâmicos ICR , Gravidez , Receptores de Dopamina D2/genética
17.
J Neuroimmune Pharmacol ; 16(4): 854-869, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33537927

RESUMO

HIV-1 transactivator of transcription (Tat) has a great impact on the development of HIV-1 associated neurocognitive disorders through disrupting dopamine transmission. This study determined the mutational effects of human dopamine transporter (hDAT) on basal and Tat-induced inhibition of dopamine transport. Compared to wild-type hDAT, the maximal velocity (Vmax) of [3H]dopamine uptake was decreased in D381L and Y88F/D206L/H547A, increased in D206L/H547A, and unaltered in D206L. Recombinant TatR1 - 86 inhibited dopamine uptake in wild-type hDAT, which was attenuated in either DAT mutants (D206L, D206L/H547A, and Y88F/D206L/H547A) or mutated TatR1 - 86 (K19A and C22G), demonstrating perturbed Tat-DAT interaction. Mutational effects of hDAT on the transporter conformation were evidenced by attenuation of zinc-induced increased [3H]WIN35,428 binding in D206L/H547A and Y88F/D206A/H547A and enhanced basal MPP+ efflux in D206L/H547A. H547A-induced outward-open transport conformational state was further validated by enhanced accessibility to MTSET ([2-(trimethylammonium)ethyl]-methanethiosulfonate) of an inserted cysteine (I159C) on a hDAT background.. Furthermore, H547A displayed an increase in palmitoylation inhibitor-induced inhibition of dopamine uptake relative to wide-type hDAT, indicating a change in basal palmitoylation in H547A. These results demonstrate that Y88F, D206L, and H547A attenuate Tat inhibition while preserving DA uptake, providing insights into identifying targets for improving DAT-mediated dopaminergic dysregulation. HIV-1 Tat inhibits dopamine uptake through human dopamine transporter (hDAT) on the presynaptic terminal through a direct allosteric interaction. Key hDAT residues D-H547, D-Y88, and D-D206 are predicted to be involved in the HIV-1 Tat-DAT binding. Mutating these residues attenuates this inhibitory effect by disrupting the Tat-hDAT interaction.


Assuntos
HIV-1 , Dopamina , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , HIV-1/metabolismo , Humanos , Mutação , Transativadores , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
18.
J Mol Neurosci ; 71(1): 122-136, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32557146

RESUMO

Dopamine transporter (DAT) or solute carrier family 6 member 3 (SLC6A3) is a transmembrane protein regulating dopaminergic neurotransmission. It has been implicated in playing important roles in the dopaminergic reward pathways, and thus, DAT1 is a strong candidate gene for association studies with heroin dependence. A case-control study involving 279 individuals (147 controls and 132 heroin-dependent cases) was conducted. Ten polymorphisms of the DAT1 (SLC6A3) gene were analysed for its association with heroin dependence. Following the Hardy-Weinberg equilibrium (HWE) test, genetic association analyses were performed for the study groups. The post hoc statistical power of the study was 0.655 (65.5%). Single-nucleotide polymorphism (SNP) rs246997 was found to be significantly associated with heroin dependence at allelic, genotypic, and haplotypic levels. A significant difference in the distribution of 11R allele and 10R/11R genotype of rs28363170 between heroin-dependent cases and controls was also observed. Nominal significance at degrees of freedom (df) = 5 was also observed for rs28363170. Five bimarker-based haplotype combinations were also found to be associated with heroin dependence. For the first time, 13R allele (7R/13R genotype) and 14R allele (7R/14R genotype) were identified for rs3836790 in the population. The study also reports that the 11R allele and 10R/11R genotype of rs28363170 is associated with protection against heroin dependence. 7R and 6R alleles were also found to be the common alleles of rs3836790 in the study population. The study provides evidence for the association of polymorphisms of DAT1 (SLC6A3) with heroin dependence.


Assuntos
Povo Asiático/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Etnicidade/genética , Dependência de Heroína/genética , Repetições Minissatélites , Polimorfismo de Nucleotídeo Único , Regiões 3' não Traduzidas/genética , Adolescente , Adulto , Alelos , Estudos de Casos e Controles , Biologia Computacional/métodos , Dopamina/fisiologia , Neurônios Dopaminérgicos/metabolismo , Feminino , Marcadores Genéticos , Haplótipos/genética , Dependência de Heroína/etnologia , Humanos , Índia/epidemiologia , Íntrons/genética , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiologia , Recompensa , Adulto Jovem
19.
Eur Neuropsychopharmacol ; 42: 75-86, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33191077

RESUMO

Bipolar disorder (BD) is a severe mental illness affecting 2% of the global population. Current pharmacotherapies provide incomplete symptom remediation, highlighting the need for novel therapeutics. BD is characterized by fluctuations between mania and depression, likely driven by shifts between hyperdopaminergia and hypercholinergia, respectively. Hyperdopaminergia may result from insufficient activity of the dopamine transporter (DAT), the primary mediator of synaptic dopamine clearance. The DAT knockdown (DAT KD) mouse recreates this mechanism and exhibits a highly reproducible hyperexploratory profile in the cross-species translatable Behavioral Pattern Monitor (BPM) that is: (a) consistent with that observed in BD mania patients; and (b) partially normalized by chronic lithium and valproate treatment. The DAT KD/BPM model of mania therefore exhibits high levels of face-, construct-, and predictive-validity for the pre-clinical assessment of putative anti-mania drugs. Three different drug regimens - chronic nicotine (nicotinic acetylcholine receptor (nAChR) agonist; 40 mg/kg/d, 26 d), subchronic suramin (anti-purinergic; 20 mg/kg, 1 × /wk, 4 wks), and subchronic resveratrol (striatal DAT upregulator; 20 mg/kg/d, 4 d) - were administered to separate cohorts of male and female DAT KD- and wildtype (WT) littermate mice, and exploration was assessed in the BPM. Throughout, DAT KD mice exhibited robust hyperexploratory profiles relative to WTs. Nicotine partially normalized this behavior. Resveratrol modestly upregulated DAT expression but did not normalize DAT KD behavior. These results support the mania-like profile of DAT KD mice, which may be partially remediated by nAChR agonists via restoration of disrupted catecholaminergic/cholinergic equilibrium. Delineating the precise mechanism of action of nicotine could identify more selective therapeutic targets.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Nicotina , Animais , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Comportamento Exploratório , Feminino , Humanos , Masculino , Mania , Camundongos , Camundongos Endogâmicos C57BL , Nicotina/farmacologia , Resveratrol/farmacologia , Suramina
20.
Biomolecules ; 10(12)2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287325

RESUMO

Dopamine receptor and dopamine transporter genes polymorphisms have been associated with cigarette smoking behaviour in different populations. The aim of this case-control study was to evaluate polymorphisms in the dopamine transporter gene (SLC6A3 (rs27072)) and the dopamine receptor genes (DRD1 (rs686), DRD2 (rs1800497) and DRD3 (rs7653787)) and their contribution to smoking behaviour in a Malay male population. We identified 476 participants over the age of 18 years comprising 238 smokers and 238 non-smokers. Information such as age, height, weight, body mass index, systolic and diastolic blood pressures, marital status, and smoking status of close family members were taken. For the genetic study, we genotyped four genes (SLC6A3 (rs27072), DRD1 (rs686), DRD2 (rs1800497) and DRD3 (rs7653787)) using the polymerase chain reaction-restriction fragment length polymorphism method and further confirmed our findings with sequencing. Dopamine receptor genes (DRD1, DRD2 and DRD3) were found to be associated with smoking behaviour in a Malay male population. The dopamine transporter gene (SLC6A3) did not show this association. Significant differences were observed between smokers' and non-smokers' age, systolic blood pressure, marital status and family members who smoke. Smoking behaviour is significantly influenced by genetic variations of DRD1, DRD2 and DRD3 in a Malay male population.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Polimorfismo de Nucleotídeo Único , Receptores Dopaminérgicos/genética , Fumar/genética , Adolescente , Adulto , Estudos de Casos e Controles , Estudos de Coortes , Predisposição Genética para Doença/genética , Humanos , Malásia , Masculino , Pessoa de Meia-Idade , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Receptores de Dopamina D3/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA