Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 24(20)2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652614

RESUMO

Nicotinic acetylcholine receptors (nAChRs), serotonin transporters (SERT) and dopamine transporters (DAT) represent targets for the development of novel nicotinic derivatives acting as multiligands associated with different health conditions, such as depressive, anxiety and addiction disorders. In the present work, a series of functionalized esters structurally related to acetylcholine and nicotine were synthesized and pharmacologically assayed with respect to these targets. The synthesized compounds were studied in radioligand binding assays at α4ß2 nAChR, h-SERT and h-DAT. SERT experiments showed not radioligand [3H]-paroxetine displacement, but rather an increase in the radioligand binding percentage at the central binding site was observed. Compound 20 showed Ki values of 1.008 ± 0.230 µM for h-DAT and 0.031 ± 0.006 µM for α4ß2 nAChR, and [3H]-paroxetine binding of 191.50% in h-SERT displacement studies, being the only compound displaying triple affinity. Compound 21 displayed Ki values of 0.113 ± 0.037 µM for α4ß2 nAChR and 0.075 ± 0.009 µM for h-DAT acting as a dual ligand. Molecular docking studies on homology models of α4ß2 nAChR, h-DAT and h-SERT suggested potential interactions among the compounds and agonist binding site at the α4/ß2 subunit interfaces of α4ß2 nAChR, central binding site of h-DAT and allosteric modulator effect in h-SERT.


Assuntos
Acetilcolina/análogos & derivados , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Nicotina/análogos & derivados , Receptores Nicotínicos/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Acetilcolina/agonistas , Acetilcolina/síntese química , Acetilcolina/química , Regulação Alostérica , Sítios de Ligação , Dopamina/química , Agonistas de Dopamina/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/agonistas , Ésteres/química , Células HEK293 , Humanos , Ligantes , Simulação de Acoplamento Molecular , Nicotina/agonistas , Nicotina/síntese química , Nicotina/química , Agonistas Nicotínicos/química , Pirrolidinas/química , Ensaio Radioligante , Proteínas da Membrana Plasmática de Transporte de Serotonina/agonistas , Relação Estrutura-Atividade
2.
PLoS One ; 7(7): e38886, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22808019

RESUMO

To study the tumor inhibition effect of mirtazapine, a drug for patients with depression, CT26/luc colon carcinoma-bearing animal model was used. BALB/c mice were randomly divided into six groups: two groups without tumors, i.e. wild-type (no drug) and drug (mirtazapine), and four groups with tumors, i.e. never (no drug), always (pre-drug, i.e. drug treatment before tumor inoculation and throughout the experiment), concurrent (simultaneously tumor inoculation and drug treatment throughout the experiment), and after (post-drug, i.e. drug treatment after tumor inoculation and throughout the experiment). The "psychiatric" conditions of mice were observed from the immobility time with tail suspension and spontaneous motor activity post tumor inoculation. Significant increase of serum interleukin-12 (sIL-12) and the inhibition of tumor growth were found in mirtazapine-treated mice (always, concurrent, and after) as compared with that of never. In addition, interferon-γ level and immunocompetent infiltrating CD4+/CD8+ T cells in the tumors of mirtazapine-treated, tumor-bearing mice were significantly higher as compared with that of never. Tumor necrosis factor-α (TNF-α) expressions, on the contrary, are decreased in the mirtazapine-treated, tumor-bearing mice as compared with that of never. Ex vivo autoradiography with [(123)I]ADAM, a radiopharmaceutical for serotonin transporter, also confirms the similar results. Notably, better survival rates and intervals were also found in mirtazapine-treated mice. These findings, however, were not observed in the immunodeficient mice. Our results suggest that tumor growth inhibition by mirtazapine in CT26/luc colon carcinoma-bearing mice may be due to the alteration of the tumor microenvironment, which involves the activation of the immune response and the recovery of serotonin level.


Assuntos
Antagonistas Adrenérgicos alfa/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/imunologia , Imunidade Inata/efeitos dos fármacos , Hospedeiro Imunocomprometido , Mianserina/análogos & derivados , Proteínas da Membrana Plasmática de Transporte de Serotonina/agonistas , Antagonistas Adrenérgicos alfa/farmacologia , Animais , Autorradiografia , Neoplasias do Colo/patologia , Genes Reporter , Injeções Subcutâneas , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-12/biossíntese , Interleucina-12/imunologia , Luciferases , Masculino , Mianserina/farmacologia , Mianserina/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Mirtazapina , Transplante de Neoplasias , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Taxa de Sobrevida , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Microambiente Tumoral/efeitos dos fármacos , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/imunologia
3.
Exp Clin Psychopharmacol ; 14(1): 20-33, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16503702

RESUMO

Illicit use of psychostimulants, such as cocaine and methamphetamine, continues to pose a significant public health concern. On the basis of the relative success at treating opiate and tobacco users with agonist substitution treatments, this strategy has been pursued in the search for a pharmacotherapy for psychostimulant addiction. The reinforcing effects of drugs are central to their abuse liability; therefore, gaining a better understanding of the factors that determine the reinforcing effects of psychostimulants should inform the development of an effective treatment. Although the reinforcing effects of drugs are known to be multiply determined, the author's dissertation research focused on pharmacological factors. This review presents results from that research as well as findings reported in the extant literature, suggesting that the reinforcing effects of psychostimulant drugs are determined both by their pharmacodynamic and pharmacokinetic profiles. There is evidence to support the conclusion that affinity for dopamine transporters appears to be of critical importance, whereas serotonin transporters seem to serve a modulatory function. A more rapid rate of onset may enhance a drug's reinforcing effects, but a drug with a slow onset can still maintain self-administration. A drug's duration of action may only influence the rate but not the strength of responding that is maintained. Slow-onset, long-acting monoamine transporter ligands can be expected to have reinforcing effects and therefore abuse liability, which has implications for the use of these drugs as pharmacotherapies. Nonetheless, on the basis of promising preclinical and clinical findings, this appears to represent a viable treatment strategy.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/agonistas , Reforço Psicológico , Proteínas da Membrana Plasmática de Transporte de Serotonina/agonistas , Estimulantes do Sistema Nervoso Central/administração & dosagem , Estimulantes do Sistema Nervoso Central/farmacocinética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Humanos , Esquema de Reforço , Autoadministração , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA