RESUMO
This study investigates the prolonged effect of immune disease resistance in Litopenaeus vannamei through the administration of tyramine (TA) formulated with polyethylene glycol (PEG). Facing the challenges of intensive farming, environmental stress, and global climate changes, innovative approaches to improve shrimp health are essential. The research focuses on the role of biogenic amines in stress response and immune regulation, demonstrating that TA, especially when combined with PEG, significantly prolongs immunity and resistance against Vibrio alginolyticus. The experimental design included administering TA, PEG, and TA-PEG, followed by evaluations of immunity, lactate and glucose levels, and immune-related gene expressions. Results showed notable prolonged effects in total hemocyte count, phenoloxidase activity, and phagocytic activity in the TA-PEG group, indicating enhanced immune activation period. Additionally, the expression of prophenoloxidase system-related genes was significantly upregulated in the TA-PEG group. Furthermore, the TA-PEG group exhibited a significantly higher survival rate in a susceptibility test against V. alginolyticus. The results of this study confirm that the combined use of PEG can effectively extend the immunostimulatory duration of TA.
Assuntos
Resistência à Doença , Hemócitos , Penaeidae , Polietilenoglicóis , Tiramina , Vibrio alginolyticus , Animais , Penaeidae/imunologia , Polietilenoglicóis/química , Polietilenoglicóis/administração & dosagem , Vibrio alginolyticus/imunologia , Vibrio alginolyticus/fisiologia , Resistência à Doença/imunologia , Resistência à Doença/genética , Hemócitos/imunologia , Catecol Oxidase/metabolismo , Imunidade Inata , Vibrioses/imunologia , Precursores Enzimáticos/metabolismo , Precursores Enzimáticos/genética , Fagocitose , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/imunologia , Adjuvantes Imunológicos/administração & dosagemRESUMO
Litopenaeus vannamei is a widely distributed euryhaline aquatic animal, affected by low salinity, which can impact its disease resistance and immunity. However, there is a limited understanding of the adaptation mechanisms of L. vannamei with different genetic backgrounds to low salinity. Therefore, the present study aimed to compare the immunity characteristics and transcriptomics of L. vannamei low salt-tolerant (FG I/J) and low salt-sensitive (control) families. Also, the disease resistance and immune parameters (including [THC], hemolymph cell viability, lysozyme activity [LZM], phenoloxidase content [PO], interleukin-6 [IL-6], and tumor necrosis factor-alpha [TNF-α]) of the FG I/J and control families of L. vannamei under low salinity (5) and ambient salinity (24) were examined. Additionally, hepatopancreas transcriptomics of the FG I/J and control families were analyzed at a salinity of 5. The results showed that the FG I/J family had higher disease resistance to Vibrio parahaemolyticus and stronger immunological capacity than the control family. Transcriptomic analysis showed significantly enriched energy metabolism and immune regulation pathways. Therefore, we speculated that energy metabolism provides sufficient energy for immunological modulation in the FG I/J family to deal with long-term low-salt stress and achieve high growth and survival rates.
Assuntos
Resistência à Doença , Perfilação da Expressão Gênica , Penaeidae , Tolerância ao Sal , Transcriptoma , Animais , Penaeidae/imunologia , Penaeidae/genética , Resistência à Doença/genética , Resistência à Doença/imunologia , Tolerância ao Sal/genética , Vibrio parahaemolyticus/fisiologia , Vibrio parahaemolyticus/imunologia , Vibrioses/imunologia , Hepatopâncreas/imunologia , Hepatopâncreas/metabolismo , Salinidade , Imunidade Inata , Hemolinfa/metabolismo , Hemolinfa/imunologia , Metabolismo Energético/genética , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismoRESUMO
Ultraviolet (UV) light is widely used for disinfection in indoor environments. Some wavelengths of UV light can produce high concentration of O3. UV irradiation combined with O3 may have great potential for nitration of allergens in the presence of NO2 in the air. In this study, the effects of UV irradiation on the nitration of three major indoor allergens including group â allergens of house dust mite (Der p 1 and Der f 1) and group â allergen of dog (Can f 1) in the presence of NO2 and O3 were investigated by analysis of the protein quantity, tyrosine, peptides, and nitration degree. The results showed that UV irradiation induced a significant increase in the quantity of 3-nitrotyrosine in the allergens from 0.4 ± 0.4 ng to 4.0 ± 0.8 ng. After 12 h of UV-O3 co-exposure, the total nitration degrees of the three allergens ranged from 0.1% to 0.5%, which were significantly higher than those after only O3 exposure (p < 0.05). The analysis of peptides revealed that the nitration of tyrosine was site-specific. The tyrosine Y231, which was adjacent to aspartic acid, posed the highest nitration degree of 41.1 ± 24.0% in Der p 1. The nitration degree of tyrosine Y162 was the highest (1.7 ± 0.1%) in Der f 1. Overall, this study demonstrated that UV irradiation enhanced the O3-related nitration of allergens in the air, which provides an experimental basis for the impact of daily disinfection behavior on allergens.
Assuntos
Alérgenos , Antígenos de Dermatophagoides , Tirosina , Raios Ultravioleta , Animais , Tirosina/química , Tirosina/análogos & derivados , Antígenos de Dermatophagoides/química , Ozônio/química , Cisteína Endopeptidases/metabolismo , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/química , Dióxido de Nitrogênio/química , Poluição do Ar em Ambientes Fechados/prevenção & controle , Cães , Desinfecção/métodosRESUMO
The muscle LIM protein (MLP) is a member of the cysteine and glycine-rich protein (CSRP) family, composed of CSRP1, CSRP2 and CSRP3/MLP. MLP is involved in a multitude of functional roles, including cytoskeletal organization, transcriptional regulation, and signal transduction. However, the molecular mechanisms underlying its involvement in immune and stress responses remain to be elucidated. This study identified an MnMLP in the freshwater crustacean Macrobrachium nipponense. The isothermal titration calorimetry assay demonstrated that recombinant MnMLP was capable of coordinating with Zn2+. Upon challenge by Aeromonas veronii or WSSV, and exposure to CdCl2, up-regulation was recorded in the muscle and intestinal tissues, suggesting its involvement in immune and anti-stress responses. MnMLP protein was predominantly expressed in the cytoplasm of the transfected HEK-293T cells, but after treatment with LPS, Cd2+ or H2O2, the MnMLP was observed to be transferred into the nucleus. The comet assay demonstrated that the overexpression of MnMLP could mitigate the DNA damage induced by H2O2 in HEK-293T cells, suggesting the potential involvement of MnMLP in the DNA repair process. These findings suggest that DNA repair may represent a possible mechanism by which MnMLP may be involved in the host's defense against pathogens and stress.
Assuntos
Proteínas de Artrópodes , Imunidade Inata , Palaemonidae , Estresse Fisiológico , Palaemonidae/imunologia , Palaemonidae/genética , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/química , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Sequência de Aminoácidos , Filogenia , Proteínas Musculares/genética , Proteínas Musculares/imunologia , Proteínas Musculares/metabolismo , Alinhamento de Sequência , Proteínas com Domínio LIM/genética , Perfilação da Expressão Gênica/veterinária , Células HEK293RESUMO
Molting is a crucial biological process of crustaceans. Crustaceans go through three separate stages throughout their molting process, including pre-molt, post-molt and inter-molt. However, the exact mechanism of immunological modulation during molting remains unclear. Tumor necrosis factor receptor-associated factor 6 (TRAF6) has been extensively documented to participate in immune defense. In the present study, a TRAF6 gene with two TRAF-type zinc finger domains was identified from Eriocheir sinensis (designed as EsTRAF6), and its role in regulating immune response during molting process was explored. The mRNA expression level of EsTRAF6 at pre-molt stage was higher than that at post-molt stage and inter-molt stage. After Aeromonas hydrophila stimulation, the expression levels of EsTRAF6, EsRelish and anti-lipopolysaccharide factors (ALFs) genes exhibited a considerable increase at three molting stages. Subsequently, the expression patterns of EsTRAF6 and EsRelish in response to the treatment with 20-hydroxyecdysone (20E) were examined. The mRNA expression of EsTRAF6 and EsRelish were significantly increased at 12 h after 20E injection. Additionally, the protein expression level of TRAF6 was also up-regulated in 20E group compared to control group. Furthermore, the role of EsTRAF6 in regulating the anti- ALFs expression at pre-molt stage post A. hydrophila stimulation was investigated. Following the inhibition of the EsTRAF6 transcript using RNAi or the injection of inhibitor (TMBPS), there was a notable decrease of the EsALF1, EsALF2 and EsALF3 transcripts. Moreover, a significant reduction in the phosphorylation level of NF-κB at pre-molt stage was observed after A. hydrophila stimulation in TRAF6-inhibited crabs. Collectively, our results suggest that EsTRAF6 could be induced by 20E and promoted the EsALFs expression by activating NF-κB at pre-molt stage, which provides a novel insight into the research of immune regulatory mechanism during the process of molting of crustaceans.
Assuntos
Proteínas de Artrópodes , Decápodes , NF-kappa B , Fator 6 Associado a Receptor de TNF , Animais , Aeromonas hydrophila/fisiologia , Sequência de Aminoácidos , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/química , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Muda/imunologia , Muda/genética , NF-kappa B/genética , NF-kappa B/metabolismo , NF-kappa B/imunologia , Filogenia , Alinhamento de Sequência/veterinária , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/imunologiaRESUMO
Iron-binding proteins, known as ferritins, play pivotal roles in immunological response, detoxification, and iron storage. Despite their significance to organisms, little is known about how they affect the immunological system of the red swamp crayfish (Procambarus clarkii). In our previous research, one ferritin subunit was completely discovered as an H-like subunit (PcFeH) from P. clarkii. The full-length cDNA of PcFerH is 1779 bp, including a 5'-UTR (untranslated region, UTR) of 89 bp, 3'-UTR (untranslated region, UTR) of 1180 bp and an ORF (open reading frame, ORF) of 510 bp encoding a polypeptide of 169 amino acids that contains a signal peptide and a Ferritin domain. The deduced PcFerH protein sequence has highly identity with other crayfish. PcFerH protein's estimated tertiary structure is quite comparable to animal structure. The PcFerH is close to Cherax quadricarinatus, according to phylogenetic analysis. All the organs examined showed widespread expression of PcFerH mRNA, with the ovary exhibiting the highest levels of expression. Additionally, in crayfish muscles, intestines, and gills, the mRNA transcript of PcFerH was noticeably up-regulated, after LPS and Poly I:C challenge. The expression of downstream genes in the immunological signaling system was suppressed when the PcFerH gene was knocked down. All of these findings suggested that PcFerH played a vital role in regulating the expression of downstream effectors in the immunological signaling pathway of crayfish.
Assuntos
Astacoidea , Imunidade Inata , Filogenia , Animais , Astacoidea/imunologia , Astacoidea/genética , Sequência de Aminoácidos , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/metabolismoRESUMO
Horseshoe crabs are living fossils. In recent decades, the population of horseshoe crabs, especially the tri-spine horseshoe crab Tachypleus tridentatus, has decreased significantly and was listed as an 'endangered species' under the IUCN Red List in 2019. In order to improve the reproduction of T. tridentatus to facilitate stock enhancement, it is important to understand their ovarian development. In this study, a novel TtVtg2-like gene from T. tridentatus was cloned and functionally characterized. The total legth of TtVtg2-like was 5469 bp, encoding a protein consisting of 1822 amino acid with a pI value of 6.51 and a molecular weight of 208.68 KDa. The TtVtg2-like was highly expressed in the ovary and yellow connective tissues, mainly localized in cytoplasm and endoplasmic reticulum vesicles of oocytes and yellow connective tissues, respectively. RNA interference of TtVtg2-like caused the accumulation of ROS, DNA damage, and apoptosis of ovarian primary cells. The results of this study provide useful baseline information for future studies on ovarian development in horseshoe crabs.
Assuntos
Clonagem Molecular , Caranguejos Ferradura , Ovário , Animais , Ovário/metabolismo , Ovário/crescimento & desenvolvimento , Feminino , Caranguejos Ferradura/genética , Sequência de Aminoácidos , Filogenia , Apoptose/genética , Espécies Reativas de Oxigênio/metabolismo , Dano ao DNA , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/químicaRESUMO
Type II crustacean hyperglycemic hormone (CHH) neuropeptides play diverse roles in crustaceans. In the hermaphrodite shrimp Lysmata vittata, two transcripts of type II CHHs (molt-inhibiting hormone/gonad-inhibiting hormone, MIH/GIH1 and MIH/GIH2) were identified by transcriptome sequencing, and MIH/GIH1 was later named Lvit-GIH1 for its inhibitory effect on ovarian development. Based on the high similarity of MIH/GIH2 to Lvit-GIH1, we named tentatively MIH/GIH2 as Lvit-GIH2 and explored the role of Lvit-GIH2 in ovarian development. The open reading frame (ORF) of Lvit-GIH2 was 333 bp in length, encoding a precursor consisted of a 32-aa signal peptide and a 78-aa mature peptide, which shared high sequence similarity with the type II subfamily peptides in crustaceans. Notably, Lvit-GIH2 was widely expressed in multiple tissues. The qRT-PCR findings indicated a rising trend in the expression of Lvit-GIH2 from the male phase to the euhermaphrodite phase. Both RNA interference and addition of GIH2 recombinant proteins (rGIH2) experiments showed that Lvit-GIH2 suppressed Lvit-Vg expression in hepatopancreas and Lvit-VgR expression in ovary. To further investigate the role of Lvit-GIH2 in ovarian development, the RNA-sequence analysis was performed to examine the changes in ovary after addition of rGIH2. The results showed that the pathways (Cysteine and methionine metabolism, Apoptosis-multiple species, etc.) and the genes (17bHSD8, IGFR, CHH, etc.) related to ovarian development were negatively regulated by rGIH2. In brief, Lvit-GIH2 might inhibit the ovarian development in L. vittata.
Assuntos
Proteínas de Artrópodes , Neuropeptídeos , Ovário , Animais , Ovário/metabolismo , Ovário/crescimento & desenvolvimento , Feminino , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Hormônios de Invertebrado/metabolismo , Hormônios de Invertebrado/genética , Sequência de Aminoácidos , Penaeidae/crescimento & desenvolvimento , Penaeidae/genética , Penaeidae/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Masculino , FilogeniaRESUMO
Lysozymes are hydrolytic enzymes, and they are ubiquitous among all living organisms. They are mostly associated with antibacterial properties through their muramidase activity, while other properties such as iso-peptidase activity are also common. Invertebrate-type (i-type) lysozymes include the enzyme Destabilase, which is present in the salivary secretions of the medicinal leach Hirundo medicinalis. Destabilase has the ability to hydrolyse the ε-(γ-glutamyl)-lysine iso-peptide bonds formed by transglutaminase in fibrin of vertebrate blood, thereby destabilising blood clots. We have identified an i-type lysozyme from the hemocytes of the freshwater crayfish Pacifastacus leniusculus, which was found to be upregulated at the protein level in response to an injection of the ß-1,3-glucan laminarin. Based on its sequence we predicted that this lysozyme would lack muramidase activity, and therefore we decided to determine its putative immune function. The P. leniusculus i-type lysozyme (Pl-ilys), is a protein with 159 amino acid residues, including a 29 residue signal peptide, with a predicted molecular weight of 16 kDa and a predicted pI of 5.6. It is expressed primarily in the hemocytes and to a lesser extent in the hematopoietic tissue. A recombinant mature Pl-ilys using an E. coli expression system was produced, and we could ascertain that this enzyme was deficient of muramidase activity. Moreover, no iso-peptidase activity could be detected against the substrate l-γ-glutamine-p-nitroanilide. Analysis of the conserved domains in Pl-ilys showed a putative destabilase domain, and thus we tested the clot dissolving activity of this enzyme. We could show that the purified P. leniusculus clotting protein which had been coagulated and clotted with transglutaminase was dissolved by the addition of Pl-ilys. Taken together our results indicate that Pl-ilys has a clot dissolving or destabilising activity in crustacean blood.
Assuntos
Proteínas de Artrópodes , Astacoidea , Muramidase , Animais , Muramidase/imunologia , Muramidase/metabolismo , Muramidase/química , Muramidase/genética , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/química , Astacoidea/imunologia , Astacoidea/genética , Sequência de Aminoácidos , Filogenia , Alinhamento de Sequência/veterinária , Imunidade Inata , Hemócitos/imunologia , Sequência de Bases , Coagulação Sanguínea/efeitos dos fármacos , Perfilação da Expressão Gênica/veterináriaAssuntos
Antígenos de Dermatophagoides , Proteínas de Artrópodes , Proteínas de Membrana , Mucosa Respiratória , Transdução de Sinais , Humanos , Animais , Proteínas de Membrana/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Antígenos de Dermatophagoides/imunologia , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/metabolismo , Camundongos , Inflamação/metabolismo , Inflamação/imunologia , Cisteína EndopeptidasesRESUMO
Sinopotamon Henanense expresses two metalâinduced metallothioneins (MTs), Cdâinduced MT and Cuâinduced MT (ShCuMT). The Cdâinduced MT has been characterized as a Cdâthiolate MT. However, it is unknown whether ShCuMT is a Cuâthiolate MT. In the present study, ShCuMT was expressed heterologously in Escherichia coli and purified by NiâNTA column and superdexâ75 column. And its metalâbinding feature was evaluated by DTNB reaction, circular dichroism spectroscopy (CD), isothermal microtitration (ITC), electrospray flight mass spectrometry (ESIâTOFâMS), and matrixâassisted laser desorption ionization flight mass spectrometry (MALDIâTOFâMS). Bioinformatics analysis demonstrated that ShCuMT possessed the cysteineâtriplet motif of a Cuâspecific MT. Expression and purification of ShCuMT illustrated that SUMO tag used as the production system for ShCuMT resulted in a high production yield. The stability order of ShCuMT binding metal ions were Cu (â ) > Cd (â ¡) > Zn (â ¡). The CD spectrum indicated that ShCuMT binding with Cu (I) exhibited a compact thiol metal clusters structure. Besides, there emerged no a visible nickelâthiol absorption after NiâNTA column affinity chromatography. The ITC results implied that CuâShCuMT possessed the optimal thermodynamic conformation and the highest stoichiometric number of Cu (â ). Overall, the results suggested that SUMO fusion system is a robust and inexpensive approach for ShCuMT expression and NiâNTA column had no influence on metal binding of ShCuMT and Cu(â ) was considered its cognate metal ion, and ShCuMT possessed canonical Cuâthiolate characteristics. The metal binding feature of ShCuMT reported here contributes to elucidating the structureâfunction relationship of ShCuMT in S. Henanense.
Assuntos
Cobre , Metalotioneína , Metalotioneína/genética , Metalotioneína/química , Metalotioneína/metabolismo , Metalotioneína/isolamento & purificação , Animais , Cobre/metabolismo , Cobre/química , Braquiúros/genética , Braquiúros/metabolismo , Braquiúros/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/química , Proteínas de Artrópodes/metabolismo , Cádmio/metabolismo , Cádmio/química , Escherichia coli/genética , Escherichia coli/metabolismo , Sequência de Aminoácidos , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/biossínteseRESUMO
The long-term use of pesticides in the field, and the high fertility and adaptability of phytophagous mites have led to resistance problems; consequently, novel safe and efficient active substances are necessary to broaden the tools of pest mite control. Natural enemies of arthropods typically secrete substances with paralytic or lethal effects on their prey, and those substances are a resource for future biopesticides. In this study, two putative venom peptide genes were identified in a parasitic mite Neoseiulus barkeri transcriptome. Recombinant venom NbSP2 peptide injected into Tetranychus cinnabarinus mites was significantly more lethal than recombinant NBSP1. NbSP2 was also lethal to Spodoptera litura when injected but not when fed to third instar larvae. The interaction proteins of NbSP2 in T. cinnabarinus and S. litura were identified by affinity chromatography. Among these proteins, ATP synthase subunit ß (ATP SSß) was deduced as a potential target. Four binding sites were predicted between NBSP2 and ATP SSß of T. cinnabarinus and S. litura. In conclusion, we identified a venom peptide with activity against T. cinnabarinus and S. litura. This study provides a novel component for development of a new biological pesticide.
Assuntos
Peptídeos , Venenos de Aranha , Animais , Venenos de Aranha/química , Venenos de Aranha/genética , Peptídeos/farmacologia , Peptídeos/química , Ácaros/efeitos dos fármacos , Spodoptera/efeitos dos fármacos , Tetranychidae/efeitos dos fármacos , Tetranychidae/genética , Controle Biológico de Vetores/métodos , Sequência de Aminoácidos , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/química , Comportamento Predatório/efeitos dos fármacosRESUMO
Crustacean shellfish are major allergens in East Asia. In the present study, a major allergic protein in crustaceans, tropomyosin, was detected accurately using multiple reaction monitoring mode-based mass spectrometry, with shared signature peptides identified through proteomic analysis. The peptides were deliberately screened through thermal stability and enzymatic digestion efficiency to improve the suitability and accuracy of the developed method. Finally, the proposed method demonstrated a linear range of 0.15 to 30 mgTM/kgfood (R2 > 0.99), with a limit of detection of 0.15 mgTM/kg food and a limit of quantification of 0.5mgTM/kgfood and successfully applied to commercially processed foods, such as potato chips, biscuits, surimi, and hot pot seasonings, which evidenced the applicability of proteomics-based methodology for food allergen analysis.
Assuntos
Alérgenos , Peptídeos , Proteômica , Frutos do Mar , Tropomiosina , Animais , Alérgenos/química , Alérgenos/imunologia , Proteínas de Artrópodes/química , Proteínas de Artrópodes/imunologia , Crustáceos/química , Hipersensibilidade Alimentar/imunologia , Alimento Processado , Espectrometria de Massas/métodos , Peptídeos/química , Proteômica/métodos , Frutos do Mar/análise , Hipersensibilidade a Frutos do Mar/imunologia , Tropomiosina/química , Tropomiosina/imunologiaRESUMO
Aquatic environments are subject to ultraviolet B (UVB) radiation incidence, and its effects on organisms are dose-dependent. Besides DNA, mitochondria are an important target of this radiation that causes structural damage and impairs its functional dynamics. Here, we hypothesize that mitophagy acts as an organelle quality control mechanism to mitigate UVB impacts in embryonic cells. Then, freshwater prawn Macrobrachium olfersii embryos was used as a model to investigate the effects of UVB on genes (Tomm20, Opa1, Pink, Prkn, Sqstm1, and Map1lc3) and proteins (TOM20, PINK1, p62 and LC3B) involved in mitophagy modulation. The choice of genes and proteins was based on the identification of mitochondrial membrane (Tomm20, Opa1 and TOM20), mediation of mitophagy (Pink1, Prkn and PINK1), and recognition of mitochondria by the autophagosome membrane (Sqstm1, Map1lc3, p62 and LC3B). First, the phylogeny of all genes presented bootstrap values >80 and conserved domains among crustacean species. Gene expression was inherently modulated during development, with transcripts (Tomm20, Opa1, Pink, Prkn, Sqstm1, and Map1lc3) overexpressed in the initial and final stages of development. Moreover, UVB radiation induced upregulation of Tomm20, Opa1, Pink, Prkn, Sqstm1, and Map1lc3 genes at 6 h after exposure. Interestingly, after 12 h, the protein content of PINK1, p62, and LC3B increased, while TOM20 was not responsive. Despite UVB radiation's harmful effects on embryonic cells, the chronology of gene expression and protein content indicates rapid activation of mitophagy, serving as an organelle quality control mechanism, given the analyzed cells' integrity.
Assuntos
Mitofagia , Palaemonidae , Raios Ultravioleta , Animais , Raios Ultravioleta/efeitos adversos , Mitofagia/efeitos da radiação , Palaemonidae/efeitos da radiação , Palaemonidae/embriologia , Palaemonidae/genética , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Embrião não Mamífero/efeitos da radiação , Embrião não Mamífero/metabolismo , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/genética , Filogenia , Organelas/metabolismo , Organelas/efeitos da radiaçãoRESUMO
C-type lectins (CTLs) are glycan-binding pattern recognition receptors (PRRs) that can bind to carbohydrates on pathogen surfaces, triggering immune responses in shrimp innate immunity. In this study, a unique Ca2+-inhibited CTL named FcLec was identified and characterized in Chinese shrimp Fenneropenaeus chinensis. The full-length cDNA sequence of FcLec was 976 bp (GenBank accession number KU361826), with a 615 bp open reading frame (ORF) encoding 204 amino acids. FcLec possesses a C-type lectin-like domain (CTLD) containing four conserved cysteines (Cys105, Cys174, Cys192, and Cys200) and two sugar-binding site structures (QPD and LNP). The tertiary structure of FcLec deduced revealed three α-helices and eight ß-pleated sheets. The mRNA expression levels of FcLec in hemocytes and the hepatopancreas were markedly elevated after stimulation with Vibrio anguillarum and white spot syndrome virus (WSSV). The recombinant FcLec protein exhibited Ca2+-independent hemagglutination and bacterial agglutination, but these activities were observed only in the presence of EDTA to chelate metal ions. These findings suggest that FcLec plays important and functionally distinct roles in the shrimp's innate immune response to bacteria and viruses, enriching the current understanding of the relationship between CTL activity and Ca2+ in invertebrates.
Assuntos
Sequência de Aminoácidos , Proteínas de Artrópodes , Imunidade Inata , Lectinas Tipo C , Penaeidae , Filogenia , Alinhamento de Sequência , Vibrio , Vírus da Síndrome da Mancha Branca 1 , Animais , Penaeidae/imunologia , Penaeidae/genética , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Lectinas Tipo C/química , Imunidade Inata/genética , Vibrio/fisiologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/química , Alinhamento de Sequência/veterinária , Vírus da Síndrome da Mancha Branca 1/fisiologia , Sequência de Bases , Cálcio/metabolismo , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica/veterináriaRESUMO
OBJECTIVE: Der f 2, a major allergen derived from Dermatophagoides farinae, is a leading cause of allergic asthma. IL-6 and GM-CSF play essential roles in the exacerbation of asthma. However, the mechanical act by which Der f 2 mediates the expression of IL-6, IL-8, and GM-CSF in airway epithelial cells remains incompletely elucidated. Herein, we aimed to explore the effect of Der f 2 on IL-6 and GM-CSF expression in the human airway epithelial cell BEAS-2B and A549. METHODS: Recombinant Der f 2 (rDf2) was acquired using Pichia pastoris. BEAS-2B and A549 cells were used as cell model. The expression of genes and proteins and the involvement of the signaling cascade were assessed using RT-PCR, quantitative real-time PCR (qPCR), Western blotting, and ELISA, respectively. RESULTS: Our findings showed that rDf2 significantly induced mRNA expression and protein production of IL-6 and GM-CSF in BEAS-2B and A549 cells. In contrast, rDf2 did not influence IL-8 expression or production in both cells. Mechanistic studies revealed that rDf2 triggered activation of the p38 MAPK and JNK. Inhibition of p38, but not JNK, significantly attenuated rDf2-induced IL-6 and GM-CSF expression and production. CONCLUSION: This study demonstrates that Der f 2 promotes the expression and production of the pro-inflammatory cytokines IL-6 and GM-CSF in airway epithelial cells via activation of the p38 signaling pathway. These findings provide insights into the molecular mechanisms that Der f 2 may exacerbate airway inflammation.
Assuntos
Antígenos de Dermatophagoides , Proteínas de Artrópodes , Células Epiteliais , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Interleucina-6 , NF-kappa B , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno , Antígenos de Dermatophagoides/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-6/imunologia , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/genética , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Transdução de Sinais/imunologia , NF-kappa B/metabolismo , Animais , Linhagem Celular , Células A549RESUMO
BACKGROUND: Tetranychus cinnabarinus is one of the most common polyphagous arthropod herbivores, and is primarily controlled by the application of acaricides. The heavy use of acaricides has led to high levels of resistance to acaricides such as cyflumetofen, which poses a threat to global resistance management programs. Cyflumetofen resistance is caused by an increase in metabolic detoxification; however, the role of uridine diphosphate (UDP)-glycosyltransferase (UGT) genes in cyflumetofen resistance remains to be determined. RESULTS: Synergist 5-nitrouracil (5-Nul) significantly enhanced cyflumetofen toxicity in T. cinnabarinus, which indicated that UGTs are involved in the development of cyflumetofen resistance. Transcriptomic analysis and quantitative (q)PCR assays demonstrated that the UGT genes, especially UGT201H1, were highly expressed in the YN-CyR strain, compared to those of the YN-S strain. The RNA interference (RNAi)-mediated knockdown of UGT201H1 expression diminished the levels of cyflumetofen resistance in YN-CyR mites. The findings additionally revealed that the recombinant UGT201H1 protein plays a role in metabolizing cyflumetofen. Our results also suggested that the aromatic hydrocarbon receptor (AhR) probably regulates the overexpression of the UGT201H1 detoxification gene. CONCLUSION: UGT201H1 is involved in cyflumetofen resistance, and AhR may regulates the overexpression of UGT201H1. These findings provide deeper insights into the molecular mechanisms underlying UGT-mediated metabolic resistance to chemical insecticides. © 2024 Society of Chemical Industry.
Assuntos
Acaricidas , Resistência a Medicamentos , Tetranychidae , Animais , Tetranychidae/genética , Tetranychidae/efeitos dos fármacos , Acaricidas/farmacologia , Resistência a Medicamentos/genética , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Propionatos/farmacologia , Glicosiltransferases/genética , Glicosiltransferases/metabolismoRESUMO
Sublingual allergen immunotherapy (SLIT) is an emerging treatment option for allergic asthma and a potential disease-modifying strategy for asthma prevention. The key cellular events leading to such long-term tolerance remain to be fully elucidated. We administered prophylactic SLIT in a mouse model of house dust mite (HDM)-driven allergic asthma. HDM extract was sublingually administered over 3 weeks followed by intratracheal sensitization and intranasal challenges with HDM. Prophylactic SLIT prevented allergic airway inflammation and hyperreactivity with a low lab-to-lab variation. The HDM-specific T helper (Th)2 (cluster of differentiation 4 Th) response was shifted by SLIT toward a regulatory and Th17 response in the lung and mediastinal lymph node. By using Derp1-specific cluster of differentiation 4+ T cells (1-DER), we found that SLIT blocked 1-DER T cell recruitment to the mediastinal lymph node and dampened IL-4 secretion following intratracheal HDM sensitization. Sublingually administered Derp1 protein activated 1-DER T cells in the cervical lymph node via chemokine receptor7+ migratory dendritic cells (DC). DCs migrating from the oral submucosa to the cervical lymph node after SLIT-induced Foxp3+ regulatory T cells. When mice were sensitized with HDM, prior prophylactic SLIT increased Derp1 specific regulatory T cells (Tregs) and lowered Th2 recruitment in the lung. By using Foxp3-diphtheria toxin receptor mice, Tregs were found to contribute to the immunoregulatory prophylactic effect of SLIT on type 2 immunity. These findings in a mouse model suggest that DC-mediated functional Treg induction in oral mucosa draining lymph nodes is one of the driving mechanisms behind the disease-modifying effect of prophylactic SLIT.
Assuntos
Antígenos de Dermatophagoides , Asma , Células Dendríticas , Modelos Animais de Doenças , Fatores de Transcrição Forkhead , Pyroglyphidae , Imunoterapia Sublingual , Linfócitos T Reguladores , Células Th2 , Animais , Linfócitos T Reguladores/imunologia , Células Dendríticas/imunologia , Camundongos , Pyroglyphidae/imunologia , Fatores de Transcrição Forkhead/metabolismo , Antígenos de Dermatophagoides/imunologia , Asma/imunologia , Asma/terapia , Asma/prevenção & controle , Imunoterapia Sublingual/métodos , Células Th2/imunologia , Proteínas de Artrópodes/imunologia , Feminino , Alérgenos/imunologia , Alérgenos/administração & dosagem , Camundongos Endogâmicos BALB C , Humanos , Dessensibilização Imunológica/métodos , Cisteína Endopeptidases/imunologia , Cisteína Endopeptidases/metabolismoRESUMO
Plants can produce complex pharmaceutical and technical proteins. Spider silk proteins are one example of the latter and can be used, for example, as compounds for high-performance textiles or wound dressings. If genetically fused to elastin-like polypeptides (ELPs), the silk proteins can be reversibly precipitated from clarified plant extracts at moderate temperatures of ~ 30 °C together with salt concentrations > 1.5 M, which simplifies purification and thus reduces costs. However, the technologies developed around this mechanism rely on a repeated cycling between soluble and aggregated state to remove plant host cell impurities, which increase process time and buffer consumption. Additionally, ELPs are difficult to detect using conventional staining methods, which hinders the analysis of unit operation performance and process development. Here, we have first developed a surface plasmon resonance (SPR) spectroscopy-based assay to quantity ELP fusion proteins. Then we tested different filters to prepare clarified plant extract with > 50% recovery of spider silk ELP fusion proteins. Finally, we established a membrane-based purification method that does not require cycling between soluble and aggregated ELP state but operates similar to an ultrafiltration/diafiltration device. Using a data-driven design of experiments (DoE) approach to characterize the system of reversible ELP precipitation we found that membranes with pore sizes up to 1.2 µm and concentrations of 2-3 M sodium chloride facilitate step a recovery close to 100% and purities of > 90%. The system can thus be useful for the purification of ELP-tagged proteins produced in plants and other hosts.
Assuntos
Polipeptídeos Semelhantes à Elastina , Seda , Seda/genética , Proteínas de Artrópodes , Elastina/genética , Elastina/química , Elastina/metabolismo , Nicotiana/genética , Proteínas Recombinantes de Fusão/genéticaRESUMO
The potential functional role(s) of heat shock protein 70 (Hsp70) in the brine shrimp, Artemia franciscana, a crucial crustacean species for aquaculture and stress response studies, was investigated in this study. Though we have previously reported that Hsp70 knockdown may have little or no impact on Artemia development, the gestational survival and number of offspring released by adult females were impaired by obscuring Hsp70 synthesis. Transcriptomic analysis revealed that several cuticle and chitin synthetic genes were downregulated, and carbohydrate metabolic genes were differentially expressed in Hsp70-knockdown individuals. A more comprehensive microscopic examination performed in this study revealed exoskeleton structural destruction and abnormal eye lenses featured in Hsp70-deficient adult females 48 h after Hsp70 dsRNA injection. Cysts produced by these Hsp70-deficient broods, instead, had a defective shell and were smaller in size, whereas nauplii had shorter first antennae and a rougher body epicuticle surface. Changes in carbohydrate metabolism caused by Hsp70 knockdown affected glycogen levels in adult Artemia females, as well as trehalose in cysts released from these broods, indicating that Hsp70 may play a role in energy storage preservation. Outcomes from this work provided novel insights into the roles of Hsp70 in Artemia reproduction performance, cyst formation, and exoskeleton structure preservation. The findings also support our previous observation that Hsp70 knockdown reduced Artemia nauplius tolerance to bacterial pathogens, which could be explained by the fact that loss of Hsp70 downregulated several Toll receptor genes (NT1 and Spaetzle) and reduced the integrity of the exoskeleton, allowing pathogens to enter and cause infection, ultimately resulting in mortality.