Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
J Biol Chem ; 299(7): 104902, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37302554

RESUMO

Fusobacterium nucleatum is an opportunistic oral pathogen that is associated with various cancers. To fulfill its essential need for iron, this anaerobe will express heme uptake machinery encoded at a single genetic locus. The heme uptake operon includes HmuW, a class C radical SAM-dependent methyltransferase that degrades heme anaerobically to release Fe2+ and a linear tetrapyrrole called anaerobilin. The last gene in the operon, hmuF encodes a member of the flavodoxin superfamily of proteins. We discovered that HmuF and a paralog, FldH, bind tightly to both FMN and heme. The structure of Fe3+-heme-bound FldH (1.6 Å resolution) reveals a helical cap domain appended to the ⍺/ß core of the flavodoxin fold. The cap creates a hydrophobic binding cleft that positions the heme planar to the si-face of the FMN isoalloxazine ring. The ferric heme iron is hexacoordinated to His134 and a solvent molecule. In contrast to flavodoxins, FldH and HmuF do not stabilize the FMN semiquinone but instead cycle between the FMN oxidized and hydroquinone states. We show that heme-loaded HmuF and heme-loaded FldH traffic heme to HmuW for degradation of the protoporphyrin ring. Both FldH and HmuF then catalyze multiple reductions of anaerobilin through hydride transfer from the FMN hydroquinone. The latter activity eliminates the aromaticity of anaerobilin and the electrophilic methylene group that was installed through HmuW turnover. Hence, HmuF provides a protected path for anaerobic heme catabolism, offering F. nucleatum a competitive advantage in the colonization of anoxic sites of the human body.


Assuntos
Flavodoxina , Fusobacterium nucleatum , Heme , Tetrapirróis , Humanos , Mononucleotídeo de Flavina/metabolismo , Flavodoxina/química , Flavodoxina/classificação , Flavodoxina/genética , Flavodoxina/metabolismo , Fusobacterium nucleatum/química , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/metabolismo , Heme/metabolismo , Ferro/metabolismo , Oxirredução , Tetrapirróis/metabolismo , Transporte Biológico , Genes Bacterianos , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínios Proteicos , Infecções por Fusobacterium/microbiologia
2.
Nature ; 613(7945): 729-734, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36450357

RESUMO

Peptidoglycan and almost all surface glycopolymers in bacteria are built in the cytoplasm on the lipid carrier undecaprenyl phosphate (UndP)1-4. These UndP-linked precursors are transported across the membrane and polymerized or directly transferred to surface polymers, lipids or proteins. UndP is then flipped to regenerate the pool of cytoplasmic-facing UndP. The identity of the flippase that catalyses transport has remained unknown. Here, using the antibiotic amphomycin that targets UndP5-7, we identified two broadly conserved protein families that affect UndP recycling. One (UptA) is a member of the DedA superfamily8; the other (PopT) contains the domain DUF368. Genetic, cytological and syntenic analyses indicate that these proteins are UndP transporters. Notably, homologues from Gram-positive and Gram-negative bacteria promote UndP transport in Bacillus subtilis, indicating that recycling activity is broadly conserved among family members. Inhibitors of these flippases could potentiate the activity of antibiotics targeting the cell envelope.


Assuntos
Proteínas de Bactérias , Proteínas de Transporte , Sequência Conservada , Evolução Molecular , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Fosfatos de Poli-Isoprenil , Antibacterianos/farmacologia , Bacillus subtilis/citologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/classificação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Bactérias Gram-Negativas/citologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/citologia , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Sintenia , Peptidoglicano/metabolismo , Parede Celular/química , Parede Celular/metabolismo
3.
J Biol Chem ; 298(10): 102392, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988643

RESUMO

Enzymes involved in Staphylococcus aureus amino acid metabolism have recently gained traction as promising targets for the development of new antibiotics, however, not all aspects of this process are understood. The ATP-grasp superfamily includes enzymes that predominantly catalyze the ATP-dependent ligation of various carboxylate and amine substrates. One subset, ʟ-amino acid ligases (LALs), primarily catalyze the formation of dipeptide products in Gram-positive bacteria, however, their involvement in S. aureus amino acid metabolism has not been investigated. Here, we present the characterization of the putative ATP-grasp enzyme (SAOUHSC_02373) from S. aureus NCTC 8325 and its identification as a novel LAL. First, we interrogated the activity of SAOUHSC_02373 against a panel of ʟ-amino acid substrates. As a result, we identified SAOUHSC_02373 as an LAL with high selectivity for ʟ-aspartate and ʟ-methionine substrates, specifically forming an ʟ-aspartyl-ʟ-methionine dipeptide. Thus, we propose that SAOUHSC_02373 be assigned as ʟ-aspartate-ʟ-methionine ligase (LdmS). To further understand this unique activity, we investigated the mechanism of LdmS by X-ray crystallography, molecular modeling, and site-directed mutagenesis. Our results suggest that LdmS shares a similar mechanism to other ATP-grasp enzymes but possesses a distinctive active site architecture that confers selectivity for the ʟ-Asp and ʟ-Met substrates. Phylogenetic analysis revealed LdmS homologs are highly conserved in Staphylococcus and closely related Gram-positive Firmicutes. Subsequent genetic analysis upstream of the ldmS operon revealed several trans-acting regulatory elements associated with control of Met and Cys metabolism. Together, these findings support a role for LdmS in Staphylococcal sulfur amino acid metabolism.


Assuntos
Proteínas de Bactérias , Cisteína , Metionina , Peptídeo Sintases , Staphylococcus aureus , Trifosfato de Adenosina/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Dipeptídeos/biossíntese , Metionina/química , Metionina/metabolismo , Filogenia , Staphylococcus aureus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Peptídeo Sintases/química , Peptídeo Sintases/classificação , Peptídeo Sintases/genética , Cisteína/química , Cisteína/metabolismo
4.
Cell Mol Life Sci ; 79(3): 179, 2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35253091

RESUMO

ATP synthases are unique rotatory molecular machines that supply biochemical reactions with adenosine triphosphate (ATP)-the universal "currency", which cells use for synthesis of vital molecules and sustaining life. ATP synthases of F-type (FOF1) are found embedded in bacterial cellular membrane, in thylakoid membranes of chloroplasts, and in mitochondrial inner membranes in eukaryotes. The main functions of ATP synthases are control of the ATP synthesis and transmembrane potential. Although the key subunits of the enzyme remain highly conserved, subunit composition and structural organization of ATP synthases and their assemblies are significantly different. In addition, there are hypotheses that the enzyme might be involved in the formation of the mitochondrial permeability transition pore and play a role in regulation of the cell death processes. Dysfunctions of this enzyme lead to numerous severe disorders with high fatality levels. In our review, we focus on FOF1-structure-based approach towards development of new therapies by using FOF1 structural features inherited by the representatives of this enzyme family from different taxonomy groups. We analyzed and systematized the most relevant information about the structural organization of FOF1 to discuss how this approach might help in the development of new therapies targeting ATP synthases and design tools for cellular bioenergetics control.


Assuntos
Desenho de Fármacos , ATPases Translocadoras de Prótons/metabolismo , Trifosfato de Adenosina/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Cloroplastos/metabolismo , Eucariotos/metabolismo , Filogenia , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/antagonistas & inibidores , ATPases Translocadoras de Prótons/classificação , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo
5.
J Gen Appl Microbiol ; 67(5): 186-194, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34176819

RESUMO

L-Pipecolic acid is utilized as a vital component of specific chemical compounds, such as immunosuppressive drugs, anticancer reagents, and anesthetic reagents. We isolated and characterized a novel L-aminoacylase, N-acetyl-L-pipecolic acid-specific aminoacylase (LpipACY), from Pseudomonas sp. AK2. The subunit molecular mass of LpipACY was 45 kDa and was assumed to be a homooctamer in solution. The enzyme exhibited high substrate specificity toward N-acetyl-L-pipecolic acid and a high activity for N-acetyl-L-pipecolic acid and N-acetyl-L-proline. This enzyme was stable at a high temperature (60°C for 10 min) and under an alkaline pH (6.0-11.5). The N-terminal and internal amino acid sequences of the purified enzyme were STTANTLILRNG and IMASGGV, respectively. These sequences are highly consistent with those of uncharacterized proteins from Pseudomonas species, such as amidohydrolase and peptidase. We also cloned and overexpressed the gene coding LpipACY in Escherichia coli. Moreover, the recombinant LpipACY exhibited properties similar to native enzyme. Our results suggest that LpipACY is a potential enzyme for the enzymatic synthesis of L-pipecolic acid. This study provides the first description of the enzymatic characterization of L-pipecolic acid specific amino acid acylase.


Assuntos
Amidoidrolases/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Pseudomonas/enzimologia , Amidoidrolases/química , Proteínas de Bactérias/classificação
6.
mBio ; 12(3)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006654

RESUMO

Genomic information from various magnetotactic bacteria suggested that besides their common ability to form magnetosomes, they potentially also represent a source of bioactive natural products. By using targeted deletion and transcriptional activation, we connected a large biosynthetic gene cluster (BGC) of the trans-acyltransferase polyketide synthase (trans-AT PKS) type to the biosynthesis of a novel polyketide in the alphaproteobacterium Magnetospirillum gryphiswaldense Structure elucidation by mass spectrometry and nuclear magnetic resonance spectroscopy (NMR) revealed that this secondary metabolite resembles sesbanimides, which were very recently reported from other taxa. However, sesbanimide R exhibits an additional arginine moiety the presence of which reconciles inconsistencies in the previously proposed sesbanimide biosynthesis pathway observed when comparing the chemical structure and the potential biochemistry encoded in the BGC. In contrast to the case with sesbanimides D, E, and F, we were able to assign the stereocenter of the arginine moiety experimentally and two of the remaining three stereocenters by predictive biosynthetic tools. Sesbanimide R displayed strong cytotoxic activity against several carcinoma cell lines.IMPORTANCE The findings of this study contribute a new secondary metabolite member to the glutarimide-containing polyketides. The determined structure of sesbanimide R correlates with its cytotoxic bioactivity, characteristic for members of this family. Sesbanimide R represents the first natural product isolated from magnetotactic bacteria and identifies this highly diverse group as a so-far-untapped source for the future discovery of novel secondary metabolites.


Assuntos
Proteínas de Bactérias/biossíntese , Vias Biossintéticas , Magnetospirillum/metabolismo , Policetídeos/metabolismo , Metabolismo Secundário , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Produtos Biológicos/metabolismo , Filogenia
7.
PLoS One ; 16(4): e0249354, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33793664

RESUMO

Q fever is one of the most important zoonotic diseases caused by the obligate intracellular bacteria, Coxiella burnetii. This bacterial infection has been frequently reported in both humans and animals, especially ruminants. Ticks are important ectoparasite and serve as reservoir hosts of Coxiella-like endosymbionts (CLEs). In this study, we have attempted to express chaperone-coding genes from CLEs of Rhipicephalus annulatus ticks collected fromcow path. The partial DnaK coding sequence has been amplified and expressed by Escherichia coli. Amino acid sequences have been analyzed by MS-MS spectrometry and the UniProt database. Despites nucleotide sequences indicating high nucleotide variation and diversity, many nucleotide substitutions are synonymous. In addition, amino acid substitutions compensate for the physicochemical properties of the original amino acids. Immune Epitope Database and Analysis Resource (IEDB-AR) was employed to indicate the antigenicity of the partial DnaK protein and predict the epitopes of B-and T-cells. Interestingly, some predicted HLA-A and B alleles of the MHC-I and HLA-DR alleles belonging to MHC-II were similar to T-cell responses to C. burnetii in Q fever patients. Therefore, the partial DnaK protein of CLE from R. annulatus could be considered a vaccine candidate and immunogenic marker with future prospects.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Coxiella burnetii/metabolismo , Rhipicephalus/microbiologia , Adenosina Trifosfatases/classificação , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Coxiella burnetii/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Bases de Dados Genéticas , Epitopos/análise , Epitopos/imunologia , Haplótipos , Mutação , Filogenia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Simbiose
8.
Nature ; 590(7846): 463-467, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33536618

RESUMO

Actinobacteria produce numerous antibiotics and other specialized metabolites that have important applications in medicine and agriculture1. Diffusible hormones frequently control the production of such metabolites by binding TetR family transcriptional repressors (TFTRs), but the molecular basis for this remains unclear2. The production of methylenomycin antibiotics in Streptomyces coelicolor A3(2) is initiated by the binding of 2-alkyl-4-hydroxymethylfuran-3-carboxylic acid (AHFCA) hormones to the TFTR MmfR3. Here we report the X-ray crystal structure of an MmfR-AHFCA complex, establishing the structural basis for hormone recognition. We also elucidate the mechanism for DNA release upon hormone binding through the single-particle cryo-electron microscopy structure of an MmfR-operator complex. DNA binding and release assays with MmfR mutants and synthetic AHFCA analogues define the role of individual amino acid residues and hormone functional groups in ligand recognition and DNA release. These findings will facilitate the exploitation of actinobacterial hormones and their associated TFTRs in synthetic biology and in the discovery of new antibiotics.


Assuntos
Antibacterianos/biossíntese , Furanos/metabolismo , Streptomyces coelicolor/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica , Cristalografia por Raios X , DNA/química , DNA/genética , DNA/metabolismo , DNA/ultraestrutura , Furanos/química , Hormônios/química , Hormônios/classificação , Hormônios/metabolismo , Ligantes , Modelos Moleculares , Peptídeos/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/classificação , Proteínas Repressoras/metabolismo , Proteínas Repressoras/ultraestrutura , Transdução de Sinais , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Relação Estrutura-Atividade
9.
Sci Rep ; 11(1): 3199, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542438

RESUMO

Tuberculosis is a global public health problem with emergence of multidrug-resistant infections. Previous epidemiological studies of tuberculosis in Thailand have identified a clonal outbreak multidrug-resistant strain of Mycobacterium tuberculosis in the Kanchanaburi province, designated "MKR superspreader", and this particular strain later was found to also spread to other regions. In this study, we elucidated its biology through RNA-Seq analyses and identified a set of genes involved in cholesterol degradation to be up-regulated in the MKR during the macrophage cell infection, but not in the H37Rv reference strain. We also found that the bacterium up-regulated genes associated with the ESX-1 secretion system during its intracellular growth phase, while the H37Rv did not. All results were confirmed by qRT-PCR. Moreover, we showed that compounds previously shown to inhibit the mycobacterial ESX-1 secretion system and cholesterol utilisation, and FDA-approved drugs known to interfere with the host cholesterol transportation were able to decrease the intracellular survival of the MKR when compared to the untreated control, while not that of the H37Rv. Altogether, our findings suggested that such pathways are important for the MKR's intracellular growth, and potentially could be targets for the discovery of new drugs against this emerging multidrug-resistant strain of M. tuberculosis.


Assuntos
Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Colesterol/metabolismo , Interações Hospedeiro-Patógeno/genética , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Sistemas de Secreção Tipo VII/genética , Antígenos de Bactérias/metabolismo , Antituberculosos/farmacologia , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Pequim/epidemiologia , Biotransformação , Células Clonais , Surtos de Doenças , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Redes e Vias Metabólicas/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/patogenicidade , Células THP-1 , Tailândia/epidemiologia , Transcrição Gênica , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/patologia , Sistemas de Secreção Tipo VII/efeitos dos fármacos , Sistemas de Secreção Tipo VII/metabolismo
10.
Chembiochem ; 22(10): 1706-1716, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33434375

RESUMO

Poly(ethylene terephthalate) (PET) is one of the most widely used synthetic polyesters, but also a major cause of plastic pollution. Because the chemical degradation of PET would be uneconomical and rather burdensome, considerable efforts have been devoted to exploring enzymatic processes for the disposal of PET waste. Many PET-hydrolyzing enzymes have been reported in recent decades, some of which demonstrate excellent potential for industrial applications. This review sets out to summarize the state of investigation into IsPETase, a cutinase-like enzyme from Ideonella sakaiensis possessing ability to degrade crystalline PET, and to gain further insight into the structure-function relationship of IsPETase. Benefiting from the continuing identification of novel cutinase-like proteins and growing availability of the engineered IsPETase, we may anticipate future developments in this type of enzyme would generate suitable biocatalyst for industrial use.


Assuntos
Proteínas de Bactérias/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Polietilenotereftalatos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Sítios de Ligação , Burkholderiales/enzimologia , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/classificação , Hidrólise , Simulação de Dinâmica Molecular , Filogenia , Polietilenotereftalatos/química , Estrutura Terciária de Proteína , Especificidade por Substrato
11.
Elife ; 92020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32876048

RESUMO

The pathogenesis of Helicobacter pylori-associated gastric cancer is dependent on delivery of CagA into host cells through a type IV secretion system (T4SS). The H. pylori Cag T4SS includes a large membrane-spanning core complex containing five proteins, organized into an outer membrane cap (OMC), a periplasmic ring (PR) and a stalk. Here, we report cryo-EM reconstructions of a core complex lacking Cag3 and an improved map of the wild-type complex. We define the structures of two unique species-specific components (Cag3 and CagM) and show that Cag3 is structurally similar to CagT. Unexpectedly, components of the OMC are organized in a 1:1:2:2:5 molar ratio (CagY:CagX:CagT:CagM:Cag3). CagX and CagY are components of both the OMC and the PR and bridge the symmetry mismatch between these regions. These results reveal that assembly of the H. pylori T4SS core complex is dependent on incorporation of interwoven species-specific components.


Assuntos
Proteínas de Bactérias/ultraestrutura , Helicobacter pylori/química , Sistemas de Secreção Tipo IV/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Microscopia Crioeletrônica , Modelos Moleculares , Conformação Proteica , Especificidade da Espécie , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/classificação
12.
J Proteome Res ; 19(11): 4718-4729, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32897080

RESUMO

We present METATRYP version 2 software that identifies shared peptides across the predicted proteomes of organisms within environmental metaproteomics studies to enable accurate taxonomic attribution of peptides during protein inference. Improvements include ingestion of complex sequence assembly data categories (metagenomic and metatranscriptomic assemblies, single cell amplified genomes, and metagenome assembled genomes), prediction of the least common ancestor (LCA) for a peptide shared across multiple organisms, increased performance through updates to the backend architecture, and development of a web portal (https://metatryp.whoi.edu). Major expansion of the marine METATRYP database with predicted proteomes from environmental sequencing confirms a low occurrence of shared tryptic peptides among disparate marine microorganisms, implying tractability for targeted metaproteomics. METATRYP was designed to facilitate ocean metaproteomics and has been integrated into the Ocean Protein Portal (https://oceanproteinportal.org); however, it can be readily applied to other domains. We describe the rapid deployment of a coronavirus-specific web portal (https://metatryp-coronavirus.whoi.edu/) to aid in use of proteomics on coronavirus research during the ongoing pandemic. A coronavirus-focused METATRYP database identified potential SARS-CoV-2 peptide biomarkers and indicated very few shared tryptic peptides between SARS-CoV-2 and other disparate taxa analyzed, sharing <1% peptides with taxa outside of the betacoronavirus group, establishing that taxonomic specificity is achievable using tryptic peptide-based proteomic diagnostic approaches.


Assuntos
Organismos Aquáticos/genética , Coronavirus/genética , Metagenômica/métodos , Proteoma , Software , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Betacoronavirus/genética , COVID-19 , Análise por Conglomerados , Infecções por Coronavirus/virologia , Humanos , Anotação de Sequência Molecular , Pandemias , Peptídeos/classificação , Peptídeos/genética , Pneumonia Viral/virologia , Proteoma/classificação , Proteoma/genética , SARS-CoV-2 , Análise de Sequência de Proteína , Transcriptoma/genética , Proteínas Virais/classificação , Proteínas Virais/genética
13.
Science ; 369(6507): 1094-1098, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32855335

RESUMO

Bacterial production of gaseous hydrocarbons such as ethylene and methane affects soil environments and atmospheric climate. We demonstrate that biogenic methane and ethylene from terrestrial and freshwater bacteria are directly produced by a previously unknown methionine biosynthesis pathway. This pathway, present in numerous species, uses a nitrogenase-like reductase that is distinct from known nitrogenases and nitrogenase-like reductases and specifically functions in C-S bond breakage to reduce ubiquitous and appreciable volatile organic sulfur compounds such as dimethyl sulfide and (2-methylthio)ethanol. Liberated methanethiol serves as the immediate precursor to methionine, while ethylene or methane is released into the environment. Anaerobic ethylene production by this pathway apparently explains the long-standing observation of ethylene accumulation in oxygen-depleted soils. Methane production reveals an additional bacterial pathway distinct from archaeal methanogenesis.


Assuntos
Proteínas de Bactérias/química , Etilenos/biossíntese , Metano/biossíntese , Metionina/biossíntese , Oxirredutases/química , Rhodospirillum rubrum/enzimologia , Anaerobiose , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Biocatálise , Vias Biossintéticas , Oxirredutases/classificação , Oxirredutases/genética , Microbiologia do Solo
15.
ACS Synth Biol ; 9(6): 1460-1467, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32379959

RESUMO

The complex life cycle of streptomycetes is closely related to their secondary metabolisms, all controlled by cascade regulations. Tiancimycins (TNMs) are ten-membered enediynes possessing great potential for antitumor drug development. However, their low yields in Streptomyces sp. CB03234 have greatly limited subsequent studies. Through transcriptome analysis and genetic characterization, we proved that WblA is one pivotal global regulator to repress the biosynthesis of TNMs. The deletion of wblA could significantly enhance the production of TNMs, but also abolish the sporulation in CB03234. By constructing the NitR-ε-caprolactam inducible genetic switch, the expression of wblA was governed in CB03234-NRW, thereby sustaining the overproduction of TNMs and recovering the normal sporulation upon induction, which were practical for the scaled-up production of TNMs. Considering the prevalence and conserved regulatory roles of WblA in streptomycetes, our developed strategy shall provide an effective and practical approach to facilitate titer improvement and discovery of natural products.


Assuntos
Proteínas de Bactérias/genética , Enedi-Inos/metabolismo , Esporos Bacterianos/metabolismo , Streptomyces/fisiologia , Fatores de Transcrição/genética , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Cromatografia Líquida de Alta Pressão , Enedi-Inos/análise , Enedi-Inos/química , Filogenia , Plasmídeos/genética , Plasmídeos/metabolismo , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo
16.
Nat Microbiol ; 5(4): 599-609, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31988381

RESUMO

Virulence mechanisms typically evolve through the continual interaction of a pathogen with its host. In contrast, it is poorly understood how environmentally acquired pathogens are able to cause disease without prior interaction with humans. Here, we provide experimental evidence for the model that Legionella pathogenesis in humans results from the cumulative selective pressures of multiple amoebal hosts in the environment. Using transposon sequencing, we identify Legionella pneumophila genes required for growth in four diverse amoebae, defining universal virulence factors commonly required in all host cell types and amoeba-specific auxiliary genes that determine host range. By comparing genes that promote growth in amoebae and macrophages, we show that adaptation of L. pneumophila to each amoeba causes the accumulation of distinct virulence genes that collectively allow replication in macrophages and, in some cases, leads to redundancy in this host cell type. In contrast, some bacterial proteins that promote replication in amoebae restrict growth in macrophages. Thus, amoebae-imposed selection is a double-edged sword, having both positive and negative impacts on disease. Comparing the genome composition and host range of multiple Legionella species, we demonstrate that their distinct evolutionary trajectories in the environment have led to the convergent evolution of compensatory virulence mechanisms.


Assuntos
Amoeba/microbiologia , Coevolução Biológica , Interações Hospedeiro-Patógeno/genética , Legionella pneumophila/genética , Legionella pneumophila/patogenicidade , Macrófagos/microbiologia , Fatores de Virulência/genética , Adaptação Fisiológica , Amoeba/classificação , Animais , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Feminino , Especificidade de Hospedeiro , Humanos , Legionella pneumophila/classificação , Legionella pneumophila/crescimento & desenvolvimento , Camundongos , Filogenia , Cultura Primária de Células , Seleção Genética , Virulência , Fatores de Virulência/classificação , Fatores de Virulência/metabolismo
17.
J Biol Chem ; 295(51): 17724-17737, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33454010

RESUMO

Highly engineered phytases, which sequentially hydrolyze the hexakisphosphate ester of inositol known as phytic acid, are routinely added to the feeds of monogastric animals to improve phosphate bioavailability. New phytases are sought as starting points to further optimize the rate and extent of dephosphorylation of phytate in the animal digestive tract. Multiple inositol polyphosphate phosphatases (MINPPs) are clade 2 histidine phosphatases (HP2P) able to carry out the stepwise hydrolysis of phytate. MINPPs are not restricted by a strong positional specificity making them attractive targets for development as feed enzymes. Here, we describe the characterization of a MINPP from the Gram-positive bacterium Bifidobacterium longum (BlMINPP). BlMINPP has a typical HP2P-fold but, unusually, possesses a large α-domain polypeptide insertion relative to other MINPPs. This insertion, termed the U-loop, spans the active site and contributes to substrate specificity pockets underpopulated in other HP2Ps. Mutagenesis of U-loop residues reveals its contribution to enzyme kinetics and thermostability. Moreover, four crystal structures of the protein along the catalytic cycle capture, for the first time in an HP2P, a large ligand-driven α-domain motion essential to allow substrate access to the active site. This motion recruits residues both downstream of a molecular hinge and on the U-loop to participate in specificity subsites, and mutagenesis identified a mobile lysine residue as a key determinant of positional specificity of the enzyme. Taken together, these data provide important new insights to the factors determining stability, substrate recognition, and the structural mechanism of hydrolysis in this industrially important group of enzymes.


Assuntos
Proteínas de Bactérias/metabolismo , Bifidobacterium longum/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Ligantes , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Monoéster Fosfórico Hidrolases/classificação , Monoéster Fosfórico Hidrolases/genética , Filogenia , Ácido Fítico/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Temperatura
18.
Appl Environ Microbiol ; 86(2)2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31676477

RESUMO

Lignin is the most abundant aromatic polymer in nature and a promising renewable source for the provision of aromatic platform chemicals and biofuels. ß-Etherases are enzymes with a promising potential for application in lignin depolymerization due to their selectivity in the cleavage of ß-O-4 aryl ether bonds. However, only a very limited number of these enzymes have been described and characterized so far. Using peptide pattern recognition (PPR) as well as phylogenetic analyses, 96 putatively novel ß-etherases have been identified, some even originating from bacteria outside the order Sphingomonadales A set of 13 diverse enzymes was selected for biochemical characterization, and ß-etherase activity was confirmed for all of them. Some enzymes displayed up to 3-fold higher activity than previously known ß-etherases. Moreover, conserved sequence motifs specific for either LigE- or LigF-type enzymes were deduced from multiple-sequence alignments and the PPR-derived peptides. In combination with structural information available for the ß-etherases LigE and LigF, insight into the potential structural and/or functional role of conserved residues within these sequence motifs is provided. Phylogenetic analyses further suggest the presence of additional bacterial enzymes with potential ß-etherase activity outside the classical LigE- and LigF-type enzymes as well as the recently described heterodimeric ß-etherases.IMPORTANCE The use of biomass as a renewable source and replacement for crude oil for the provision of chemicals and fuels is of major importance for current and future societies. Lignin, the most abundant aromatic polymer in nature, holds promise as a renewable starting material for the generation of required aromatic structures. However, a controlled and selective lignin depolymerization to yield desired aromatic structures is a very challenging task. In this regard, bacterial ß-etherases are especially interesting, as they are able to cleave the most abundant bond type in lignin with high selectivity. With this study, we significantly expanded the toolbox of available ß-etherases for application in lignin depolymerization and discovered more active as well as diverse enzymes than previously known. Moreover, the identification of further ß-etherases by sequence database mining in the future will be facilitated considerably through our deduced etherase-specific sequence motifs.


Assuntos
Alphaproteobacteria/enzimologia , Proteínas de Bactérias/metabolismo , Lignina/metabolismo , Oxirredutases/metabolismo , Bactérias/enzimologia , Proteínas de Bactérias/classificação , Mineração de Dados , Glutationa/metabolismo , Oxirredutases/classificação
19.
PLoS Negl Trop Dis ; 13(11): e0007799, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31682611

RESUMO

Development of gastric diseases such as gastritis, peptic ulcer and gastric cancer is often associated with several biotic and abiotic factors. Helicobacter pylori infection is such a well-known biotic factor. However, not all H. pylori-infected individuals develop gastric diseases and not all individuals with gastric diseases are infected with H. pylori. Therefore, it is possible that other gastric bacteria may contribute to the formation and progression of gastric disease. The aim of this study was to isolate prevalent gastric bacteria under microaerobic condition and identify them by 16S rRNA gene sequence analysis. Analysis of gastric biopsies showed infection of Mycobacterium abscessus (phylum Actinobacteria) to be highly prevalent in the stomachs of subjects included. Our data show that of 129 (67 male and 62 female) patients with gastric symptoms, 96 (51 male and 45 female) showed the presence of M. abscessus in stomach tissues. Infection of M. abscessus in gastric epithelium was further confirmed by imaging with acid fast staining, immunohistochemistry and immunofluorescence. Our imaging data strongly suggested that M. abscessus is an intracellular colonizer residing inside the gastric epithelial cells rather than in macrophages. Additionally, phylogenetic analysis of the mycobacterial hsp65 gene showed that the nearest match to the M. abscessus strains isolated from our study subjects is the M. abscessus strain ATCC 19977. Surprisingly, the subjects studied, the prevalence of M. abscessus infection in stomach is even higher than the prevalence of H. pylori infection. This, to the best of our knowledge, is the first study showing the colonization of M. abscessus in human gastric mucosa among patients with various gastric symptoms. This study could provide usher in a new opportunity to understand the role of less studied gastric bacteria in the development of gastric diseases.


Assuntos
Infecções por Helicobacter/complicações , Infecções por Helicobacter/epidemiologia , Infecções por Mycobacterium não Tuberculosas/complicações , Infecções por Mycobacterium não Tuberculosas/epidemiologia , Estômago/microbiologia , Adolescente , Adulto , Idoso , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Biópsia , Chaperonina 60/classificação , Chaperonina 60/genética , Criança , Coinfecção , Células Epiteliais , Feminino , Mucosa Gástrica/microbiologia , Genes Bacterianos/genética , Helicobacter pylori/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mycobacterium abscessus/genética , Mycobacterium abscessus/isolamento & purificação , Filogenia , Prevalência , RNA Ribossômico 16S/genética , Estômago/patologia , Adulto Jovem
20.
Diagn Microbiol Infect Dis ; 95(4): 114890, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31630910

RESUMO

This prospective study evaluated the ability of the qPCR Amplidiag® CarbaR+VRE assay to detect Carbapenemase-producing Gram-negative bacilli (CP-GNB) directly on 1830 rectal swabs extracted using the fully automated platform Amplidiag® Easy instrument. The Amplidiag® CarbaR+VRE assay gave a positive signal for 94 rectal swabs, whereas only 70 grew with CP-GNB on chromogenic media including 4 VIM-producing P. aeruginosa, 8 OXA-23-producing A. baumannii and 58 carbapenemase-producing Enterobacteriaceae. All the CP-GNB culture positive were detected by the Amplidiag® CarbaR+VRE assay. Twenty-four qPCR-positive and culture-negative samples were further investigated using targeted PCRs and subsequent DNA sequencing. Seventeen and 7 of these were positive and negative with PCR/DNA sequencing, respectively. Taken together, the Amplidiag® CarbaR+VRE could detect carbapenemases directly from rectal swabs in 3h 30 using a fully automated platform and showed high biological performances (sensitivity, specificity, and negative and positive predictive values were 100%, 98.6%, 100%, and 74.5%, respectively).


Assuntos
Proteínas de Bactérias/genética , Bactérias Gram-Negativas/enzimologia , Programas de Rastreamento/métodos , Técnicas de Diagnóstico Molecular/métodos , Reto/microbiologia , beta-Lactamases/genética , Automação Laboratorial , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Testes Diagnósticos de Rotina , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/isolamento & purificação , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Estudos Prospectivos , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Fatores de Tempo , beta-Lactamases/classificação , beta-Lactamases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA