Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 395
Filtrar
1.
Int J Mol Sci ; 24(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37240424

RESUMO

Cry11 proteins are toxic to Aedes aegypti, the vector of dengue, chikungunya, and Zika viruses. Cry11Aa and Cry11Bb are protoxins, which when activated present their active-toxin form in two fragments between 30 and 35 kDa respectively. Previous studies conducted with Cry11Aa and Cry11Bb genes using DNA shuffling generated variant 8, which presented a deletion in the first 73 amino acids and one at position 572 and 9 substitutions including L553F and L556W. In this study, variant 8 mutants were constructed using site-directed mutagenesis, resulting in conversion of phenylalanine (F) and tryptophan (W) to leucine (L) at positions 553 and 556, respectively, producing the mutants 8F553L, 8W556L, and 8F553L/8W556L. Additionally, two mutants, A92D and C157R, derived from Cry11Bb were also generated. The proteins were expressed in the non-crystal strain BMB171 of Bacillus thuringiensis and subjected to median-lethal concentration (LC50) tests on first-instar larvae of A. aegypti. LC50 analysis showed that the 8F553L, 8W556L, 8F553L/8W556L, and C157R variants lost their toxic activity (>500 ng·mL-1), whereas the A92D protein presented a loss of toxicity of 11.4 times that of Cry11Bb. Cytotoxicity assays performed using variant 8, 8W556L and the controls Cry11Aa, Cry11Bb, and Cry-negative BMB171 on the colorectal cancer cell line SW480 reported 30-50% of cellular viability except for BMB171. Molecular dynamic simulations performed to identify whether the mutations at positions 553 and 556 were related to the stability and rigidity of the functional tertiary structure (domain III) of the Cry11Aa protein and variant 8 showed the importance of these mutations in specific regions for the toxic activity of Cry11 against A. aegypti. This generates pertinent knowledge for the design of Cry11 proteins and their biotechnological applications in vector-borne disease control and cancer cell lines.


Assuntos
Aedes , Bacillus thuringiensis , Infecção por Zika virus , Zika virus , Animais , Endotoxinas/genética , Endotoxinas/toxicidade , Endotoxinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/toxicidade , Proteínas de Bactérias/metabolismo , Mosquitos Vetores , Aedes/genética , Aedes/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Zika virus/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Larva/genética , Larva/metabolismo
2.
Microb Biotechnol ; 15(7): 2071-2082, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35315236

RESUMO

The damage caused by stink bugs that feed on agricultural crops accounts for such significant losses that transgenic plant resistance to stink bugs would be highly desirable. As the level of toxicity of the Bacillus thuringiensis-derived, ETX/Mtx2 pesticidal protein Mpp83Aa1 is insufficient for practical use against the southern green stink bug Nezara viridula, we employed two disparate approaches to isolate peptides NvBP1 and ABP5 that bind to specific proteins (alpha amylase and aminopeptidase N respectively) on the surface of the N. viridula gut. Incorporation of these peptides into Mpp83Aa1 provided artificial anchors resulting in increased gut binding, and enhanced toxicity. These peptide-modified pesticidal proteins with increased toxicity provide a key advance for potential future use against N. viridula when delivered by transgenic plants to mitigate economic loss associated with this important pest.


Assuntos
Heterópteros , Praguicidas , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/toxicidade , Produtos Agrícolas , Heterópteros/microbiologia , Peptídeos/genética , Peptídeos/toxicidade
3.
Toxins (Basel) ; 14(2)2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-35202146

RESUMO

Photobacterium damselae subsp. piscicida (Phdp) is a Gram-negative bacterium that infects a large number of marine fish species in Europe, Asia, and America, both in aquacultures and in the natural environment. Among the affected hosts are economically important cultured fish, such as sea bream (Sparus aurata), sea bass (Dicentrarchus labrax), yellowtail (Seriola quinqueradiata), and cobia (Rachycentron canadum). The best characterized virulence factor of Phdp is the Apoptosis-Inducing Protein of 56 kDa (AIP56), a secreted AB-type toxin that has been shown to induce apoptosis of sea bass phagocytes during infection. AIP56 has an A subunit that displays metalloprotease activity against NF-kB p65 and a B subunit that mediates binding and internalization of the A subunit in susceptible cells. Despite the fact that the aip56 gene is highly prevalent in Phdp isolates from different fish species, the toxicity of AIP56 has only been studied in sea bass. In the present study, the toxicity of AIP56 for sea bream was evaluated. Ex vivo assays showed that sea bream phagocytes are resistant to AIP56 cytotoxicity and that resistance was associated with an inefficient internalization of the toxin by those cells. Accordingly, in vivo intoxication assays revealed that sea bream is much more resistant to AIP56-induced lethality than sea bass. These findings, showing that the effect of AIP56 is different in sea bass and sea bream, set the basis for future studies to characterize the effects of AIP56 and to fully elucidate its virulence role in different Phdp susceptible hosts.


Assuntos
Proteínas Reguladoras de Apoptose/toxicidade , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Photobacterium , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Bass , Rim Cefálico/patologia , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Fígado/patologia , Photobacterium/genética , Photobacterium/metabolismo , Dourada , Baço/patologia , Fator de Transcrição RelA/metabolismo
4.
Front Immunol ; 13: 815775, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154132

RESUMO

Many species of bacteria produce toxins such as cholesterol-dependent cytolysins that form pores in cell membranes. Membrane pores facilitate infection by releasing nutrients, delivering virulence factors, and causing lytic cell damage - cytolysis. Oxysterols are oxidized forms of cholesterol that regulate cellular cholesterol and alter immune responses to bacteria. Whether oxysterols also influence the protection of cells against pore-forming toxins is unresolved. Here we tested the hypothesis that oxysterols stimulate the intrinsic protection of epithelial cells against damage caused by cholesterol-dependent cytolysins. We treated epithelial cells with oxysterols and then challenged them with the cholesterol-dependent cytolysin, pyolysin. Treating HeLa cells with 27-hydroxycholesterol, 25-hydroxycholesterol, 7α-hydroxycholesterol, or 7ß-hydroxycholesterol reduced pyolysin-induced leakage of lactate dehydrogenase and reduced pyolysin-induced cytolysis. Specifically, treatment with 10 ng/ml 27-hydroxycholesterol for 24 h reduced pyolysin-induced lactate dehydrogenase leakage by 88%, and reduced cytolysis from 74% to 1%. Treating HeLa cells with 27-hydroxycholesterol also reduced pyolysin-induced leakage of potassium ions, prevented mitogen-activated protein kinase cell stress responses, and limited alterations in the cytoskeleton. Furthermore, 27-hydroxycholesterol reduced pyolysin-induced damage in lung and liver epithelial cells, and protected against the cytolysins streptolysin O and Staphylococcus aureus α-hemolysin. Although oxysterols regulate cellular cholesterol by activating liver X receptors, cytoprotection did not depend on liver X receptors or changes in total cellular cholesterol. However, oxysterol cytoprotection was partially dependent on acyl-CoA:cholesterol acyltransferase (ACAT) reducing accessible cholesterol in cell membranes. Collectively, these findings imply that oxysterols stimulate the intrinsic protection of epithelial cells against pore-forming toxins and may help protect tissues against pathogenic bacteria.


Assuntos
Bactérias/química , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Proteínas Hemolisinas/toxicidade , Oxisteróis/farmacologia , Fatores de Virulência/toxicidade , Proteínas de Bactérias/química , Toxinas Bacterianas/química , Células Epiteliais/metabolismo , Células HeLa , Proteínas Hemolisinas/química , Humanos , Fatores de Virulência/química
5.
FASEB J ; 35(10): e21889, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34569656

RESUMO

Many species of pathogenic bacteria secrete toxins that form pores in mammalian cell membranes. These membrane pores enable the delivery of virulence factors into cells, result in the leakage of molecules that bacteria can use as nutrients, and facilitate pathogen invasion. Inflammatory responses to bacteria are regulated by the side-chain-hydroxycholesterols 27-hydroxycholesterol and 25-hydroxycholesterol, but their effect on the intrinsic protection of cells against pore-forming toxins is unclear. Here, we tested the hypothesis that 27-hydroxycholesterol and 25-hydroxycholesterol help protect cells against pore-forming toxins. We treated bovine endometrial epithelial and stromal cells with 27-hydroxycholesterol or 25-hydroxycholesterol, and then challenged the cells with pyolysin, which is a cholesterol-dependent cytolysin from Trueperella pyogenes that targets these endometrial cells. We found that treatment with 27-hydroxycholesterol or 25-hydroxycholesterol protected both epithelial and stomal cells against pore formation and the damage caused by pyolysin. The oxysterols limited pyolysin-induced leakage of potassium and lactate dehydrogenase from cells, and reduced cytoskeletal changes and cytolysis. This oxysterol cytoprotection against pyolysin was partially dependent on reducing cytolysin-accessible cholesterol in the cell membrane and on activating liver X receptors. Treatment with 27-hydroxycholesterol also protected the endometrial cells against Staphylococcus aureus α-hemolysin. Using mass spectrometry, we found 27-hydroxycholesterol and 25-hydroxycholesterol in uterine and follicular fluid. Furthermore, epithelial cells released additional 25-hydroxycholesterol in response to pyolysin. In conclusion, both 27-hydroxycholesterol and 25-hydroxycholesterol increased the intrinsic protection of bovine endometrial cells against pore-forming toxins. Our findings imply that side-chain-hydroxycholesterols may help defend the endometrium against pathogenic bacteria.


Assuntos
Bactérias/química , Proteínas de Bactérias/toxicidade , Endométrio/metabolismo , Proteínas Hemolisinas/toxicidade , Hidroxicolesteróis/farmacologia , Fatores de Virulência/toxicidade , Animais , Proteínas de Bactérias/química , Bovinos , Feminino , Proteínas Hemolisinas/química , Células Estromais/metabolismo , Fatores de Virulência/química
6.
Int J Biol Macromol ; 166: 665-676, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137384

RESUMO

An RNase produced by Bacillus safensis RB-5 was purified up to 22.32-fold by successive techniques of salting out, DEAE-anion exchange and gel permeation (Sephadex G-100) chromatography techniques with a yield of 2.27%. The purified RNase possessed a single band in SDS-PAGE (Mr ~ 60 kDa). The purified RNase showed optimal activity at temperature of 37 °C and pH 7.5 in the presence of substrate (Yeast RNA) and Mg2+ ions. The RNase activity was strongly inhibited by Hg2+ and mildly by Fe2+, Ba2+ and Zn2+ ions. Its half-life was found to be 8 h at 37 °C. The RNase kinetics study showed Km and Vmax value of 0.3 mM and 9.2 µmol/mg/min, respectively. The purified RNase also showed cytotoxic and antiproliferative activities towards a few transformed cell lines. The purified RNase (IC50 0.035 U/mL) effectively inhibited RD and Hep-2C cells proliferation & migration, while sparing HEK 293 cells. The purified RNase was cytotoxic as well as effective degrader of the RNA of transformed RD cells at low concentration. Moreover, the purified RNase of B. safensis RB-5 was found to possess a little hemolytic activity towards human RBCs.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/química , Ribonucleases/química , Células A549 , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/toxicidade , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Estabilidade Enzimática , Eritrócitos/efeitos dos fármacos , Células HEK293 , Hemólise , Células Hep G2 , Humanos , Células MCF-7 , Ribonucleases/metabolismo , Ribonucleases/toxicidade
7.
Cells ; 9(12)2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271969

RESUMO

C.difficile infection (CDI) is not a merely "gut-confined" disease as toxemia could drive the development of CDI-related extra-intestinal effects. These effects could explain the high CDI-associated mortality, not just justified by diarrhea and dehydration. Here, the extra-intestinal effects of toxin A (TcdA) and B (TcdB) produced by C. difficile have been studied in vivo using the zebrafish embryo model. Noteworthy, protective properties of human serum albumin (HSA) towards toxins-induced extra-intestinal effects were also addressed. Zebrafish embryos were treated with TcdA, TcdB and/or HSA at 24 h post-fertilization. Embryos were analyzed for 48 h after treatment to check vital signs and morphological changes. Markers related to cardio-vascular damage and inflammation were evaluated by Real-Time quantitative PCR and/or western blotting. Both toxins induced cardiovascular damage in zebrafish embryos by different mechanisms: (i) direct toxicity (i.e., pericardial edema, cardiac chambers enlargement, endothelial alteration); (ii) increased hormonal production and release (i.e., atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP)), (iii) alteration of the vascular system through the increase of the vascular endothelial growth factor (VEGF-A) levels, as well as of its receptors, (iv) pro-inflammatory response through high cytokines production (i.e., CXCL8, IL1B, IL6 and TNFα) and (v) cell-mediated damage due to the increase in neutrophils number. In addition to cardiovascular damage, we observe skin alteration and inflammation. Finally, our data indicate a protective effect of HSA toward the toxins induced extra-intestinal effects. Together, our findings can serve as a starting point for humans' studies to substantiate and understand the extra-intestinal effects observed in CDI patients.


Assuntos
Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Clostridioides difficile/metabolismo , Infecções por Clostridium/complicações , Intestinos/efeitos dos fármacos , Peixe-Zebra/microbiologia , Animais , Fator Natriurético Atrial/metabolismo , Células CACO-2 , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Infecções por Clostridium/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Enterotoxinas/toxicidade , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Intestinos/microbiologia , Peptídeo Natriurético Encefálico/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Albumina Sérica Humana/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/metabolismo
8.
Toxins (Basel) ; 12(12)2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255261

RESUMO

Toxin B (TcdB) produced by Clostridioides difficile is a main pathogenicity factor that affects a variety of different cell types within the colonic mucosa. TcdB is known to utilize frizzled-1,2,7 and chondroitin sulfate proteoglycan-4 (CSPG4) as protein receptors. By using human cervical cancer cell line HeLa CSPG4 knockout (CSPG4-/-) cells as well as TcdB mutants which do not bind to either CSPG4 or frizzled-1,2,7, or both, we evaluated the impact of the individual receptors for cytopathic and cytotoxic effects of TcdB. We compared TcdB from the reference strain VPI10463 (TcdBVPI) and the endemic strain R20291 (TcdBR20) which does not interact with frizzled-1,2,7. TcdBVPI devoid of CSPG4 binding (TcdBVPI ΔCROP) shows identical cytopathic potency as full-length TcdB in HeLa CSPG4-/- cells, indicating that interaction with frizzled proteins is not affected in the presence of the C-terminal CROP domain. We validated CSPG4 as cellular receptor for both TcdB toxinotypes in HeLa and HEp-2 cells. By exchange of a single phenylalanine residue, 1597 with serine, we generated a mutated TcdBVPI variant (TcdBVPI F1597S) that in accordance with TcdBR20 lacks binding to frizzled-1,2,7 and showed identical potency as TcdBR20 on HeLa cells. This enabled us to estimate the respective share of CSPG4 and frizzled-1,2,7 in the cytotoxic and cytopathic effect induced by TcdB. Our data reveal that binding to frizzled-1,2,7 and to CSPG4 occurs independently and in an additive manner.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Clostridioides difficile/metabolismo , Receptores Frizzled/metabolismo , Proteínas de Membrana/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/genética , Linhagem Celular , Clostridioides difficile/genética , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Fatores de Virulência/metabolismo
9.
Microbiologyopen ; 9(8): e1061, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32657021

RESUMO

Clostridioides difficile infection (CDI) represents an important health problem worldwide, with significant morbidity and mortality. This infection has also high recurrence rates, whose pathophysiological grounds are still poorly understood. Based on our experiments in vitro with Clostridioides difficile toxin B and existing experimental and clinical evidence, we propose that primary CDI and relapses might be favored by a mechanism that involves the enhancement of the toxicity of toxin B by proinflammatory cytokines, tumor necrosis factor alpha, and interferon gamma on the enteric glial cells and their network in an environment characterized by a strong dysmicrobism.


Assuntos
Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Clostridioides difficile/patogenicidade , Infecções por Clostridium/patologia , Citocinas/metabolismo , Inflamação/patologia , Clostridioides difficile/metabolismo , Humanos , Recidiva
10.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326543

RESUMO

Many Pasteurella multocida strains are carried as commensals, while some cause disease in animals and humans. Some type D strains cause atrophic rhinitis in pigs, where the causative agent is known to be the Pasteurella multocida toxin (PMT). PMT activates three families of G-proteins-Gq/11, G12/13, and Gi/o-leading to cellular mitogenesis and other sequelae. The effects of PMT on whole animals in vivo have been investigated previously, but only at the level of organ-specific pathogenesis. We report here the first study to screen all the organs targeted by the toxin by using the QE antibody that recognizes only PMT-modified G-proteins. Under our experimental conditions, short-term treatment of PMT is shown to have multiple in vivo targets, demonstrating G-alpha protein modification, stimulation of proliferation markers and expression of active ß-catenin in a tissue- and cell-specific manner. This highlights the usefulness of PMT as an important tool for dissecting the specific roles of different G-alpha proteins in vivo.


Assuntos
Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Proliferação de Células/efeitos dos fármacos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Pasteurella multocida/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Feminino , Imuno-Histoquímica , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Baço/efeitos dos fármacos , Baço/metabolismo , Timo/efeitos dos fármacos , Timo/metabolismo , Útero/efeitos dos fármacos , Útero/metabolismo , beta Catenina/metabolismo
11.
Can J Microbiol ; 66(7): 435-445, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32191844

RESUMO

Pneumolysin (Ply) is a major virulence factor of Streptococcus pneumoniae. Ply-induced interferon-ß (IFN-ß) expression in host macrophages has been shown to be due to the accumulation of mitochondrial deoxyribonucleic acid (mtDNA) in the cytoplasm during S. pneumoniae infection. Our findings extend this work to show human bronchial epithelial cells that reside at the interface of inflammatory injury, BEAS-2B, adapt to local cues by altering mitochondrial states and releasing excess mtDNA. The results in this research showed that purified Ply induced the expression of IFN-ß in human epithelial cells, which was accompanied by mitochondrial damage both in vivo and in vitro. The observations also were supported by the increased mtDNA concentrations in the bronchial lavage fluid of mice infected with S. pneumoniae. In summary, our study demonstrated that Ply triggered the production of IFN-ß in epithelial cells, and this response was mediated by mtDNA released from Ply-damaged mitochondria. It displayed an impressive modulation of IFN-ß response to S. pneumoniae in epithelial cells.


Assuntos
Citosol/metabolismo , DNA Mitocondrial/metabolismo , Interferon beta/metabolismo , Mitocôndrias/efeitos dos fármacos , Estreptolisinas/toxicidade , Animais , Proteínas de Bactérias/toxicidade , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/microbiologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Streptococcus pneumoniae/patogenicidade
12.
Artif Cells Nanomed Biotechnol ; 48(1): 452-462, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31918570

RESUMO

Clostridium difficile (C. difficile) infection results in toxin-induced epithelial injury and marked colonic inflammation. Mitogen-activated protein kinase (MAPK) and NF-κB which regulated by MAP kinase phosphatase (MKP, also known as dual specificity phosphatases, DUSP) are fundamental signalling pathways that mediate multiple cellular processes. However, the regulation of DUSP/MAPKs and NF-κB pathway in C. difficile-induced colonic inflammation remains unclear. Here, we report that TcdB significantly inhibits cell viability and induces production of IL-1ß and TNF-α and activation of MAPKs and NF-κB. An E3-ubiquitin ligase, TRIM46, ubiquitinates DUSP1, and its knockdown significantly inhibit TcdB-induced activation of MAPKs and NF-κB and production of IL-1ß and TNF-α. Moreover, TRIM46 overexpression induced production of IL-1ß and TNF-α also reversed by DUSP1 overexpression. We further found that promoter of TRIM46 also demonstrated binding to NF-κBp65, leading to regulate TRIM46 expression. In addition, the increased colonic inflammation induced by C. difficile administration was inhibited by TRIM46 knockdown in vivo. Taken together, the present study shows that TRIM46, as a new regulator of DUSP1/MAPKs and NF-κB signalling pathway, plays an important role in TcdB-induced colonic inflammation.


Assuntos
Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Clostridioides difficile/metabolismo , Colo/metabolismo , Fosfatase 1 de Especificidade Dupla/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Fator de Transcrição RelA/metabolismo , Linhagem Celular , Colo/patologia , Humanos , Inflamação/metabolismo , Inflamação/microbiologia , Inflamação/patologia
13.
Insect Biochem Mol Biol ; 119: 103317, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31978588

RESUMO

Bacillus thuringiensis (Bt) Cyt1Aa toxin shows toxicity to mosquitoes, to certain coleopteran pests and also to red blood cells (RBC). However, its mode of action in the different target cells is not well defined. This protein is a single α-ß domain pore-forming toxin, where a ß sheet is wrapped by two α-helices layers. The Cyt1Aa α-helix hairpin in the N-terminal has been proposed to be involved in initial membrane binding and oligomerization, while the ß sheet inserts into the membrane to form a pore that lyze the cells. To determine the role of the N-terminal α-helix hairpin region of Cyt1Aa in its mode of action, we characterized different single point mutations located in helices α-1 and α-2. Eight cysteine substitutions in different residues were produced in Bt, and we found that three of them: Cyt1AaA65C, Cyt1AaL85C and Cyt1AaN89C, lost insecticidal toxicity against Aedes aegypti larvae but retained similar or increased hemolytic activity towards rabbit RBC. Analysis of toxin binding and oligomerization using Ae. aegypti midgut brush border membrane vesicles showed that the three Cyt1Aa mutants non-toxic to Ae. aegypti were affected in oligomerization. However, these mutants were still hemolytic. Our data shows that oligomerization of Cyt1Aa toxin is essential for its toxicity to Ae. aegypti but not for its toxicity against RBC indicating that the mode of action of Cyt1Aa is different in these distinct target membranes.


Assuntos
Aedes/efeitos dos fármacos , Proteínas de Bactérias/química , Endotoxinas/química , Eritrócitos/efeitos dos fármacos , Proteínas Hemolisinas/química , Inseticidas/química , Aedes/crescimento & desenvolvimento , Animais , Bacillus thuringiensis/química , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/toxicidade , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Polimerização , Coelhos
14.
Plant Cell Rep ; 39(3): 317-323, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31797051

RESUMO

KEY MESSAGE: The Bacillus thuringiensis (Bt) cry3Bb gene was successfully introduced into poplar plastid genome, leading to transplastomic poplar with high mortality to Plagiodera versicolora. Poplar (Populus L.) is one of the main resource of woody industry, but being damaged by insect pests. The feasibility and efficiency of plastid transformation technology for controlling two lepidopteran caterpillars have been demonstrated previously. Here, we introduced B. thuringiensis (Bt) cry3Bb into poplar plastid genome by biolistic bombardment for controlling P. versicolora, a widely distributed forest pest. Chimeric cry3Bb gene is controlled by the tobacco plastid rRNA operon promoter combined with the 5'UTR from gene10 of bacteriophage T7 (NtPrrn:T7g10) and the 3'UTR from the E. coli ribosomal RNA operon rrnB (TrrnB). The integration of transgene and homoplasmy of transplastomic poplar plants was confirmed by Southern blot analysis. Northern blot analysis indicated that cry3Bb was transcribed to both read through and shorter length transcripts in plastid. The transplastomic poplar expressing Cry3Bb insecticidal protein showed the highest accumulation level in young leaves, which reach up to 16.8 µg/g fresh weight, and comparatively low levels in mature and old leaves. Feeding the young leaves from Bt-Cry3Bb plastid lines to P. versicolora caused 100% mortality in the first-instar larvae after only 1 day, in the second-instar larvae after 2 days, and in the third-instar larvae for 3 days. Thus, we report a successful extension of plastid engineering poplar against the chrysomelid beetle.


Assuntos
Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Besouros/fisiologia , Endotoxinas/metabolismo , Comportamento Alimentar , Proteínas Hemolisinas/metabolismo , Folhas de Planta/parasitologia , Plastídeos/metabolismo , Populus/genética , Populus/parasitologia , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/toxicidade , Besouros/efeitos dos fármacos , Endotoxinas/toxicidade , Comportamento Alimentar/efeitos dos fármacos , Vetores Genéticos/metabolismo , Genomas de Plastídeos , Proteínas Hemolisinas/toxicidade , Larva/efeitos dos fármacos , Larva/fisiologia , Fenótipo , Plantas Geneticamente Modificadas , Transformação Genética
15.
Int J Mol Sci ; 21(1)2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31877791

RESUMO

Aeromonas veronii is one of the main pathogens causing freshwater fish sepsis and ulcer syndrome. This bacterium has caused serious economic losses in the aquaculture industry worldwide, and it has become an important zoonotic and aquatic agent. However, little is known about the molecular mechanism of pathogenesis of A. veronii. In this study, we first constructed an unmarked mutant strain (ΔpreA) by generating an in-frame deletion of the preA gene, which encodes a periplasmic binding protein, to investigate its role in A. veronii TH0426. Our results showed that the motility and biofilm formation ability of ΔpreA were similar to those of the wild-type strain. However, the adhesion and invasion ability in epithelioma papulosum cyprini (EPC) cells were significantly enhanced (2.0-fold). Furthermore, the median lethal dose (LD50) of ΔpreA was 7.6-fold higher than that of the wild-type strain, which illustrates that the virulence of the mutant was significantly enhanced. This finding is also supported by the cytotoxicity test results, which showed that the toxicity of ΔpreA to EPC cells was enhanced 1.3-fold relative to the wild type. Conversely, tolerance test results showed that oxidative stress resistance of ΔpreA decreased 5.9-fold compared to with the wild-type strain. The results suggest that preA may negatively regulate the virulence of A. veronii TH0426 through the regulation of resistance to oxidative stress. These insights will help to further elucidate the function of preA and understand the pathogenesis of A. veronii.


Assuntos
Aeromonas veronii/patogenicidade , Proteínas de Bactérias/metabolismo , Estresse Oxidativo , Aeromonas veronii/genética , Aeromonas veronii/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/toxicidade , Carpas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Virulência/genética , Peixe-Zebra
16.
Toxins (Basel) ; 11(11)2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731531

RESUMO

A key role in the carcinogenic action of Helicobacter pylori is played by the effector protein CagA, the first identified oncoprotein of the bacterial world. However, the present knowledge in regard to the bacterial injection of CagA into epithelial cells (through a type IV secretion system) and its intracellular fate is based primarily on experimental studies in vitro. Our study was aimed to investigate, in H. pylori-infected human gastric epithelium, CagA delivery and intracellular distribution in order to identify any in vivo counterpart of the cell injection mechanism described in vitro and any intracellular cytoplasmic site of preferential CagA distribution, thus shedding light on the natural history of CagA in vivo. By transmission electron microscopy and ultrastructural immunocytochemistry (which combine precise molecule localization with detailed analysis of bacterial-host cell interaction and epithelial cell ultrastructure), we investigated endoscopic biopsies of gastric antrum from H. pylori-infected dyspeptic patients. Our findings provide support for CagA direct injection into gastric epithelial cells at bacterial adhesion sites located on the lateral plasma membrane and for its cytosolic intracellular distribution with selective concentration inside peculiar proteasome-rich areas, which might be site not only of CagA degradation but also of CagA-promoted crucial events in gastric carcinogenesis.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/toxicidade , Células Epiteliais/metabolismo , Mucosa Gástrica/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Helicobacter pylori/química , Humanos
17.
Biomaterials ; 217: 119286, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31284125

RESUMO

Antimicrobial peptides (AMPs) have recently attracted great attention due to their rapid action, broad spectrum of activity, and low propensity of resistance development. The successful application of AMPs in the treatment of intracellular infections, however, remains a challenge because of their low penetration efficiency into the pathogen's intracellular niche. Herein, we report that sub-micrometer-sized crystals of the protein Cry3Aa formed within Bacillus thuringiensis are readily and specifically taken up by macrophages. We demonstrate that these protein crystals efficiently encapsulate a known antileishmanial peptide, dermaseptin S1 (DS1), and thereby promote improved cellular uptake of DS1 and its lysosomal accumulation in macrophages. Notably, this targeted delivery of DS1 results in enhanced in vitro and in vivo antileishmanial activity, as well as reduced toxicity to the host macrophages. These findings suggest that the Cry3Aa crystal can be an effective delivery platform for AMPs to treat intramacrophage infections.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/química , Sistemas de Liberação de Medicamentos , Endotoxinas/química , Proteínas Hemolisinas/química , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/parasitologia , Proteínas de Anfíbios/farmacologia , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/toxicidade , Proteínas de Bactérias/ultraestrutura , Linhagem Celular Tumoral , Endotoxinas/toxicidade , Feminino , Proteínas Hemolisinas/toxicidade , Proteínas Hemolisinas/ultraestrutura , Hemólise/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Leishmania/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos Endogâmicos BALB C
18.
Food Chem Toxicol ; 132: 110667, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31288051

RESUMO

Few studies have examined the use of animal models to evaluate the in-vivo toxicity of antimicrobial peptides, but such research is essential to their safe use in foods. This study was performed to evaluate any adverse effects of enterocin AS-48, a circular bacteriocin produced by Enterococcus strains, when administered to BALB/c mice at concentrations of 50, 100, and 200 mg/kg in the diet for 90 days. Animals dosed with nisin at a dietary concentration of 200 mg/kg served as a reference treated group. There were no deaths in any of the animal groups, and the AS-48 treatment produced no abnormalities or clinical signs on body weights, food consumption, urinalysis, haematology, or blood biochemistry. Furthermore, there were no significant differences in the weights of liver, spleen, heart, kidneys, and intestines between control mice and those treated with AS-48 or nisin. The histopathological study showed moderate vacuolar degeneration in hepatocytes of some animals fed 100 or 200 mg/kg AS-48 (3/10 and 2/10 respectively). However, this anomaly was lower than in the group treated with nisin (5/10). Conclusively, no toxicologically significant changes were associated in BALB/c mice fed with 50, 100, and 200 mg/kg enterocin AS-48 for 90 days.


Assuntos
Proteínas de Bactérias/toxicidade , Enterococcus faecalis/metabolismo , Peptídeos/toxicidade , Animais , Proteínas de Bactérias/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Tamanho do Órgão/efeitos dos fármacos , Peptídeos/administração & dosagem , Testes de Toxicidade Subcrônica
19.
Toxicon ; 167: 123-133, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31181295

RESUMO

Bacillus thuringiensis crystal (Cry) proteins, used for decades as insecticidal toxins, are well known to be toxic to certain insects, but not to mammals. A novel group of Cry toxins called parasporins possess a strong cytocidal activity against some human cancer cells. Cry41Aa, or parasporin3, closely resembles commercially used insecticidal toxins and yet is toxic to the human hepatic cancer cell line HepG2, disrupting membranes of susceptible cells, similar to its insecticidal counterparts. In this study, we explore the protective effect that the common divalent metal chelator EGTA exerts on Cry41Aa's activity on HepG2 cells. Our results indicate that rather than interfering with a signalling pathway as a result of chelating cations in the medium, the chelator prevented the toxin's interaction with the membrane, and thus the subsequent steps of membrane damage and p38 phosphorylation, by removing cations bound to plasma membrane components. BAPTA and DTPA also inhibited Cry41Aa toxicity but at higher concentrations. We also show for the first time that Cry41Aa induces pore formation in planar lipid bilayers. This activity is not altered by EGTA, consistent with a biological context of chelation. Salt supplementation assays identified Ca2+, Mn2+ and Zn2+ as being able to reinstate Cry41Aa activity. Our data suggest the existence of one or more metal cation-dependent receptors in the Cry41Aa mechanism of action.


Assuntos
Bacillus thuringiensis/química , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Membrana Celular/efeitos dos fármacos , Quelantes/farmacologia , Ácido Egtázico/farmacologia , Bicamadas Lipídicas/química , Substâncias Protetoras/farmacologia , Proteínas de Bactérias/química , Toxinas Bacterianas/química , Membrana Celular/química , Células Hep G2 , Humanos , Íons , Modelos Moleculares , Técnicas de Patch-Clamp
20.
Toxins (Basel) ; 11(6)2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31212877

RESUMO

Cytolytic leukotoxins of the repeat in toxin (RTX) family are large proteins excreted by gram-negative bacterial pathogens through the type 1 secretion system (T1SS). Due to low yields and poor stability in cultures of the original pathogens, it is useful to purify recombinant fatty-acylated RTX cytolysins from inclusion bodies produced in E. coli. Such preparations are, however, typically contaminated by high amounts of E. coli lipopolysaccharide (LPS or endotoxin). We report a simple procedure for purification of large amounts of biologically active and endotoxin-free RTX toxins. It is based on the common feature of RTX cytolysins that are T1SS-excreted as unfolded polypeptides and fold into a biologically active toxin only upon binding of calcium ions outside of the bacterial cell. Mimicking this process, the RTX proteins are solubilized from inclusion bodies with buffered 8 M urea, bound onto a suitable chromatographic medium under denaturing conditions and the contaminating LPS is removed through extensive on-column washes with buffers containing 6 to 8 M urea and 1% Triton X-100 or Triton X-114. Extensive on-column rinsing with 8 M urea buffer removes residual detergent and the eluted highly active RTX protein preparations then contain only trace amounts of LPS. The procedure is exemplified using four prototypic RTX cytolysins, the Bordetella pertussis CyaA and the hemolysins of Escherichia coli (HlyA), Kingella kingae (RtxA), and Actinobacillus pleuropneumoniae (ApxIA).


Assuntos
Proteínas de Bactérias/isolamento & purificação , Citotoxinas/isolamento & purificação , Proteínas Hemolisinas/isolamento & purificação , Animais , Proteínas de Bactérias/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citotoxinas/toxicidade , Detergentes/química , Eritrócitos/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas Hemolisinas/toxicidade , Hemólise , Humanos , Lipopolissacarídeos/análise , Octoxinol/química , Ovinos , Células THP-1 , Ureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA