Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Neuron ; 109(18): 2864-2883.e8, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34384519

RESUMO

The molecular and cellular mechanisms underlying complex axon morphogenesis are still poorly understood. We report a novel, evolutionary conserved function for the Drosophila Wnk kinase (dWnk) and its mammalian orthologs, WNK1 and 2, in axon branching. We uncover that dWnk, together with the neuroprotective factor Nmnat, antagonizes the axon-destabilizing factors D-Sarm and Axundead (Axed) during axon branch growth, revealing a developmental function for these proteins. Overexpression of D-Sarm or Axed results in axon branching defects, which can be blocked by overexpression of dWnk or Nmnat. Surprisingly, Wnk kinases are also required for axon maintenance of adult Drosophila and mouse cortical pyramidal neurons. Requirement of Wnk for axon maintenance is independent of its developmental function. Inactivation of dWnk or mouse Wnk1/2 in mature neurons leads to axon degeneration in the adult brain. Therefore, Wnk kinases are novel signaling components that provide a safeguard function in both developing and adult axons.


Assuntos
Proteínas do Domínio Armadillo/biossíntese , Axônios/metabolismo , Proteínas do Citoesqueleto/biossíntese , Proteínas de Drosophila/biossíntese , Evolução Molecular , Morfogênese/fisiologia , Proteínas Serina-Treonina Quinases/biossíntese , Animais , Proteínas do Domínio Armadillo/antagonistas & inibidores , Proteínas do Domínio Armadillo/genética , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/genética , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Gravidez , Proteínas Serina-Treonina Quinases/genética
2.
Open Biol ; 11(5): 200408, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33947246

RESUMO

Linker histones H1 are essential chromatin components that exist as multiple developmentally regulated variants. In metazoans, specific H1s are expressed during germline development in a tightly regulated manner. However, the mechanisms governing their stage-dependent expression are poorly understood. Here, we address this question in Drosophila, which encodes for a single germline-specific dBigH1 linker histone. We show that during female germline lineage differentiation, dBigH1 is expressed in germ stem cells and cystoblasts, becomes silenced during transit-amplifying (TA) cystocytes divisions to resume expression after proliferation stops and differentiation starts, when it progressively accumulates in the oocyte. We find that dBigH1 silencing during TA divisions is post-transcriptional and depends on the tumour suppressor Brain tumour (Brat), an essential RNA-binding protein that regulates mRNA translation and stability. Like other oocyte-specific variants, dBigH1 is maternally expressed during early embryogenesis until it is replaced by somatic dH1 at the maternal-to-zygotic transition (MZT). Brat also mediates dBigH1 silencing at MZT. Finally, we discuss the situation in testes, where Brat is not expressed, but dBigH1 is translationally silenced too.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/metabolismo , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Histonas/biossíntese , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Histonas/genética
3.
J BUON ; 25(5): 2160-2170, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33277831

RESUMO

PURPOSE: To investigate the expressions of caspase-3 and survivin in colorectal cancer patients and their possible associations with clinicopathological parameters and the oncological outcome. METHODS: Between January 2008 and December 2011, 85 patients with sporadic colorectal cancer were submitted to colectomy with curative intent. Postoperatively, all patients were followed every three months up to the 36th month. Immunohistochemical detection of the apoptosis-related proteins was carried out on 4-µm-thick deparaffinized sections from all primary tumors. Univariate and multivariate analyses were performed by using the R software for Windows, version 3.3.2. RESULTS: Setting the cut-off point for caspase-3 positivity at 5%, 48% of the patients were characterized as caspase-3(+). Caspase-3 positivity was not found related either to any clinicopathological parameter or to the oncological outcome. Choosing simple survivin positivity as the cut-off point for its expression, 78% of the patients were considered as survivin(+). Survivin inexpression predisposed to poorly differentiated tumors of advanced T stage. However, neither a dismal nor a favorable prognostic role for survivin expression or inexpression was disclosed. By dividing all enrolled patients in four different groups, a trend for worse 3-year overall survival rate in the caspase-3(-)/survivin(-) subgroup of patients was noticed (p=0.067). CONCLUSION: Caspase-3 expression was unrelated to the oncological outcome in colorectal cancer patients. The proposed favorable prognostic role for survivin inexpression was not confirmed. On the contrary, survivin(-) tumors were mainly of poor differentiation and advanced T stage. An inverse relationship between caspase-3 and survivin expressions was also not confirmed. Future studies focusing on specific survivin isoforms expression or inexpression may give answers on apoptotic-antiapoptotic interactions on cancer cell death.


Assuntos
Caspase 3/biossíntese , Neoplasias Colorretais/metabolismo , Proteínas de Drosophila/biossíntese , Survivina/biossíntese , Idoso , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Caspase 3/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Proteínas de Drosophila/genética , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Prognóstico , Survivina/genética
4.
Biochimie ; 179: 65-68, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32946989

RESUMO

Our understanding of cancer-specific metabolic changes is currently unclear. In recent years, the fruit fly Drosophila melanogaster with its powerful genetic tools has become an attractive model for studying both tumor autonomous and the systemic processes resulting from the tumor growth. Here we investigated the effect of tumorigenesis on the modulation of lipid droplets (LDs) in the larval fat bodies (mammalian equivalent of adipose tissue). We have overexpressed Notch signaling alone or in combination with the developmental regulator Myocyte enhancer factor 2 (Mef2) using wing-specific and eye-specific drivers, quantified the size of LDs in the fat body of the different tumor bearing larvae, and estimated the expression of genes associated with lipolysis and lipogenesis. We have found that hyperplastic and neoplastic tumor induced by overexpression of Notch and co-expression of Notch and Mef2 respectively triggers impaired lipid metabolism marked by increased size of fat body LDs. The impaired lipid metabolism in tumor carrying larvae is linked to the altered expression of genes that participate in lipolysis and lipogenesis. These findings reveal modulation of LDs as one of the host's specific response upon tumor initiation. This information could potentially uncover mechanisms for designing innovative approaches to modulate cancer growth.


Assuntos
Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Epitélio/química , Epitélio/metabolismo , Corpo Adiposo/metabolismo , Discos Imaginais/metabolismo , Gotículas Lipídicas/metabolismo , Animais , Proteínas de Drosophila/biossíntese , Olho/crescimento & desenvolvimento , Olho/patologia , Corpo Adiposo/patologia , Regulação Neoplásica da Expressão Gênica , Hiperplasia/genética , Hiperplasia/metabolismo , Larva/metabolismo , Lipogênese/genética , Lipólise/genética , Fatores de Regulação Miogênica/biossíntese , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Receptores Notch/biossíntese , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/patologia
5.
Neurosci Lett ; 715: 134622, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31715291

RESUMO

Tauopathies such as Alzheimer's disease (AD), Pick's disease (PiD), Frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) etc. represent a group of age-related neurodegenerative disorders in which tau protein loses its normal conformation mostly due to hyperphosphorylation and subsequent formation of the aggregates of defined shapes, known as Neurofibrillary Tangles (NFTs). We have demonstrated earlier that reduced dosage of dmyc (Drosophila homolog of human cmyc proto-oncogene) restricts tauWT mediated disease pathogenesis by regulating the phosphorylation status of tau. We demonstrate further that the downregulation of dmyc also alleviates the mutant human-tau (tauV337M) mediated neurotoxicity in Drosophila by improving disease defects. Moreover, tissue-specific downregulation of dmyc also induces cellular autophagy which facilitates the disposal of misfolded proteins via lysosome-mediated proteostasis. Our findings demonstrate the capability of dmyc in the suppression of different forms of human tauopathies in Drosophila disease models. Interestingly, due to the conserved characteristics of dmyc/cmyc across the animal kingdom, our study strengthens the possibility of utilizing this gene as an effective drug target against tauopathies.


Assuntos
Autofagia , Proteínas de Ligação a DNA/biossíntese , Proteínas de Drosophila/biossíntese , Fosforilação , Fatores de Transcrição/biossíntese , Proteínas tau/metabolismo , Proteínas tau/toxicidade , Animais , Animais Geneticamente Modificados , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Drosophila , Proteínas de Drosophila/genética , Humanos , Mutação , Síndromes Neurotóxicas/metabolismo , Proto-Oncogene Mas , Tauopatias/metabolismo , Fatores de Transcrição/genética , Proteínas tau/química
6.
FEBS Lett ; 594(7): 1176-1186, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31814119

RESUMO

The Decapentaplegic (Dpp) and Wingless (Wg) signaling pathways are essential for animal development. However, how these two signals are integrated in distinct tissues is not fully understood. Here, we describe a novel mode of Dpp-Wg crosstalk during Drosophila wing development. We show that the canonical Dpp signaling is required for Wg target gene activation. In addition, Dpp signaling inhibits the transcription of wg through the schnurri (shn) repressor complex. A Dpp-responsive shn/pMad/Med silencer element (SSE) is identified in the genomic loci of the wg gene. ChIP analysis suggests that shn interacts with this element in vivo. Our findings support a model in which Dpp signaling plays a dual role in transcriptional regulation of both the wg gene and downstream targets.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Transdução de Sinais , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo , Proteína Wnt1/metabolismo , Animais , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Ligantes , Transcrição Gênica , Proteína Wnt1/biossíntese , Proteína Wnt1/genética
7.
Elife ; 82019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31439126

RESUMO

During organogenesis, inductive signals cause cell differentiation and morphogenesis. However, how these phenomena are coordinated to form functional organs is poorly understood. Here, we show that cell differentiation of the Drosophila trachea is sequentially determined in two steps and that the second step is synchronous with the invagination of the epithelial sheet. The master gene trachealess is dispensable for the initiation of invagination, while it is essential for maintaining the invaginated structure, suggesting that tracheal morphogenesis and differentiation are separately induced. trachealess expression starts in bipotential tracheal/epidermal placode cells. After invagination, its expression is maintained in the invaginated cells but is extinguished in the remaining sheet cells. A trachealess cis-regulatory module that shows both tracheal enhancer activity and silencer activity in the surface epidermal sheet was identified. We propose that the coupling of trachealess expression with the invaginated structure ensures that only invaginated cells canalize robustly into the tracheal fate.


Assuntos
Proteínas de Drosophila/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese , Traqueia/embriologia , Fatores de Transcrição/biossíntese , Animais , Diferenciação Celular , Drosophila , Células Epiteliais/fisiologia
8.
Exp Dermatol ; 28(9): 1079-1082, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31338879

RESUMO

Since Drosophila melanogaster has proven to be a useful model system to study phenotypes of oncogenic mutations and to identify new anti-cancer drugs, we generated human BRAFV600E homologous dRaf mutant (dRafA572E ) Drosophila melanogaster strains to use these for characterisation of mutant phenotypes and exploit these phenotypes for drug testing. For mutant gene expression, the GAL4/UAS expression system was used. dRafA572E was expressed tissue-specific in the eye, epidermis, heart, wings, secretory glands and in the whole animal. Expression of dRaf A572E under the control of an eye-specific driver led to semi-lethality and a rough eye phenotype. The vast majority of other tissue-specific and ubiquitous drivers led to a lethal phenotype only. The rough eye phenotype was used to test BRAF inhibitor vemurafenib and MEK1/2 inhibitor cobimetinib. There was no phenotype rescue by this treatment. However, a significant rescue of the lethal phenotype was observed under a gut-specific driver. Here, MEK1/2 inhibitor cobimetinib rescued Drosophila larvae to reach pupal stage in 37% of cases as compared to 1% in control experiments. Taken together, the BRAFV600E homolog dRaf A572E exerts mostly lethal effects in Drosophila. Gut-specific dRaf A572E expression might in future be developed further for drug testing.


Assuntos
Azetidinas/farmacologia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , MAP Quinase Quinase Quinases/antagonistas & inibidores , Piperidinas/farmacologia , Proteínas Proto-Oncogênicas c-raf/genética , Animais , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/fisiologia , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica no Desenvolvimento , Genes Letais , Intestinos/enzimologia , Larva , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Especificidade de Órgãos , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/fisiologia , Proteínas Proto-Oncogênicas c-raf/biossíntese , Proteínas Proto-Oncogênicas c-raf/deficiência , Proteínas Proto-Oncogênicas c-raf/fisiologia , Vemurafenib/farmacologia
9.
Cell Rep ; 27(13): 3808-3817.e7, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242415

RESUMO

Many metazoan genes express alternative long 3' UTR isoforms in the nervous system, but their functions remain largely unclear. In Drosophila melanogaster, the Dscam1 gene generates short and long (Dscam1-L) 3' UTR isoforms because of alternative polyadenylation (APA). Here, we found that the RNA-binding protein Embryonic Lethal Abnormal Visual System (Elav) impacts Dscam1 biogenesis at two levels, including regulation of long 3' UTR biogenesis and skipping of an upstream exon (exon 19). MinION long-read sequencing confirmed the connectivity of this alternative splicing event to the long 3' UTR. Knockdown or CRISPR deletion of Dscam1-L impaired axon outgrowth in Drosophila. The Dscam1 long 3' UTR was found to be required for correct Elav-mediated skipping of exon 19. Elav thus co-regulates APA and alternative splicing to generate specific Dscam1 transcripts that are essential for neural development. This coupling of APA to alternative splicing might represent a new class of regulated RNA processing.


Assuntos
Processamento Alternativo , Axônios/metabolismo , Moléculas de Adesão Celular/biossíntese , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/metabolismo , Proteínas ELAV/metabolismo , Sinais de Poliadenilação na Ponta 3' do RNA , Animais , Moléculas de Adesão Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas ELAV/genética , Éxons
10.
J Cell Sci ; 132(2)2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30630896

RESUMO

Chromatin assembly factor 1 (CAF1), a histone chaperone that mediates the deposition of histone H3/H4 onto newly synthesized DNA, is involved in Notch signaling activation during Drosophila wing imaginal disc development. Here, we report another side of CAF1, wherein the subunits CAF1-p105 and CAF1-p180 (also known as CAF1-105 and CAF1-180, respectively) inhibit expression of Notch target genes and show this is required for proliferation of Drosophila ovarian follicle cells. Loss-of-function of either CAF1-p105 or CAF1-p180 caused premature activation of Notch signaling reporters and early expression of the Notch target Hindsight (Hnt, also known as Pebbled), leading to Cut downregulation and inhibition of follicle cell mitosis. Our studies further show Notch is functionally responsible for these phenotypes observed in both the CAF1-p105- and CAF1-p180-deficient follicle cells. Moreover, we reveal that CAF1-p105- and CAF1-p180-dependent Cut expression is essential for inhibiting Hnt expression in follicle cells during their mitotic stage. These findings together indicate a novel negative-feedback regulatory loop between Cut and Hnt underlying CAF1-p105 and CAF-p180 regulation, which is crucial for follicle cell differentiation. In conclusion, our studies suggest CAF1 plays a dual role to sustain cell proliferation by positively or negatively regulating Drosophila Notch signaling in a tissue-context-dependent manner.


Assuntos
Proliferação de Células , Proteínas de Drosophila/metabolismo , Folículo Ovariano/metabolismo , Receptores Notch/metabolismo , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Transdução de Sinais , Animais , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Discos Imaginais/citologia , Discos Imaginais/metabolismo , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Folículo Ovariano/citologia , Receptores Notch/genética , Proteína 4 de Ligação ao Retinoblastoma/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
11.
Environ Mol Mutagen ; 60(3): 277-285, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30353950

RESUMO

The in vivo model Drosophila melanogaster was used here to determine the detrimental effects induced by silver nanoparticles (AgNPs) exposure. The main aim was to explore its interaction with the intestinal barrier and the genotoxic effects induced in hemocytes. The observed effects were compared with those obtained by silver nitrate, as an agent acting via the release of silver ions. Larvae were fed in food media containing both forms of silver. Results indicated that silver nitrate was more toxic than AgNPs when the viability "egg-to-adult" was determined. Depigmentation was observed in adults including those exposed to nontoxic concentrations, as indicative of exposure action. Interestingly, AgNPs were able to cross the intestinal barrier affecting hemocytes that show significant increases in the levels of intracellular reactive oxygen species. Additionally, significant levels of genotoxic damage, as determined by the comet assay, were also induced. When the expression of different stress-response genes was determined, for both AgNPs and silver nitrate, significant upregulation of Sod2 and p53 genes was observed. Our results confirm for the first time that in an in vivo model as Drosophila, AgNPs are able to cross the intestinal barriers and produce primary DNA damage (comet assay) via oxidative stress induction. In general, the effects induced by silver nitrate were more pronounced than those induced by AgNPs what would emphasize the role of silver ions in the observed effects. Environ. Mol. Mutagen. 60:277-285, 2019. © 2018 Wiley Periodicals, Inc.


Assuntos
Dano ao DNA/efeitos dos fármacos , Drosophila melanogaster/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Nitrato de Prata/toxicidade , Prata/toxicidade , Animais , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Hemócitos/efeitos dos fármacos , Testes de Mutagenicidade , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/biossíntese , Superóxido Dismutase/genética , Junções Íntimas/metabolismo , Proteína Supressora de Tumor p53/biossíntese , Proteína Supressora de Tumor p53/genética
12.
G3 (Bethesda) ; 8(9): 2979-2990, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30006413

RESUMO

CORL proteins (known as SKOR in mice, Fussel in humans and fussel in Flybase) are a family of CNS specific proteins related to Sno/Ski oncogenes. Their developmental and adult roles are largely unknown. A Drosophila CORL (dCORL) reporter gene is expressed in all Drosophila insulin-like peptide 2 (dILP2) neurons of the pars intercerebralis (PI) of the larval and adult brain. The transcription factor Drifter is also expressed in the PI in a subset of dCORL and dILP2 expressing neurons and in several non-dILP2 neurons. dCORL mutant virgin adult brains are missing all dILP2 neurons that do not also express Drifter. This phenotype is also seen when expressing dCORL-RNAi in neurosecretory cells of the PI. dCORL mutant virgin adults of both sexes have a significantly shorter lifespan than their parental strain. This longevity defect is completely reversed by mating (lifespan increases over 50% for males and females). Analyses of dCORL mutant mated adult brains revealed a complete rescue of dILP2 neurons without Drifter. Taken together, the data suggest that dCORL participates in a neural network connecting the insulin signaling pathway, longevity and mating. The conserved sequence and CNS specificity of all CORL proteins imply that this network may be operating in mammals.


Assuntos
Proteínas de Drosophila/biossíntese , Regulação da Expressão Gênica/fisiologia , Insulina/metabolismo , Longevidade/fisiologia , Neurônios/metabolismo , Neurossecreção/fisiologia , Animais , Drosophila melanogaster , Feminino , Masculino , Rede Nervosa/citologia , Rede Nervosa/metabolismo , Neurônios/citologia
13.
Development ; 145(13)2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29945869

RESUMO

Tissue growth has to be carefully controlled to generate well-functioning organs. MicroRNAs are small non-coding RNAs that modulate the activity of target genes and play a pivotal role in animal development. Understanding the functions of microRNAs in development requires the identification of their target genes. Here, we find that miR-8, a conserved microRNA in the miR-200 family, controls tissue growth and homeostasis in the Drosophila wing imaginal disc. Upregulation of miR-8 causes the repression of Yorkie, the effector of the Hippo pathway in Drosophila, and reduces tissue size. Remarkably, co-expression of Yorkie and miR-8 causes the formation of neoplastic tumors. We show that upregulation of miR-8 represses the growth inhibitor brinker, and depletion of brinker cooperates with Yorkie in the formation of neoplastic tumors. Hence, miR-8 modulates a positive growth regulator, Yorkie, and a negative growth regulator, brinker Deregulation of this network can result in the loss of tissue homeostasis and the formation of tumors.


Assuntos
Proteínas de Drosophila/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Discos Imaginais/embriologia , MicroRNAs/biossíntese , Proteínas Nucleares/biossíntese , Proteínas Oncogênicas/biossíntese , Proteínas Repressoras/biossíntese , Transativadores/biossíntese , Animais , Drosophila , Proteínas de Drosophila/genética , Neoplasias Hematológicas/embriologia , Neoplasias Hematológicas/genética , MicroRNAs/genética , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Proteínas Repressoras/genética , Transativadores/genética , Proteínas de Sinalização YAP
15.
Dev Biol ; 434(1): 84-95, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29198563

RESUMO

Transcriptional silencing is a conserved process used by embryonic germ cells to repress somatic fate and maintain totipotency and immortality. In Drosophila, this transcriptional silencing is mediated by polar granule component (pgc). Here, we show that in the adult ovary, pgc is required for timely germline stem cell (GSC) differentiation. Pgc is expressed transiently in the immediate GSC daughter (pre-cystoblast), where it mediates a pulse of transcriptional silencing. This transcriptional silencing mediated by pgc indirectly promotes the accumulation of Cyclin B (CycB) and cell cycle progression into late-G2 phase, when the differentiation factor bag of marbles (bam) is expressed. Pgc mediated accumulation of CycB is also required for heterochromatin deposition, which protects the germ line genome against selfish DNA elements. Our results suggest that transient transcriptional silencing in the pre-cystoblast "re-programs" it away from self-renewal and toward the gamete differentiation program.


Assuntos
Diferenciação Celular/fisiologia , Fase G2/fisiologia , Inativação Gênica/fisiologia , Células Germinativas/metabolismo , Células-Tronco/metabolismo , Animais , Ciclina B/biossíntese , Ciclina B/genética , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Drosophila melanogaster , Células Germinativas/citologia , Heterocromatina/genética , Heterocromatina/metabolismo , Células-Tronco/citologia
16.
PLoS Genet ; 13(7): e1006932, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28742844

RESUMO

A tight regulation of transcription factor activity is critical for proper development. For instance, modifications of RUNX transcription factors dosage are associated with several diseases, including hematopoietic malignancies. In Drosophila, Myeloid Leukemia Factor (MLF) has been shown to control blood cell development by stabilizing the RUNX transcription factor Lozenge (Lz). However, the mechanism of action of this conserved family of proteins involved in leukemia remains largely unknown. Here we further characterized MLF's mode of action in Drosophila blood cells using proteomic, transcriptomic and genetic approaches. Our results show that MLF and the Hsp40 co-chaperone family member DnaJ-1 interact through conserved domains and we demonstrate that both proteins bind and stabilize Lz in cell culture, suggesting that MLF and DnaJ-1 form a chaperone complex that directly regulates Lz activity. Importantly, dnaj-1 loss causes an increase in Lz+ blood cell number and size similarly as in mlf mutant larvae. Moreover we find that dnaj-1 genetically interacts with mlf to control Lz level and Lz+ blood cell development in vivo. In addition, we show that mlf and dnaj-1 loss alters Lz+ cell differentiation and that the increase in Lz+ blood cell number and size observed in these mutants is caused by an overactivation of the Notch signaling pathway. Finally, using different conditions to manipulate Lz activity, we show that high levels of Lz are required to repress Notch transcription and signaling. All together, our data indicate that the MLF/DnaJ-1-dependent increase in Lz level allows the repression of Notch expression and signaling to prevent aberrant blood cell development. Thus our findings establish a functional link between MLF and the co-chaperone DnaJ-1 to control RUNX transcription factor activity and Notch signaling during blood cell development in vivo.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Proteínas de Choque Térmico HSP40/genética , Hematopoese/genética , Receptores Notch/genética , Fatores de Transcrição/genética , Animais , Diferenciação Celular/genética , Proteínas de Drosophila/biossíntese , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética , Larva/crescimento & desenvolvimento , Proteômica , Receptores Notch/biossíntese , Transdução de Sinais/genética
17.
PLoS Genet ; 13(7): e1006870, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28708826

RESUMO

Wnt/ß-catenin signal transduction directs intestinal stem cell (ISC) proliferation during homeostasis. Hyperactivation of Wnt signaling initiates colorectal cancer, which most frequently results from truncation of the tumor suppressor Adenomatous polyposis coli (APC). The ß-catenin-TCF transcription complex activates both the physiological expression of Wnt target genes in the normal intestinal epithelium and their aberrantly increased expression in colorectal tumors. Whether mechanistic differences in the Wnt transcription machinery drive these distinct levels of target gene activation in physiological versus pathological states remains uncertain, but is relevant for the design of new therapeutic strategies. Here, using a Drosophila model, we demonstrate that two evolutionarily conserved transcription cofactors, Earthbound (Ebd) and Erect wing (Ewg), are essential for all major consequences of Apc1 inactivation in the intestine: the hyperactivation of Wnt target gene expression, excess number of ISCs, and hyperplasia of the epithelium. In contrast, only Ebd, but not Ewg, mediates the Wnt-dependent regulation of ISC proliferation during homeostasis. Therefore, in the adult intestine, Ebd acts independently of Ewg in physiological Wnt signaling, but cooperates with Ewg to induce the hyperactivation of Wnt target gene expression following Apc1 loss. These findings have relevance for human tumorigenesis, as Jerky (JRK/JH8), the human Ebd homolog, promotes Wnt pathway hyperactivation and is overexpressed in colorectal, breast, and ovarian cancers. Together, our findings reveal distinct requirements for Ebd and Ewg in physiological Wnt pathway activation versus oncogenic Wnt pathway hyperactivation following Apc1 loss. Such differentially utilized transcription cofactors may offer new opportunities for the selective targeting of Wnt-driven cancers.


Assuntos
Proteína B de Centrômero/genética , Proteínas do Citoesqueleto/genética , Proteínas de Drosophila/genética , Neoplasias/genética , Neuropeptídeos/genética , Proteínas Nucleares/biossíntese , Fatores de Transcrição/genética , Animais , Carcinogênese/genética , Proliferação de Células/genética , Proteína B de Centrômero/biossíntese , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Proteínas de Drosophila/biossíntese , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Humanos , Hiperplasia/genética , Hiperplasia/patologia , Intestinos/crescimento & desenvolvimento , Neoplasias/patologia , Neuropeptídeos/biossíntese , Proteínas Nucleares/genética , Proteínas de Ligação a RNA , Células-Tronco/metabolismo , Fatores de Transcrição/biossíntese , Via de Sinalização Wnt/genética
18.
PLoS Genet ; 13(6): e1006860, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28628612

RESUMO

Dorsal closure (DC) is a developmental process in which two contralateral epithelial sheets migrate to seal a large hole in the dorsal ectoderm of the Drosophila embryo. Two signaling pathways act sequentially to orchestrate this dynamic morphogenetic process. First, c-Jun N-terminal kinase (JNK) signaling activity in the dorsal-most leading edge (LE) cells of the epidermis induces expression of decapentaplegic (dpp). Second, Dpp, a secreted TGF-ß homolog, triggers cell shape changes in the adjacent, ventrally located lateral epidermis, that guide the morphogenetic movements and cell migration mandatory for DC. Here we uncover a cell non-autonomous requirement for the Epidermal growth factor receptor (Egfr) pathway in the lateral epidermis for sustained dpp expression in the LE. Specifically, we demonstrate that Egfr pathway activity in the lateral epidermis prevents expression of the gene scarface (scaf), encoding a secreted antagonist of JNK signaling. In embryos with compromised Egfr signaling, upregulated Scaf causes reduction of JNK activity in LE cells, thereby impeding completion of DC. Our results identify a new developmental role for Egfr signaling in regulating epithelial plasticity via crosstalk with the JNK pathway.


Assuntos
Proteínas de Drosophila/genética , Desenvolvimento Embrionário/genética , Receptores ErbB/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Receptores de Peptídeos de Invertebrados/genética , Serina Proteases/genética , Animais , Proteínas de Drosophila/biossíntese , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Ectoderma/crescimento & desenvolvimento , Ectoderma/metabolismo , Embrião não Mamífero , Epiderme/crescimento & desenvolvimento , Epiderme/metabolismo , Receptores ErbB/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Quinases JNK Ativadas por Mitógeno/biossíntese , Morfogênese/genética , Receptores de Peptídeos de Invertebrados/biossíntese , Serina Proteases/biossíntese , Transdução de Sinais
19.
PLoS Genet ; 13(6): e1006859, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28640815

RESUMO

Preventing obesity requires a precise balance between deposition into and mobilization from fat stores, but regulatory mechanisms are incompletely understood. Drosophila Split ends (Spen) is the founding member of a conserved family of RNA-binding proteins involved in transcriptional regulation and frequently mutated in human cancers. We find that manipulating Spen expression alters larval fat levels in a cell-autonomous manner. Spen-depleted larvae had defects in energy liberation from stores, including starvation sensitivity and major changes in the levels of metabolic enzymes and metabolites, particularly those involved in ß-oxidation. Spenito, a small Spen family member, counteracted Spen function in fat regulation. Finally, mouse Spen and Spenito transcript levels scaled directly with body fat in vivo, suggesting a conserved role in fat liberation and catabolism. This study demonstrates that Spen is a key regulator of energy balance and provides a molecular context to understand the metabolic defects that arise from Spen dysfunction.


Assuntos
Proteínas de Drosophila/genética , Metabolismo Energético/genética , Proteínas de Homeodomínio/genética , Proteínas Nucleares/genética , Obesidade/genética , Proteínas de Ligação a RNA/genética , Tecido Adiposo/crescimento & desenvolvimento , Tecido Adiposo/metabolismo , Animais , Proteínas de Drosophila/biossíntese , Drosophila melanogaster , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/biossíntese , Humanos , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Camundongos , Mutação , Proteínas Nucleares/biossíntese , Obesidade/metabolismo , Obesidade/patologia , Proteínas de Ligação a RNA/biossíntese , Transdução de Sinais/genética
20.
Biochim Biophys Acta Mol Basis Dis ; 1863(9): 2111-2119, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28529046

RESUMO

Formation of Neurofibrillary Tangles (NFTs) in neuronal tissues has been implicated as the hallmark of disease pathogenesis and tau mediated toxicity in human and mammalian models. However, previous studies had failed to correlate NFT formation with pathogenesis of human neuronal tauopathies in Drosophila disease models. Though, a recent report suggests formation of tau mediated NFTs like structures confined to dopaminergic neurons in Drosophila adult brain; by utilizing various approaches, we demonstrate distinct and recurrent formation of NFTs in Drosophila neuronal tissues upon expression of wild type or mutant isoforms of human tau protein, and this appears as the key mediator of the pathogenesis of human neuronal tauopathy in Drosophila. Further, we show that tissue specific downregulation of dMyc (Drosophila homolog of human c-myc proto-oncogene) alleviates h-tau mediated cellular and functional deficits by restricting the formation of NFTs in neuronal tissues. Therefore, our findings provide very critical and novel insights about pathogenesis of human neuronal tauopathies in Drosophila disease models.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Regulação para Baixo , Proteínas de Drosophila/biossíntese , Emaranhados Neurofibrilares/metabolismo , Tauopatias/metabolismo , Fatores de Transcrição/biossíntese , Proteínas tau/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/patologia , Proto-Oncogene Mas , Tauopatias/genética , Tauopatias/patologia , Fatores de Transcrição/genética , Proteínas tau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA