Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nature ; 607(7918): 399-406, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35768513

RESUMO

Small interfering RNAs (siRNAs) are the key components for RNA interference (RNAi), a conserved RNA-silencing mechanism in many eukaryotes1,2. In Drosophila, an RNase III enzyme Dicer-2 (Dcr-2), aided by its cofactor Loquacious-PD (Loqs-PD), has an important role in generating 21 bp siRNA duplexes from long double-stranded RNAs (dsRNAs)3,4. ATP hydrolysis by the helicase domain of Dcr-2 is critical to the successful processing of a long dsRNA into consecutive siRNA duplexes5,6. Here we report the cryo-electron microscopy structures of Dcr-2-Loqs-PD in the apo state and in multiple states in which it is processing a 50 bp dsRNA substrate. The structures elucidated interactions between Dcr-2 and Loqs-PD, and substantial conformational changes of Dcr-2 during a dsRNA-processing cycle. The N-terminal helicase and domain of unknown function 283 (DUF283) domains undergo conformational changes after initial dsRNA binding, forming an ATP-binding pocket and a 5'-phosphate-binding pocket. The overall conformation of Dcr-2-Loqs-PD is relatively rigid during translocating along the dsRNA in the presence of ATP, whereas the interactions between the DUF283 and RIIIDb domains prevent non-specific cleavage during translocation by blocking the access of dsRNA to the RNase active centre. Additional ATP-dependent conformational changes are required to form an active dicing state and precisely cleave the dsRNA into a 21 bp siRNA duplex as confirmed by the structure in the post-dicing state. Collectively, this study revealed the molecular mechanism for the full cycle of ATP-dependent dsRNA processing by Dcr-2-Loqs-PD.


Assuntos
Microscopia Crioeletrônica , Proteínas de Drosophila , Drosophila melanogaster , RNA Helicases , RNA de Cadeia Dupla , RNA Interferente Pequeno , Proteínas de Ligação a RNA , Ribonuclease III , Trifosfato de Adenosina , Animais , Sítios de Ligação , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/ultraestrutura , Fosfatos/metabolismo , Conformação Proteica , RNA Helicases/química , RNA Helicases/metabolismo , RNA Helicases/ultraestrutura , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/ultraestrutura , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/ultraestrutura , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/ultraestrutura , Ribonuclease III/química , Ribonuclease III/metabolismo , Ribonuclease III/ultraestrutura
2.
Nucleic Acids Res ; 49(15): 8866-8885, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34329466

RESUMO

A key regulatory process during Drosophila development is the localized suppression of the hunchback mRNA translation at the posterior, which gives rise to a hunchback gradient governing the formation of the anterior-posterior body axis. This suppression is achieved by a concerted action of Brain Tumour (Brat), Pumilio (Pum) and Nanos. Each protein is necessary for proper Drosophila development. The RNA contacts have been elucidated for the proteins individually in several atomic-resolution structures. However, the interplay of all three proteins during RNA suppression remains a long-standing open question. Here, we characterize the quaternary complex of the RNA-binding domains of Brat, Pum and Nanos with hunchback mRNA by combining NMR spectroscopy, SANS/SAXS, XL/MS with MD simulations and ITC assays. The quaternary hunchback mRNA suppression complex comprising the RNA binding domains is flexible with unoccupied nucleotides functioning as a flexible linker between the Brat and Pum-Nanos moieties of the complex. Moreover, the presence of the Pum-HD/Nanos-ZnF complex has no effect on the equilibrium RNA binding affinity of the Brat RNA binding domain. This is in accordance with previous studies, which showed that Brat can suppress mRNA independently and is distributed uniformly throughout the embryo.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Desenvolvimento Embrionário/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Animais , Padronização Corporal/genética , Proteínas de Ligação a DNA/ultraestrutura , Proteínas de Drosophila/ultraestrutura , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/ultraestrutura , Proteínas de Ligação a RNA/ultraestrutura , Espalhamento a Baixo Ângulo , Fatores de Transcrição/ultraestrutura , Difração de Raios X
3.
Life Sci Alliance ; 3(8)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32718994

RESUMO

Striated muscle thick filaments are composed of myosin II and several non-myosin proteins. Myosin II's long α-helical coiled-coil tail forms the dense protein backbone of filaments, whereas its N-terminal globular head containing the catalytic and actin-binding activities extends outward from the backbone. Here, we report the structure of thick filaments of the flight muscle of the fruit fly Drosophila melanogaster at 7 Å resolution. Its myosin tails are arranged in curved molecular crystalline layers identical to flight muscles of the giant water bug Lethocerus indicus Four non-myosin densities are observed, three of which correspond to ones found in Lethocerus; one new density, possibly stretchin-mlck, is found on the backbone outer surface. Surprisingly, the myosin heads are disordered rather than ordered along the filament backbone. Our results show striking myosin tail similarity within flight muscle filaments of two insect orders separated by several hundred million years of evolution.


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Microscopia Crioeletrônica/métodos , Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/ultraestrutura , Drosophila melanogaster/metabolismo , Drosophila melanogaster/ultraestrutura , Relaxamento Muscular/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Sistema Musculoesquelético/metabolismo , Miosina Tipo II/análise , Miosina Tipo II/metabolismo , Miosina Tipo II/ultraestrutura , Miosinas/análise , Miosinas/ultraestrutura , Sarcômeros/metabolismo
4.
Nat Struct Mol Biol ; 26(8): 671-678, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31285604

RESUMO

The AAA+ ATPase spastin remodels microtubule arrays through severing and its mutation is the most common cause of hereditary spastic paraplegias (HSP). Polyglutamylation of the tubulin C-terminal tail recruits spastin to microtubules and modulates severing activity. Here, we present a ~3.2 Å resolution cryo-EM structure of the Drosophila melanogaster spastin hexamer with a polyglutamate peptide bound in its central pore. Two electropositive loops arranged in a double-helical staircase coordinate the substrate sidechains. The structure reveals how concurrent nucleotide and substrate binding organizes the conserved spastin pore loops into an ordered network that is allosterically coupled to oligomerization, and suggests how tubulin tail engagement activates spastin for microtubule disassembly. This allosteric coupling may apply generally in organizing AAA+ protein translocases into their active conformations. We show that this allosteric network is essential for severing and is a hotspot for HSP mutations.


Assuntos
Adenosina Trifosfatases/ultraestrutura , Proteínas de Drosophila/ultraestrutura , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Regulação Alostérica , Animais , Microscopia Crioeletrônica , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Microtúbulos/metabolismo , Modelos Moleculares , Mutação , Ácido Poliglutâmico/metabolismo , Polimerização , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Relação Estrutura-Atividade , Especificidade por Substrato , Tubulina (Proteína)/metabolismo
5.
Nat Commun ; 9(1): 1662, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695795

RESUMO

Kinesin-13s constitute a distinct group within the kinesin superfamily of motor proteins that promote microtubule depolymerization and lack motile activity. The molecular mechanism by which kinesin-13s depolymerize microtubules and are adapted to perform a seemingly very different activity from other kinesins is still unclear. To address this issue, here we report the near atomic resolution cryo-electron microscopy (cryo-EM) structures of Drosophila melanogaster kinesin-13 KLP10A protein constructs bound to curved or straight tubulin in different nucleotide states. These structures show how nucleotide induced conformational changes near the catalytic site are coupled with movement of the kinesin-13-specific loop-2 to induce tubulin curvature leading to microtubule depolymerization. The data highlight a modular structure that allows similar kinesin core motor-domains to be used for different functions, such as motility or microtubule depolymerization.


Assuntos
Proteínas de Drosophila/ultraestrutura , Cinesinas/ultraestrutura , Microtúbulos/ultraestrutura , Tubulina (Proteína)/ultraestrutura , Trifosfato de Adenosina/metabolismo , Movimento Celular , Microscopia Crioeletrônica , Proteínas de Drosophila/química , Proteínas de Drosophila/isolamento & purificação , Cinesinas/química , Cinesinas/isolamento & purificação , Microtúbulos/metabolismo , Simulação de Acoplamento Molecular , Polimerização , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/ultraestrutura , Tubulina (Proteína)/química
6.
Science ; 359(6373): 329-334, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29269422

RESUMO

Invertebrates rely on Dicer to cleave viral double-stranded RNA (dsRNA), and Drosophila Dicer-2 distinguishes dsRNA substrates by their termini. Blunt termini promote processive cleavage, while 3' overhanging termini are cleaved distributively. To understand this discrimination, we used cryo-electron microscopy to solve structures of Drosophila Dicer-2 alone and in complex with blunt dsRNA. Whereas the Platform-PAZ domains have been considered the only Dicer domains that bind dsRNA termini, unexpectedly, we found that the helicase domain is required for binding blunt, but not 3' overhanging, termini. We further showed that blunt dsRNA is locally unwound and threaded through the helicase domain in an adenosine triphosphate-dependent manner. Our studies reveal a previously unrecognized mechanism for optimizing antiviral defense and set the stage for the discovery of helicase-dependent functions in other Dicers.


Assuntos
Proteínas de Drosophila/química , RNA Helicases/química , RNA de Cadeia Dupla/química , Ribonuclease III/química , Trifosfato de Adenosina/química , Animais , Microscopia Crioeletrônica , Proteínas de Drosophila/ultraestrutura , Ligação Proteica , Estrutura Terciária de Proteína , Clivagem do RNA , RNA Helicases/ultraestrutura , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , RNA Viral/química , RNA Viral/metabolismo , Ribonuclease III/ultraestrutura , Especificidade por Substrato
7.
PLoS Comput Biol ; 12(10): e1005051, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27716844

RESUMO

RASSF enzymes act as key apoptosis activators and tumor suppressors, being downregulated in many human cancers, although their exact regulatory roles remain unknown. A key downstream event in the RASSF pathway is the regulation of MST kinases, which are main effectors of RASSF-induced apoptosis. The regulation of MST1/2 includes both homo- and heterodimerization, mediated by helical SARAH domains, though the underlying molecular interaction mechanism is unclear. Here, we study the interactions between RASSF1A, RASSF5, and MST2 SARAH domains by using both atomistic molecular simulation techniques and experiments. We construct and study models of MST2 homodimers and MST2-RASSF SARAH heterodimers, and we identify the factors that control their high molecular stability. In addition, we also analyze both computationally and experimentally the interactions of MST2 SARAH domains with a series of synthetic peptides particularly designed to bind to it, and hope that our approach can be used to address some of the challenging problems in designing new anti-cancer drugs.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/ultraestrutura , Inibidor de Quinase Dependente de Ciclina p15/química , Inibidor de Quinase Dependente de Ciclina p15/ultraestrutura , Proteínas de Drosophila/química , Proteínas de Drosophila/ultraestrutura , Simulação de Acoplamento Molecular , Sítios de Ligação , Dimerização , Ativação Enzimática , Ligação Proteica , Conformação Proteica , Domínios Proteicos
8.
Nat Commun ; 4: 1343, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23299893

RESUMO

An outstanding unresolved question is how does the mitotic spindle utilize microtubules and mitotic motors to coordinate accurate chromosome segregation during mitosis? This process depends upon the mitotic motor, kinesin-5, whose unique bipolar architecture, with pairs of motor domains lying at opposite ends of a central rod, allows it to crosslink microtubules within the mitotic spindle and to coordinate their relative sliding during spindle assembly, maintenance and elongation. The structural basis of kinesin-5's bipolarity is, however, unknown, as protein asymmetry has so far precluded its crystallization. Here we use electron microscopy of single molecules of kinesin-5 and its subfragments, combined with hydrodynamic analysis plus mass spectrometry, circular dichroism and site-directed spin label electron paramagnetic resonance spectroscopy, to show how a staggered antiparallel coiled-coil 'BASS' (bipolar assembly) domain directs the assembly of four kinesin-5 polypeptides into bipolar minifilaments.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Animais , Cisteína/genética , Proteínas de Drosophila/ultraestrutura , Espectroscopia de Ressonância de Spin Eletrônica , Hidrodinâmica , Espectrometria de Massas , Proteínas Associadas aos Microtúbulos/ultraestrutura , Peso Molecular , Proteínas Mutantes/química , Mutação/genética , Nanopartículas/ultraestrutura , Eletroforese em Gel de Poliacrilamida Nativa , Multimerização Proteica , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína , Relação Estrutura-Atividade
9.
J Gen Physiol ; 134(1): 53-68, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19564427

RESUMO

K(2P)Ø, the two-pore domain potassium background channel that determines cardiac rhythm in Drosophila melanogaster, and its homologues that establish excitable membrane activity in mammals are of unknown structure. K(2P) subunits have two pore domains flanked by transmembrane (TM) spans: TM1-P1-TM2-TM3-P2-TM4. To establish spatial relationships in K(2P)Ø, we identified pairs of sites that display electrostatic compensation. Channels silenced by the addition of a charge in pore loop 1 (P1) or P2 were restored to function by countercharges at specific second sites. A three-dimensional homology model was determined using the crystal structure of K(V)1.2, effects of K(2P)Ø mutations to establish alignment, and compensatory charge-charge pairs. The model was refined and validated by continuum electrostatic free energy calculations and covalent linkage of introduced cysteines. K(2P) channels use two subunits arranged so that the P1 and P2 loops contribute to one pore, identical P loops face each other diagonally across the pore, and the channel complex has bilateral symmetry with a fourfold symmetric selectivity filter.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/ultraestrutura , Modelos Químicos , Modelos Moleculares , Canais de Potássio/química , Canais de Potássio/ultraestrutura , Sequência de Aminoácidos , Sítios de Ligação , Simulação por Computador , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Eletricidade Estática
10.
Biochem Biophys Res Commun ; 359(4): 972-8, 2007 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-17572384

RESUMO

p55, a member of the membrane-associated guanylate kinase family, includes a PDZ domain that specifically interacts with the C-terminal region of glycophorin C in the ternary complex of p55, protein 4.1 and glycophorin C. Here we present the first NMR-derived complex structure of the p55 PDZ domain and the C-terminal peptide of glycophorin C, obtained by using a threonine to cysteine (T85C) mutant of the p55 PDZ domain and a phenylalanine to cysteine (F127C) mutant of the glycophorin C peptide. Our NMR results revealed that the two designed mutant molecules retain the specific interaction manner that exists between the wild type molecules and can facilitate the structure determination by NMR, due to the stable complex formation via an intermolecular disulfide bond. The complex structure provides insight into the specific interaction of the p55 PDZ domain with the two key residues, Ile128 and Tyr126, of glycophorin C.


Assuntos
Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/ultraestrutura , Proteínas de Drosophila/química , Proteínas de Drosophila/ultraestrutura , Glicoforinas/química , Glicoforinas/ultraestrutura , Modelos Químicos , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/ultraestrutura , Sítios de Ligação , Simulação por Computador , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteína 4 de Ligação ao Retinoblastoma
11.
J Cell Biol ; 175(1): 25-31, 2006 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-17015621

RESUMO

Kinesin is a superfamily of motor proteins that uses the energy of adenosine triphosphate hydrolysis to move and generate force along microtubules. A notable exception to this general description is found in the kinesin-13 family that actively depolymerizes microtubules rather than actively moving along them. This depolymerization activity is important in mitosis during chromosome segregation. It is still not fully clear by which mechanism kinesin-13s depolymerize microtubules. To address this issue, we used electron microscopy to investigate the interaction of kinesin-13s with microtubules. Surprisingly, we found that proteins of the kinesin-13 family form rings and spirals around microtubules. This is the first report of this type of oligomeric structure for any kinesin protein. These rings may allow kinesin-13s to stay at the ends of microtubules during depolymerization.


Assuntos
Cinesinas/ultraestrutura , Microtúbulos/ultraestrutura , Trifosfato de Adenosina/metabolismo , Animais , Cricetinae , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/fisiologia , Proteínas de Drosophila/ultraestrutura , Cinesinas/química , Cinesinas/fisiologia , Microtúbulos/química , Microtúbulos/metabolismo , Modelos Moleculares , Conformação Molecular , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/ultraestrutura
12.
Nature ; 439(7078): 875-8, 2006 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-16382238

RESUMO

Kinesins are microtubule-based motor proteins that power intracellular transport. Most kinesin motors, exemplified by Kinesin-1, move towards the microtubule plus end, and the structural changes that govern this directional preference have been described. By contrast, the nature and timing of the structural changes underlying the minus-end-directed motility of Kinesin-14 motors (such as Drosophila Ncd) are less well understood. Using cryo-electron microscopy, here we demonstrate that a coiled-coil mechanical element of microtubule-bound Ncd rotates approximately 70 degrees towards the minus end upon ATP binding. Extending or shortening this coiled coil increases or decreases velocity, respectively, without affecting ATPase activity. An unusual Ncd mutant that lacks directional preference shows unstable nucleotide-dependent conformations of its coiled coil, underscoring the role of this mechanical element in motility. These results show that the force-producing conformational change in Ncd occurs on ATP binding, as in other kinesins, but involves the swing of a lever-arm mechanical element similar to that described for myosins.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Cinesinas/química , Cinesinas/metabolismo , Rotação , Trifosfato de Adenosina/metabolismo , Animais , Microscopia Crioeletrônica , Proteínas de Drosophila/genética , Proteínas de Drosophila/ultraestrutura , Cinesinas/genética , Cinesinas/ultraestrutura , Microtúbulos/metabolismo , Modelos Biológicos , Modelos Moleculares , Mutação/genética , Conformação Proteica , Relação Estrutura-Atividade
13.
Dev Dyn ; 232(3): 855-64, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15712204

RESUMO

Loss of Discslarge (Dlg) in early Drosophila egg chambers causes invasion of tumor follicle cells from the anterior epithelium, a pattern that resembles developmental border cell migration during mid-oogenesis. Here, we have analyzed novel spatial and temporal patterns of dlg invasion. Even though Dlg is ubiquitously expressed in all follicle cells, invasions are biased at the anterior and posterior termini. The patterns of invasion correlate with both a higher rate of follicle cell proliferation and with a greater frequency of loss of epithelial polarity at the termini compared with central regions of the egg chamber. Nonetheless, the average number of cells that invade per invasion event from terminal vs. central regions is approximately equal. Of interest, patterns of dlg invasion appear to coincide with boundaries established by proto-oncogene signals responsible for anterior-posterior patterning. The Drosophila egg chamber may thus be a useful model for exploring how epithelial tumor invasion might be a neomorphogenetic process organized by signals essential for developmental pattern formation.


Assuntos
Proteínas de Drosophila/genética , Drosophila/embriologia , Drosophila/fisiologia , Proteínas de Insetos/genética , Invasividade Neoplásica/patologia , Neoplasias Epiteliais e Glandulares/etiologia , Proteínas Supressoras de Tumor/genética , Animais , Drosophila/citologia , Drosophila/genética , Drosophila/ultraestrutura , Proteínas de Drosophila/fisiologia , Proteínas de Drosophila/ultraestrutura , Embrião não Mamífero , Feminino , Genes de Insetos , Proteínas de Insetos/fisiologia , Modelos Biológicos , Mutação , Invasividade Neoplásica/ultraestrutura , Neoplasias Epiteliais e Glandulares/ultraestrutura , Oócitos/citologia , Oócitos/crescimento & desenvolvimento , Oócitos/ultraestrutura , Folículo Ovariano/patologia , Folículo Ovariano/ultraestrutura , Óvulo/citologia , Óvulo/crescimento & desenvolvimento , Óvulo/ultraestrutura , Proteínas Supressoras de Tumor/fisiologia , Proteínas Supressoras de Tumor/ultraestrutura
14.
EMBO J ; 23(13): 2459-67, 2004 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-15175652

RESUMO

Dyneins and kinesins move in opposite directions on microtubules. The question of how the same-track microtubules are able to support movement in two directions remains unanswered due to the absence of details on dynein-microtubule interactions. To address this issue, we studied dynein-microtubule interactions using the tip of the microtubule-binding stalk, the dynein stalk head (DSH), which directly interacts with microtubules upon receiving conformational change from the ATPase domain. Biochemical and cryo-electron microscopic studies revealed that DSH bound to tubulin dimers with a periodicity of 80 A, corresponding to the step size of dyneins. The DSH molecule was observed as a globular corn grain-like shape that bound the same region as kinesin. Biochemical crosslinking experiments and image analyses of the DSH-kinesin head-microtubule complex revealed competition between DSH and the kinesin head for microtubule binding. Our results demonstrate that dynein and kinesin share an overlapping microtubule-binding site, and imply that binding at this site has an essential role for these motor proteins.


Assuntos
Dineínas/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Ligação Competitiva , Bovinos , Reagentes de Ligações Cruzadas/farmacologia , Microscopia Crioeletrônica , Dimerização , Drosophila , Proteínas de Drosophila/química , Proteínas de Drosophila/efeitos dos fármacos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/ultraestrutura , Dineínas/química , Dineínas/efeitos dos fármacos , Dineínas/genética , Dineínas/ultraestrutura , Eletroforese em Gel de Poliacrilamida , Imageamento Tridimensional , Cinesinas/ultraestrutura , Cinética , Microtúbulos/química , Modelos Biológicos , Modelos Moleculares , Modelos Estruturais , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Suínos , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/ultraestrutura
15.
EMBO J ; 21(22): 5969-78, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12426369

RESUMO

We used cryo-electron microscopy and image reconstruction to investigate the structure and microtubule-binding configurations of dimeric non-claret disjunctional (ncd) motor domains under various nucleotide conditions, and applied molecular docking using ncd's dimeric X-ray structure to generate a mechanistic model for force transduction. To visualize the alpha-helical coiled-coil neck better, we engineered an SH3 domain to the N-terminal end of our ncd construct (296-700). Ncd exhibits strikingly different nucleotide-dependent three-dimensional conformations and microtubule-binding patterns from those of conventional kinesin. In the absence of nucleotide, the neck adapts a configuration close to that found in the X-ray structure with stable interactions between the neck and motor core domain. Minus-end-directed movement is based mainly on two key events: (i) the stable neck-core interactions in ncd generate a binding geometry between motor and microtubule which places the motor ahead of its cargo in the minus-end direction; and (ii) after the uptake of ATP, the two heads rearrange their position relative to each other in a way that promotes a swing of the neck in the minus-end direction.


Assuntos
Microscopia Crioeletrônica , Proteínas de Drosophila/ultraestrutura , Cinesinas/ultraestrutura , Proteínas Motores Moleculares/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Proteínas de Drosophila/fisiologia , Processamento de Imagem Assistida por Computador , Cinesinas/fisiologia , Microtúbulos/metabolismo , Modelos Moleculares , Proteínas Motores Moleculares/fisiologia , Movimento , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/fisiologia , Proteínas Recombinantes de Fusão/ultraestrutura , Fuso Acromático , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo
16.
Braz. j. med. biol. res ; 35(5): 499-507, May 2002. ilus, tab
Artigo em Inglês | LILACS | ID: lil-308281

RESUMO

Centromere function requires the proper coordination of several subfunctions, such as kinetochore assembly, sister chromatid cohesion, binding of kinetochore microtubules, orientation of sister kinetochores to opposite spindle poles, and their movement towards the spindle poles. Centromere structure appears to be organized in different, separable domains in order to accomplish these functions. Despite the conserved nature of centromere functions, the molecular genetic definition of the DNA sequences that form a centromere in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, in the fruit fly Drosophila melanogaster, and in humans has revealed little conservation at the level of centromere DNA sequences. Also at the protein level few centromere proteins are conserved in all of these four organisms and many are unique to the different organisms. The recent analysis of the centromere structure in the yeast S. pombe by electron microscopy and detailed immunofluorescence microscopy of Drosophila centromeres have brought to light striking similarities at the overall structural level between these centromeres and the human centromere. The structural organization of the centromere is generally multilayered with a heterochromatin domain and a central core/inner plate region, which harbors the outer plate structures of the kinetochore. It is becoming increasingly clear that the key factors for assembly and function of the centromere structure are the specialized histones and modified histones which are present in the centromeric heterochromatin and in the chromatin of the central core. Thus, despite the differences in the DNA sequences and the proteins that define a centromere, there is an overall structural similarity between centromeres in evolutionarily diverse eukaryotes


Assuntos
Humanos , Animais , Centrômero , Histonas , Sequência de Bases , Centrômero , DNA Fúngico , Drosophila melanogaster , Proteínas de Drosophila/ultraestrutura , Proteínas Fúngicas , Histonas , Saccharomyces cerevisiae , Schizosaccharomyces
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA