Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
1.
J Immunol Res ; 2022: 9912732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795530

RESUMO

Ovarian cancer (OC) is the main cause of deaths worldwide in female reproductive system malignancies. Growing studies have indicated that eRNAs could regulate cellular activities in various tumors. Yet the potential roles of eRNAs in OC progression have not been elucidated. Thus, comprehensive assays were needed to screen the critical eRNAs and to explore their possible function in OC. We used Kaplan-Meier methods to identify survival-associated eRNAs in OC based on TCGA datasets. The levels of ZFHX4-AS1 were examined using TCGA datasets. Further exploration was carried out based on the following assays: clinical and survival assays, GO terms, and KEGG assays. TIMER was applied to delve into the relationships between ZFHX4-AS1 and tumor immune infiltration. In this research, we observed 71 survival-related eRNAs in OC patients. ZFHX4-AS1 was highly expressed in OC specimens and predicted a poor prognosis of OC patients. In addition, high ZFHX4-AS1 expression was positively related to the advanced stages of OC specimens. Multivariate assays revealed that ZFHX4-AS1 was an independent prognostic factor for overall survival of OC patients. KEGG analysis indicated that ZFHX4-AS1 may play a regulatory effect on TGF-beta signaling, PI3K-Akt signaling, and proteoglycans in cancer. The pan-cancer validation indicated that ZFHX4-AS1 was related to survival in eight tumors, namely, UCEC, STAD, SARC, OV, ACC, KICH, KIRC, and BLCA. The expression of ZFHX4-AS1 was correlated with the levels of B cells, T cell CD8+, neutrophil, macrophage, and myeloid dendritic cells. Simultaneously, ZFHX4-AS1 may be a prognostic biomarker and a distinctly immunotherapy-related eRNA in OC.


Assuntos
Proteínas de Homeodomínio , Neoplasias Ovarianas , RNA Longo não Codificante , Fatores de Transcrição , Biomarcadores Tumorais , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/imunologia , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/imunologia , Prognóstico , RNA Longo não Codificante/genética , RNA Longo não Codificante/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia
2.
Int Immunopharmacol ; 102: 107892, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34215553

RESUMO

Differentiated embryo-chondrocyte expressed gene 1 (DEC1) belongs to the family of basic helix-loop-helix (bHLH)-type transcription factors. DEC1 is expressed in various mammalian cells, but early studies focused on its roles outside the immune system. In recent years, relevant studies have found that DEC1 plays an important role in the immunotherapy of tumors, the functional regulation of the immune system, and the onset of autoimmune diseases. DEC1 promotes interferon (IFN)-γand granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion through the production of CD4+ T cells, which promotes inflammatory defense responses and autoimmune diseases. Additionally, DEC1 can inhibit the expression of interleukin (IL)-10 to further strengthen the immune response. In this review, we summarized recent advances in our understanding of the roles of DEC1 in animal models and human cells, including regulating immune cell differentiation, controlling cytokine production, and maintaining the balance of pro- and anti-inflammatory signals.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Proteínas de Homeodomínio/imunologia , Animais , Doenças Autoimunes/imunologia , Humanos , Imunomodulação , Neoplasias/imunologia , Neoplasias/terapia
3.
J Exp Med ; 219(1)2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34882194

RESUMO

Pregnancy is a common immunization event, but the molecular mechanisms and immunological consequences provoked by pregnancy remain largely unknown. We used mouse models and human transplant registry data to reveal that pregnancy induced exhausted CD8 T cells (Preg-TEX), which associated with prolonged allograft survival. Maternal CD8 T cells shared features of exhaustion with CD8 T cells from cancer and chronic infection, including transcriptional down-regulation of ribosomal proteins and up-regulation of TOX and inhibitory receptors. Similar to other models of T cell exhaustion, NFAT-dependent elements of the exhaustion program were induced by fetal antigen in pregnancy, whereas NFAT-independent elements did not require fetal antigen. Despite using conserved molecular circuitry, Preg-TEX cells differed from TEX cells in chronic viral infection with respect to magnitude and dependency of T cell hypofunction on NFAT-independent signals. Altogether, these data reveal the molecular mechanisms and clinical consequences of maternal CD8 T cell hypofunction and identify pregnancy as a previously unappreciated context in which T cell exhaustion may occur.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Perfilação da Expressão Gênica/métodos , Ativação Linfocitária/imunologia , Fatores de Transcrição NFATC/imunologia , Transferência Adotiva , Animais , Antígenos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Chlorocebus aethiops , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Proteínas de Homeodomínio/metabolismo , Humanos , Estimativa de Kaplan-Meier , Ativação Linfocitária/genética , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Gravidez , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Transplante de Pele , Baço/citologia , Baço/imunologia , Baço/metabolismo , Células Vero
4.
Front Immunol ; 12: 781221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950145

RESUMO

Background: The homeobox (HOX) gene family encodes highly conserved transcription factors, that play important roles in the morphogenesis and embryonic development of vertebrates. Mammals have four similar HOX gene clusters, HOXA, HOXB, HOXC, and HOXD, which are located on chromosomes 7, 17,12 and 2 and consist of 38 genes. Some of these genes were found to be significantly related to a variety of tumors; however, it remains unknown whether abnormal expression of the HOX gene family affects prognosis and the tumor microenvironment (TME) reshaping in colorectal cancer (CRC). Therefore, we conducted this systematic exploration to provide additional information for the above questions. Methods: RNA sequencing data from The Cancer Genome Atlas (TCGA) and mRNA expression data from Gene Expression Omnibus (GEO) combined with online tumor analysis databases (UALCAN, TIMER, PrognoScan) were utilized to explore the relationship among abnormal expression of HOX family genes, prognosis and the tumor immune microenvironment in CRC. Results: 1. Differential expression and prognosis analysis: 24 genes were significantly differentially expressed in CRC compared to adjacent normal tissues, and seven upregulated genes were significantly associated with poor survival. Among these seven genes, univariate and multivariate Cox regression analysis revealed that only high expression of HOXC6 significantly contributed to poor prognosis; 2. The influence of overexpressed HOXC6 on the pathway and TME: High HOXC6 expression was significantly related to the cytokine pathway and expression of T cell attraction chemokines, the infiltration ratio of immune cells, expression of immune checkpoint markers, tumor mutation burden (TMB) scores and microsatellite instability-high (MSI-H) scores; 3. Stratified analysis based on stages: In stage IV, HOXC6 overexpression had no significant impact on TMB, MSI-H, infiltration ratio of immune cells and response prediction of immune checkpoint blockers (ICBs), which contributed to significantly poor overall survival (OS). Conclusion: Seven differentially expressed HOX family genes had significantly worse prognoses. Among them, overexpressed HOXC6 contributed the most to poor OS. High expression of HOXC6 was significantly associated with high immunogenicity in nonmetastatic CRC. Further research on HOXC6 is therefore worthwhile to provide potential alternatives in CRC immunotherapy.


Assuntos
Neoplasias Colorretais/imunologia , Proteínas de Homeodomínio/imunologia , Microambiente Tumoral/imunologia , Genes Homeobox/imunologia , Humanos , Prognóstico , Transcriptoma
5.
Nature ; 599(7885): 477-484, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34732890

RESUMO

The majority of oncogenic drivers are intracellular proteins, thus constraining their immunotherapeutic targeting to mutated peptides (neoantigens) presented by individual human leukocyte antigen (HLA) allotypes1. However, most cancers have a modest mutational burden that is insufficient to generate responses using neoantigen-based therapies2,3. Neuroblastoma is a paediatric cancer that harbours few mutations and is instead driven by epigenetically deregulated transcriptional networks4. Here we show that the neuroblastoma immunopeptidome is enriched with peptides derived from proteins that are essential for tumourigenesis and focus on targeting the unmutated peptide QYNPIRTTF, discovered on HLA-A*24:02, which is derived from the neuroblastoma dependency gene and master transcriptional regulator PHOX2B. To target QYNPIRTTF, we developed peptide-centric chimeric antigen receptors (CARs) using a counter-panning strategy with predicted potentially cross-reactive peptides. We further hypothesized that peptide-centric CARs could recognize peptides on additional HLA allotypes when presented in a similar manner. Informed by computational modelling, we showed that PHOX2B peptide-centric CARs also recognize QYNPIRTTF presented by HLA-A*23:01 and the highly divergent HLA-B*14:02. Finally, we demonstrated potent and specific killing of neuroblastoma cells expressing these HLAs in vitro and complete tumour regression in mice. These data suggest that peptide-centric CARs have the potential to vastly expand the pool of immunotherapeutic targets to include non-immunogenic intracellular oncoproteins and widen the population of patients who would benefit from such therapy by breaking conventional HLA restriction.


Assuntos
Antígenos de Neoplasias/imunologia , Antígenos HLA/imunologia , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Proteínas Oncogênicas/imunologia , Receptores de Antígenos Quiméricos/imunologia , Animais , Antígenos de Neoplasias/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Reações Cruzadas , Apresentação Cruzada , Feminino , Antígenos HLA/metabolismo , Proteínas de Homeodomínio/imunologia , Proteínas de Homeodomínio/metabolismo , Humanos , Interferon gama/imunologia , Camundongos , Neoplasias/metabolismo , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/metabolismo , Linfócitos T/imunologia , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo
6.
J Clin Lab Anal ; 35(11): e24015, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34606634

RESUMO

BACKGROUND: The homeobox A cluster (HOXA) gene family is participated in multiple biological functions in human cancers. To date, little is known about the expression profile and clinical significance of HOXA genes in cervical cancer. METHODS: We downloaded RNASeq data of cervical cancer from The Cancer Genome Atlas (TCGA) database. The difference in HOXA family expression was analyzed using independent samples t test. Cox proportional hazard regression analysis was used to assess the effect of HOXA family expression on survival, and a nomogram predicting survival was generated. We assessed the infiltration difference in immune cells and expression difference of immunity biomarkers between two groups with different expression level of HOXA genes through Immune Cell Abundance Identifier (ImmuCellAI) and independent samples t test, respectively. RESULTS: Our results showed that the HOXA1 gene was upregulated, while the HOXA10 and HOXA11 were downregulated in cervical cancer. Downregulation of HOXA1 was related to a poor outcome for cervical cancer patient. We also identified a significantly increased abundance of T helper 2 cells (Th2) and higher expression of PD-L1 in cervical cancer patients with lower expression of HOXA10 and HOXA11. The gene set enrichment analysis (GSEA) results indicated that HOXA1 and HOXA11 were involved in immune responses pathways and participated in the activation of a variety of classic signaling pathways related to the progression of human cancer. CONCLUSION: This study comprehensively analyzed different HOXA genes applying public database to determine their expression patterns, potential diagnostic, prognostic, and treatment values in cervical cancer.


Assuntos
Biomarcadores Tumorais , Proteínas de Homeodomínio , Neoplasias do Colo do Útero , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Biomarcadores Tumorais/metabolismo , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Proteínas de Homeodomínio/metabolismo , Humanos , Prognóstico , RNA-Seq , Transcriptoma/genética , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/mortalidade
7.
J Immunother Cancer ; 9(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34413167

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is characterized by inflammation and immunopathogenesis. Accumulating evidence has shown that the cystathionine ß-synthase/hydrogen sulfide (CBS/H2S) axis is involved in the regulation of inflammation. However, roles of CBS in HCC development and immune evasion have not been systematically investigated, and their underlying mechanisms remain elusive. Here, we investigated the roles of CBS in tumor cells and tumor microenvironment of HCC. METHODS: 236 HCC samples were collected to detect the expression of CBS, cleaved Caspase-3 and paired related homeobox 2 (PRRX2) and the number of immune cells. HCC cell lines were employed to examine the effects of CBS on cellular viability, apoptosis and signaling in vitro. Cbs heterozygous knockout mice, C57BL/6 mice, nude mice and non-obese diabetic severe combined immunodeficiency mice were used to investigate the in vivo functions of CBS. RESULTS: Downregulation of CBS was observed in HCC, and low expression of CBS predicted poor prognosis in HCC patients. CBS overexpression dramatically promoted cellular apoptosis in vitro and inhibited tumor growth in vivo. Activation of the Cbs/H2S axis also reduced the abundance of tumor-infiltrating Tregs, while Cbs deficiency promoted Tregs-mediated immune evasion and boosted tumor growth in Cbs heterozygous knockout mice. Mechanistically, CBS facilitated the expression cleaved Caspase-3 in tumor cells, and on the other hand, suppressed Foxp3 expression in Tregs via inactivating IL-6/STAT3 pathway. As a transcription factor of IL-6, PRRX2 was reduced by CBS. Additionally, miR-24-3p was proven to be an upstream suppressor of CBS in HCC. CONCLUSIONS: Our results indicate the antitumor function of CBS in HCC by inactivation of the PRRX2/IL-6/STAT3 pathway, which may serve as a potential target for HCC clinical immunotherapy.


Assuntos
Cistationina beta-Sintase/imunologia , Proteínas de Homeodomínio/imunologia , Interleucina-6/imunologia , Neoplasias Hepáticas/imunologia , Fator de Transcrição STAT3/imunologia , Linfócitos T Reguladores/imunologia , Animais , Apoptose/fisiologia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Cistationina beta-Sintase/biossíntese , Cistationina beta-Sintase/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Sulfeto de Hidrogênio/imunologia , Sulfeto de Hidrogênio/metabolismo , Interleucina-6/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Evasão Tumoral , Microambiente Tumoral
8.
FEBS Open Bio ; 11(6): 1785-1798, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33837660

RESUMO

The transcriptional repressor zinc finger homeobox 2 (ZHX2) is reported to regulate tumor progression in several human cancers, although little is known about its role in gastric cancer (GC). In the present study, we investigated the expression of ZHX2 and its relationship with the clinicopathological characteristics and prognosis of GC patients, and we also examined the effect of ZHX2 overexpression in GC cell lines. We used UALCAN (http://ualcan.path.uab.edu) and the Tumor Immune Estimation Resource (http://cistrome.org/TIMER) to examine ZHX2 mRNA expression, and also used Kaplan-Meier Plotter (https://kmplot.com) to determine whether ZHX2 expression was related to GC prognosis. Expression of ZHX2 protein was detected using immunohistochemical staining assays. Cell proliferation was evaluated using a cell counting kit-8 and colony formation assays, whereas apoptosis was examined by flow cytometry. Wound healing and transwell assays were used to detect cell migration and invasion. We also performed Gene Set Enrichment Analysis (https://www.gsea-msigdb.org) and used The Cancer Genome Atlas database (https://www.genome.gov/Funded-Programs-Projects/Cancer-Genome-Atlas) to examine the correlation of ZHX2 with immune infiltration. We report that ZHX2 is highly expressed in GC tissues and is significantly associated with clinical characteristics. Upregulation of ZHX2 predicted poor prognosis in GC. Furthermore, ZHX2 overexpression can promote the proliferation, invasion and migration, but inhibit apoptosis, of GC cells. High expression of ZHX2 in GC is correlated with the presence of infiltrating immune cells, including B cells, CD4+ T cells, macrophages and dendritic cells. Our data suggest that high expression of ZHX2 in GC predicts poor prognosis. In addition, ZHX2 may promote malignant behaviors of GC cells, and immune infiltration might be related to the oncogenic role of ZHX2 in GC.


Assuntos
Proteínas de Homeodomínio/imunologia , Neoplasias Gástricas/imunologia , Fatores de Transcrição/imunologia , Regulação para Cima/imunologia , Proteínas de Homeodomínio/genética , Humanos , Prognóstico , Neoplasias Gástricas/diagnóstico , Fatores de Transcrição/genética , Células Tumorais Cultivadas
9.
J Asthma ; 58(9): 1143-1154, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32419535

RESUMO

BACKGROUND: Asthma characterized by airway hyperresponsiveness, inflammation, fibrosis, and angiogenesis. SRY-related HMG-box 18 (SOX18) is an important transcription factor involved in angiogenesis, tissue injury, wound-healing, and in embryonic cardiovascular and lymphatic vessels development. The role of angiogenic transcription factors, SOX18 and the related, prospero homeobox 1 (PROX1) and chicken ovalbumin upstream promoter transcription factor II (COUP-TFII), in asthma has had limited study. OBJECTIVE: In this study, we aimed to elucidate the role of SOX18 in the pathogenesis of bronchial asthma. METHODS: Plasma SOX18 protein was measured in control subjects, and subject with stable or exacerbated asthma. SOX18, PROX1, and COUP-TFII protein was measured by western blot, and immunohistochemistry in a murine model of ovalbumin-induced allergic asthma (OVA). SOX18, PROX1, and COUP-TFII protein was measured in lung human microvascular endothelial cells (HMVEC-L) and normal human bronchial epithelial (NHBE) cells treated with house dust mite (Der p1). RESULTS: Plasma SOX18 tended to be higher in subject with asthma compared to control subjects and increased more during exacerbation as compared to stable disease. In mice, OVA challenge lead to increased lung SOX18, PROX1, COUP-TFII, mucous gland hyperplasia and submucosal collagen. In NHBE cells, SOX18, PROX1 and COUP-TFII increased following Der p1 treatment. SOX18 protein increased in HMVEC-L following Der p1 treatment. CONCLUSION: These results suggest that SOX18 may be involved in asthma pathogenesis and be associated with asthma exacerbation.


Assuntos
Asma/sangue , Fatores de Transcrição SOXF/sangue , Adulto , Idoso , Alérgenos/imunologia , Animais , Antígenos de Dermatophagoides/imunologia , Proteínas de Artrópodes/imunologia , Asma/imunologia , Asma/patologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Fator II de Transcrição COUP/imunologia , Linhagem Celular , Cisteína Endopeptidases/imunologia , Progressão da Doença , Feminino , Fibrose , Proteínas de Homeodomínio/imunologia , Humanos , Interleucina-5/imunologia , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Neovascularização Fisiológica , Ovalbumina/imunologia , Proteínas Supressoras de Tumor/imunologia , Fator A de Crescimento do Endotélio Vascular/imunologia
10.
J Allergy Clin Immunol ; 147(1): 309-320.e6, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32387109

RESUMO

BACKGROUND: Mutations in the recombinase-activating genes cause severe immunodeficiency, with a spectrum of phenotypes ranging from severe combined immunodeficiency to immune dysregulation. Hematopoietic stem cell transplantation is the only curative option, but a high risk of graft failure and poor immune reconstitution have been observed in the absence of myeloablation. OBJECTIVES: Our aim was to improve multilineage engraftment; we tested nongenotoxic conditioning with anti-CD45 mAbs conjugated with saporin CD45 (CD45-SAP). METHODS: Rag1-KO and Rag1-F971L mice, which represent models of severe combined immune deficiency and combined immune deficiency with immune dysregulation, respectively, were conditioned with CD45-SAP, CD45-SAP plus 2 Gy of total body irradiation (TBI), 2 Gy of TBI, 8 Gy of TBI, or no conditioning and treated by using transplantation with lineage-negative bone marrow cells from wild-type mice. Flow cytometry and immunohistochemistry were used to assess engraftment and immune reconstitution. Antibody responses to 2,4,6-trinitrophenyl-conjugated keyhole limpet hemocyanin were measured by ELISA, and presence of autoantibody was detected by microarray. RESULTS: Conditioning with CD45-SAP enabled high levels of multilineage engraftment in both Rag1 mutant models, allowed overcoming of B- and T-cell differentiation blocks and thymic epithelial cell defects, and induced robust cellular and humoral immunity in the periphery. CONCLUSIONS: Conditioning with CD45-SAP allows multilineage engraftment and robust immune reconstitution in mice with either null or hypomorphic Rag mutations while preserving thymic epithelial cell homeostasis.


Assuntos
Anticorpos Monoclonais/farmacologia , Transplante de Medula Óssea , Proteínas de Homeodomínio/genética , Imunoconjugados/farmacologia , Antígenos Comuns de Leucócito/antagonistas & inibidores , Saporinas/farmacologia , Imunodeficiência Combinada Severa/terapia , Condicionamento Pré-Transplante , Aloenxertos , Animais , Anticorpos Monoclonais/efeitos adversos , Proteínas de Homeodomínio/imunologia , Imunoconjugados/efeitos adversos , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/imunologia , Camundongos , Camundongos Knockout , Saporinas/efeitos adversos , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia
11.
Cancer Immunol Immunother ; 69(12): 2613-2622, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32594197

RESUMO

Neuroblastoma is an example of a difficult-to-treat tumor with high incidence of relapse. DNA vaccination could be applied as a relapse prophylactic option for patients with high-risk neuroblastoma. Its efficacy depends directly on a target antigen of choice and a delivery method. Three neuroblastoma-associated antigens (tyrosine hydroxylase, Survivin, PHOX2B) and two delivery methods were investigated. Our data suggest that antigen PHOX2B is a more immunogenic target that induces cellular immune response and tumor regression more effectively than tyrosine hydroxylase and Survivin. Immunogenicity testing revealed that the delivery of DNA vaccine by Salmonella enterica was accompanied by a stronger immune response (cytotoxicity and IFNγ production) than that by DNA-polyethylenimine conjugate. Nevertheless, intramuscular immunization with PEI led to higher decrease of tumor volume compared to that after oral gavage with Salmonella vaccine.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Portadores de Fármacos/química , Recidiva Local de Neoplasia/prevenção & controle , Neuroblastoma/terapia , Vacinas contra Salmonella/imunologia , Animais , Antígenos de Neoplasias/genética , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/genética , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Humanos , Imunogenicidade da Vacina , Injeções Subcutâneas , Camundongos , Recidiva Local de Neoplasia/imunologia , Neuroblastoma/imunologia , Neuroblastoma/patologia , Polietilenoimina/química , Vacinas contra Salmonella/administração & dosagem , Salmonella typhimurium/imunologia , Survivina/genética , Survivina/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas de DNA/imunologia
12.
Immunity ; 52(5): 825-841.e8, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32396847

RESUMO

CD8+ T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8+ T cells (Tex) remains poorly defined, restraining improvement of strategies aimed at "re-invigorating" Tex cells. Here, we defined a four-cell-stage developmental framework for Tex cells. Two TCF1+ progenitor subsets were identified, one tissue restricted and quiescent and one more blood accessible, that gradually lost TCF1 as it divided and converted to a third intermediate Tex subset. This intermediate subset re-engaged some effector biology and increased upon PD-L1 blockade but ultimately converted into a fourth, terminally exhausted subset. By using transcriptional and epigenetic analyses, we identified the control mechanisms underlying subset transitions and defined a key interplay between TCF1, T-bet, and Tox in the process. These data reveal a four-stage developmental hierarchy for Tex cells and define the molecular, transcriptional, and epigenetic mechanisms that could provide opportunities to improve cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epigênese Genética/imunologia , Neoplasias/imunologia , Subpopulações de Linfócitos T/imunologia , Transcrição Gênica/imunologia , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Epigênese Genética/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/imunologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Humanos , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Neoplasias/genética , Neoplasias/terapia , Proteínas com Domínio T/genética , Proteínas com Domínio T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transcrição Gênica/genética
13.
Eur J Immunol ; 50(7): 959-971, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32090320

RESUMO

The transcription factor Hhex (hematopoietically expressed homeobox gene) is critical for development of multiple lymphoid lineages beyond the common lymphoid progenitor. In addition, Hhex regulates hematopoietic stem cell (HSC) self-renewal, emergency hematopoiesis, and acute myeloid leukemia initiation and maintenance. Hhex mediates its effects on HSCs and acute myeloid leukemia stem cells via repression of the Cdkn2a tumor suppressor locus. However, we report here that loss of Cdkn2a does not rescue the failure of lymphoid development caused by loss of Hhex. As loss of Hhex causes apoptosis of lymphoid progenitors associated with impaired Bcl2 expression and defective Stat5b signaling, we tested the effects of rescuing these pathways using transgenic mice. Expression of the anti-apoptotic factor Bcl2, but not activated Stat5, rescued the development of T-, B-, and NK-cell lineages in the absence of Hhex. These results indicate that Bcl2 expression, but not Stat5b signaling or loss of Cdkn2a, can overcome the lymphoid deficiencies caused by the absence of Hhex, suggesting that the primary role of this transcription factor is to promote survival of lymphoid progenitors during early lymphoid development.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/imunologia , Proteínas de Homeodomínio/imunologia , Células Progenitoras Linfoides/imunologia , Fator de Transcrição STAT5/imunologia , Transdução de Sinais/imunologia , Fatores de Transcrição/imunologia , Animais , Apoptose/genética , Apoptose/imunologia , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Proteínas de Homeodomínio/genética , Células Progenitoras Linfoides/citologia , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Fator de Transcrição STAT5/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética
14.
J Clin Invest ; 130(3): 1199-1216, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32015230

RESUMO

Mutations in APC promote colorectal cancer (CRC) progression through uncontrolled WNT signaling. Patients with desmoplastic CRC have a significantly worse prognosis and do not benefit from chemotherapy, but the mechanisms underlying the differential responses of APC-mutant CRCs to chemotherapy are not well understood. We report that expression of the transcription factor prospero homeobox 1 (PROX1) was reduced in desmoplastic APC-mutant human CRCs. In genetic Apc-mutant mouse models, loss of Prox1 promoted the growth of desmoplastic, angiogenic, and immunologically silent tumors through derepression of Mmp14. Although chemotherapy inhibited Prox1-proficient tumors, it promoted further stromal activation, angiogenesis, and invasion in Prox1-deficient tumors. Blockade of vascular endothelial growth factor A (VEGFA) and angiopoietin-2 (ANGPT2) combined with CD40 agonistic antibodies promoted antiangiogenic and immunostimulatory reprogramming of Prox1-deficient tumors, destroyed tumor fibrosis, and unleashed T cell-mediated killing of cancer cells. These results pinpoint the mechanistic basis of chemotherapy-induced hyperprogression and illustrate a therapeutic strategy for chemoresistant and desmoplastic CRCs.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos Imunológicos/farmacologia , Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Imunoterapia , Neovascularização Patológica , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/imunologia , Angiopoietina-2/genética , Angiopoietina-2/imunologia , Animais , Linhagem Celular , Neoplasias Colorretais/irrigação sanguínea , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/terapia , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/imunologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Humanos , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/imunologia , Camundongos , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Neovascularização Patológica/terapia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/imunologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/imunologia
15.
Blood ; 135(8): 568-581, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31880771

RESUMO

Gastrointestinal (GI) tract involvement is the major cause of morbidity and mortality in acute graft-versus-host disease (GVHD), and pathological damage is largely attributable to inflammatory cytokine production. Recently, granulocyte-macrophage colony stimulating factor (GM-CSF) has been identified as a cytokine that mediates inflammation in the GI tract, but the transcriptional program that governs GM-CSF production and the mechanism by which GM-CSF links adaptive to innate immunity within this tissue site have not been defined. In the current study, we identified Bhlhe40 as a key transcriptional regulator that governs GM-CSF production by CD4+ T cells and mediates pathological damage in the GI tract during GVHD. In addition, we observed that GM-CSF was not regulated by either interleukin 6 (IL-6) or IL-23, which are both potent inducers of GVHD-induced colonic pathology, indicating that GM-CSF constitutes a nonredundant inflammatory pathway in the GI tract. Mechanistically, GM-CSF had no adverse effect on regulatory T-cell reconstitution, but linked adaptive to innate immunity by enhancing the activation of donor-derived dendritic cells in the colon and subsequent accumulation of these cells in the mLNs. In addition, GM-CSF promoted indirect alloantigen presentation, resulting in the accumulation of donor-derived T cells with a proinflammatory cytokine phenotype in the colon. Thus, Bhlhe40+ GM-CSF+ CD4+ T cells constitute a colitogenic T-cell population that promotes indirect alloantigen presentation and pathological damage within the GI tract, positioning GM-CSF as a key regulator of GVHD in the colon and a potential therapeutic target for amelioration of this disease.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Antígenos CD4/imunologia , Linfócitos T CD4-Positivos/patologia , Doença Enxerto-Hospedeiro/patologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Proteínas de Homeodomínio/imunologia , Isoantígenos/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Colo/imunologia , Colo/patologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/patologia , Doença Enxerto-Hospedeiro/imunologia , Camundongos Endogâmicos C57BL
16.
J Immunol ; 204(1): 49-57, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31740487

RESUMO

The control of cytoskeletal dynamics by dedicator of cytokinesis 2 (DOCK2), a hematopoietic cell-specific actin effector protein, has been implicated in TCR signaling and T cell migration. Biallelic mutations in Dock2 have been identified in patients with a recessive form of combined immunodeficiency with defects in T, B, and NK cell activation. Surprisingly, we show in this study that certain immune functions of CD8+ T cells are enhanced in the absence of DOCK2. Dock2-deficient mice have a pronounced expansion of their memory T cell compartment. Bone marrow chimera and adoptive transfer studies indicate that these memory T cells develop in a cell-intrinsic manner following thymic egress. Transcriptional profiling, TCR repertoire analyses, and cell surface marker expression indicate that Dock2-deficient naive CD8+ T cells directly convert into virtual memory cells without clonal effector T cell expansion. This direct conversion to memory is associated with a selective increase in TCR sensitivity to self-peptide MHC in vivo and an enhanced response to weak agonist peptides ex vivo. In contrast, the response to strong agonist peptides remains unaltered in Dock2-deficient T cells. Collectively, these findings suggest that the regulation of the actin dynamics by DOCK2 enhances the threshold for entry into the virtual memory compartment by negatively regulating tonic TCR triggering in response to weak agonists.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Proteínas Ativadoras de GTPase/imunologia , Fatores de Troca do Nucleotídeo Guanina/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Proteínas de Homeodomínio/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
17.
Transplantation ; 104(4): 715-723, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31764762

RESUMO

BACKGROUND: Humanized immune system immunodeficient mice have been extremely useful for the in vivo analyses of immune responses in a variety of models, including organ transplantation and graft versus host disease (GVHD) but they have limitations. Rat models are interesting complementary alternatives presenting advantages over mice, such as their size and their active complement compartment. Immunodeficient rats have been generated but human immune responses have not yet been described. METHODS: We generated immunodeficient Rat Rag-/- Gamma chain-/- human signal regulatory protein alpha-positive (RRGS) rats combining Rag1 and Il2rg deficiency with the expression of human signal regulatory protein alpha, a negative regulator of macrophage phagocytosis allowing repression of rat macrophages by human CD47-positive cells. We then immune humanized RRGS animals with human peripheral blood mononuclear cells (hPBMCs) to set up a human acute GVHD model. Treatment of GVHD was done with a new porcine antihuman lymphocyte serum active through complement-dependent cytotoxicity. We also established a tumor xenograft rejection model in these hPBMCs immune system RRGS animals by subcutaneous implantation of a human tumor cell line. RESULTS: RRGS animals receiving hPBMCs showed robust and reproducible reconstitution, mainly by T and B cells. A dose-dependent acute GVHD process was observed with progressive weight loss, tissue damage, and death censoring. Antihuman lymphocyte serum (L1S1) antibody completely prevented acute GVHD. In the human tumor xenograft model, detectable tumors were rejected upon hPBMCs injection. CONCLUSIONS: hPBMC can be implanted in RRGS animals and elicit acute GVHD or rejection of human tumor cells and these are useful models to test new immunotherapies.


Assuntos
Antígenos de Diferenciação/imunologia , Proteínas de Homeodomínio/imunologia , Hospedeiro Imunocomprometido , Cadeias gama de Imunoglobulina/imunologia , Síndromes de Imunodeficiência/imunologia , Leucócitos Mononucleares/transplante , Receptores Imunológicos/imunologia , Animais , Antígenos de Diferenciação/genética , Soro Antilinfocitário/farmacologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Xenoenxertos , Proteínas de Homeodomínio/genética , Humanos , Cadeias gama de Imunoglobulina/genética , Síndromes de Imunodeficiência/genética , Leucócitos Mononucleares/imunologia , Ratos Sprague-Dawley , Ratos Transgênicos , Receptores Imunológicos/genética , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Sci Immunol ; 4(41)2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31704735

RESUMO

Although immune checkpoint blockade therapies have demonstrated clinical efficacy in cancer treatment, harnessing this strategy is largely encumbered by resistance in multiple cancer settings. Here, we show that tumor-infiltrating T cells are severely exhausted in the microsatellite stable (MSS) colorectal cancer (CRC), a representative example of PD-1 blockade-resistant tumors. In MSS CRC, we found wound healing signature to be up-regulated and that T cell exhaustion is driven by vascular endothelial growth factor-A (VEGF-A). We report that VEGF-A induces the expression of transcription factor TOX in T cells to drive exhaustion-specific transcription program in T cells. Using a combination of in vitro, ex vivo, and in vivo mouse studies, we demonstrate that combined blockade of PD-1 and VEGF-A restores the antitumor functions of T cells, resulting in better control of MSS CRC tumors.


Assuntos
Neoplasias Colorretais/imunologia , Proteínas de Grupo de Alta Mobilidade/imunologia , Proteínas de Homeodomínio/imunologia , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T/imunologia , Fator A de Crescimento do Endotélio Vascular/imunologia , Animais , Células CACO-2 , Neoplasias Colorretais/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Repetições de Microssatélites/imunologia
19.
Immunity ; 51(3): 491-507.e7, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533057

RESUMO

Tissue-resident memory CD8+ T (Trm) cells share core residency gene programs with tumor-infiltrating lymphocytes (TILs). However, the transcriptional, metabolic, and epigenetic regulation of Trm cell and TIL development and function is largely undefined. Here, we found that the transcription factor Bhlhe40 was specifically required for Trm cell and TIL development and polyfunctionality. Local PD-1 signaling inhibited TIL Bhlhe40 expression, and Bhlhe40 was critical for TIL reinvigoration following anti-PD-L1 blockade. Mechanistically, Bhlhe40 sustained Trm cell and TIL mitochondrial fitness and a functional epigenetic state. Building on these findings, we identified an epigenetic and metabolic regimen that promoted Trm cell and TIL gene signatures associated with tissue residency and polyfunctionality. This regimen empowered the anti-tumor activity of CD8+ T cells and possessed therapeutic potential even at an advanced tumor stage in mouse models. Our results provide mechanistic insights into the local regulation of Trm cell and TIL function.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proteínas de Homeodomínio/imunologia , Mitocôndrias/imunologia , Animais , Epigênese Genética/imunologia , Regulação da Expressão Gênica/imunologia , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/imunologia
20.
Fish Shellfish Immunol ; 92: 680-689, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31271837

RESUMO

The Notch signaling pathway is known to regulate innate immunity by influencing macrophage function and interacting with the Toll-like receptor (TLR) signaling pathway. However, the comprehensive role of the Notch signaling pathway in the innate immune response remains unknown. To assess the function of Notch1a in immunity, we examined the innate immune responses to Vibrio parahaemolyticus strain Vp13 of wild-type (WT) and notch1a-/- zebrafish larvae generated using the clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) system. The median lethal dose (LD50) of V. parahaemolyticus was significantly lower in notch1a-/- larvae than in WT larvae 3 days post fertilization (dpf). Transcriptome data analysis revealed 359 significantly differentially expressed genes (DEGs), including 246 significantly down-regulated genes and 113 significantly up-regulated genes, in WT infected groups compared with WT control groups. In contrast, 986 significantly DEGs were found in notch1a-/- infected groups compared with notch1a-/- control groups, of which 82 genes were significantly down-regulated and 904 genes were significantly up-regulated. These DEGs belonged to the tumor necrosis factor (TNF), complement, nuclear factor kappa B (NF-κB), cathepsin, interleukin (IL), chemokine, serpin peptidase inhibitor, matrix metallopeptidase, innate immune cells, pattern recognition receptor (PRR), and other cytokine families. Our results indicate that Notch1a plays roles in inhibiting many immunity-related genes and could comprehensively mediate the innate immune response by regulating TLRs, nucleotide-binding-oligomerization-domain-like receptors (NLRs), lectins, complement, ILs, chemokines, TNF, cathepsin, and serpin. Further studies are required to understand the specific mechanism of Notch1a in innate immunity.


Assuntos
Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Imunidade Inata/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/imunologia , Receptor Notch1/genética , Receptor Notch1/imunologia , Transdução de Sinais/imunologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/imunologia , Peixe-Zebra/genética , Peixe-Zebra/imunologia , Animais , Doenças dos Peixes/imunologia , Vibrioses/imunologia , Vibrioses/veterinária , Vibrio parahaemolyticus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA