Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
J Biol Chem ; 300(3): 105782, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395304

RESUMO

Intracellular vesicle fusion is driven by the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and their cofactors, including Sec1/Munc18 (SM), α-SNAP, and NSF. α-SNAP and NSF play multiple layers of regulatory roles in the SNARE assembly, disassembling the cis-SNARE complex and the prefusion SNARE complex. How SM proteins coupled with NSF and α-SNAP regulate SNARE-dependent membrane fusion remains incompletely understood. Munc18c, an SM protein involved in the exocytosis of the glucose transporter GLUT4, binds and activates target (t-) SNAREs to accelerate the fusion reaction through a SNARE-like peptide (SLP). Here, using an in vitro reconstituted system, we discovered that α-SNAP blocks the GLUT4 SNAREs-mediated membrane fusion. Munc18c interacts with t-SNAREs to displace α-SNAP, which overcomes the fusion inhibition. Furthermore, Munc18c shields the trans-SNARE complex from NSF/α-SNAP-mediated disassembly and accelerates SNARE-dependent fusion kinetics in the presence of NSF and α-SNAP. The SLP in domain 3a is indispensable in Munc18c-assisted resistance to NSF and α-SNAP. Together, our findings demonstrate that Munc18c protects the prefusion SNARE complex from α-SNAP and NSF, promoting SNARE-dependent membrane fusion through its SLP.


Assuntos
Fusão de Membrana , Proteínas Munc18 , Proteínas SNARE , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida , Fusão de Membrana/fisiologia , Proteínas Munc18/metabolismo , Proteínas Sensíveis a N-Etilmaleimida/genética , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Organelas/metabolismo , Peptídeos/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Animais , Camundongos
2.
Nat Commun ; 14(1): 7629, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993454

RESUMO

Plant-parasitic nematodes are one of the most economically impactful pests in agriculture resulting in billions of dollars in realized annual losses worldwide. Soybean cyst nematode (SCN) is the number one biotic constraint on soybean production making it a priority for the discovery, validation and functional characterization of native plant resistance genes and genetic modes of action that can be deployed to improve soybean yield across the globe. Here, we present the discovery and functional characterization of a soybean resistance gene, GmSNAP02. We use unique bi-parental populations to fine-map the precise genomic location, and a combination of whole genome resequencing and gene fragment PCR amplifications to identify and confirm causal haplotypes. Lastly, we validate our candidate gene using CRISPR-Cas9 genome editing and observe a gain of resistance in edited plants. This demonstrates that the GmSNAP02 gene confers a unique mode of resistance to SCN through loss-of-function mutations that implicate GmSNAP02 as a nematode virulence target. We highlight the immediate impact of utilizing GmSNAP02 as a genome-editing-amenable target to diversify nematode resistance in commercially available cultivars.


Assuntos
Glycine max , Nematoides , Animais , Glycine max/genética , Glycine max/parasitologia , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Nematoides/genética , Genes de Plantas , Análise de Sequência de DNA , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Resistência à Doença/genética
3.
Autophagy ; 19(9): 2504-2519, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37014234

RESUMO

Macroautophagy/autophagy plays a protective role in sepsis-induced liver injury. As a member of class B scavenger receptors, CD36 plays important roles in various disorders, such as atherosclerosis and fatty liver disease. Here we found that the expression of CD36 in hepatocytes was increased in patients and a mouse model with sepsis, accompanied by impaired autophagy flux. Furthermore, hepatocyte cd36 knockout (cd36-HKO) markedly improved liver injury and the impairment of autophagosome-lysosome fusion in lipopolysaccharide (LPS)-induced septic mice. Ubqln1 (ubiquilin 1) overexpression (OE) in hepatocyte blocked the protective effect of cd36-HKO on LPS-induced liver injury in mice. Mechanistically, with LPS stimulation, CD36 on the plasma membrane was depalmitoylated and distributed to the lysosome, where CD36 acted as a bridge molecule linking UBQLN1 to soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and hence promoting the proteasomal degradation of SNARE proteins, resulting in fusion impairment. Overall, our data reveal that CD36 is essential for modulating the proteasomal degradation of autophagic SNARE proteins in a UBQLN1-dependent manner. Targeting CD36 in hepatocytes is effective for improving autophagic flux in sepsis and therefore represents a promising therapeutic strategy for clinical treatment of septic liver injury.Abbreviations: AAV8: adeno-associated virus 8; AOSC: acute obstructive suppurative cholangitis; ATP1A1: ATPase, Na+/K+ transporting, alpha 1 polypeptide; CASP3: caspase 3; CASP8: caspase 8; CCL2: chemokine (C-C motif) ligand 2; cd36-HKO: hepatocyte-specific cd36 knockout; Co-IP: co-immunoprecipitation; CQ: chloroquine; Cys: cysteine; GOT1: glutamic-oxaloacetic transaminase 1, soluble; GPT: glutamic-pyruvic transaminase, soluble; IL1B: interleukin 1 beta; IL6: interleukin 6; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LDH, lactate dehydrogenase; LPS: lipopolysaccharide; LYPLA1: lysophospholipase 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; OE: overexpression; qPCR: quantitative polymerase chain reaction; SNAP29: synaptosome associated protein 29; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SQSTM1/p62: sequestosome 1; STX17: syntaxin 17; TNF: tumor necrosis factor; TRIM: tripartite motif-containing; UBA: ubiquitin-associated; UBL: ubiquitin-like; UBQLN: ubiquilin; VAMP8: vesicle associated membrane protein 8; WT: wild-type.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Sepse , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Hepatócitos/metabolismo , Lipopolissacarídeos/farmacologia , Lisossomos/metabolismo , Sepse/complicações , Sepse/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/farmacologia , Ubiquitinas/metabolismo
4.
Biomolecules ; 12(12)2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36551207

RESUMO

The soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor (SNARE) proteins play a central role in most forms of intracellular membrane trafficking, a key process that allows for membrane and biocargo shuffling between multiple compartments within the cell and extracellular environment. The structural organization of SNARE proteins is relatively simple, with several intrinsically disordered and folded elements (e.g., SNARE motif, N-terminal domain, transmembrane region) that interact with other SNAREs, SNARE-regulating proteins and biological membranes. In this review, we discuss recent advances in the development of functional peptides that can modify SNARE-binding interfaces and modulate SNARE function. The ability of the relatively short SNARE motif to assemble spontaneously into stable coiled coil tetrahelical bundles has inspired the development of reduced SNARE-mimetic systems that use peptides for biological membrane fusion and for making large supramolecular protein complexes. We evaluate two such systems, based on peptide-nucleic acids (PNAs) and coiled coil peptides. We also review how the self-assembly of SNARE motifs can be exploited to drive on-demand assembly of complex re-engineered polypeptides.


Assuntos
Fusão de Membrana , Proteínas SNARE , Proteínas SNARE/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Ligação Proteica , Peptídeos/química
5.
Mol Biol Cell ; 33(13): ar127, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36103252

RESUMO

Membrane fusion is driven by Sec17, Sec18, and SNARE zippering. Sec17 bound to SNAREs promotes fusion through its membrane-proximal N-terminal apolar loop domain. At its membrane-distal end, Sec17 serves as a high-affinity receptor for Sec18. At that distance from the fusion site, it has been unclear how Sec18 can aid Sec17 to promote fusion. We now report that Sec18, with ATPγS, lowers the Km of Sec17 for fusion. A C-terminal and membrane-distal Sec17 mutation, L291A,L292A, diminishes Sec17 affinity for Sec18. High levels of wild-type Sec17 or Sec17-L291AL292A show equivalent fusion without Sec18, but Sec18 causes far less fusion enhancement with low levels of Sec17-L291AL292A than with wild-type Sec17. Another mutant, Sec17-F21SM22S, has reduced N-loop apolarity. Only very high levels of this mutant protein support fusion, but Sec18 still lowers the apparent fusion Km for Sec17-F21SM22S. Thus Sec18 stimulates fusion through Sec17 and acts at the well-described interface between Sec18 and Sec17. ATP acts as a ligand to activate Sec18 for Sec17-dependent fusion, but ATP hydrolysis is not required. Even without SNAREs, Sec18 and Sec17 exhibit interdependent stable association with lipids, with several Sec17 bound for each Sec18 hexamer, explaining how Sec18 stabilization of surface-concentrated clusters of Sec17 lowers the Sec17 Km for assembly with SNAREs. Each of the associations, between SNARE complex, Sec18, Sec17, and lipid, helps assemble the fusion machinery.


Assuntos
Fusão de Membrana , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Ligantes , Lipídeos , Fusão de Membrana/fisiologia , Proteínas Mutantes/metabolismo , Proteínas SNARE/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Proteínas de Transporte Vesicular/metabolismo
6.
Phytopathology ; 112(11): 2383-2390, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35439035

RESUMO

The rhg1-a GmSNAP18 (an α-SNAP) and Rhg4 GmSHMT08 are two major cloned genes conferring soybean cyst nematode resistance in Peking-type soybeans, but the application of α-SNAPs and SHMTs in cyst nematode management remains elusive. In this study, GmSNAP18 and GmSHMT08, together with their orthologs in Arabidopsis, AtSNAP2 (an α-SNAP) and AtSHMT4, were individually transformed into Arabidopsis Col-0 to generate the transgenic lines, and the growth of transgenic plants, beet cyst nematode (BCN) infection phenotypes, and AtSNAP2, AtSHMT4, and AtPR1 expression patterns were analyzed using Arabidopsis-BCN compatible interaction system, in addition with protein-protein interaction assay. Pulldown and BiFC assays revealed that GmSNAP18 and GmSHMT08 interacted with AtSHMT4 and AtSNAP2, respectively. Plant root growth was not impacted by overexpression of GmSNAP18 and AtSNAP2. However, overexpression of GmSHMT08 and AtSHMT4 both increased plant height, additionally, overexpression of GmSHMT08 decreased rosette leaf size. Overexpression of GmSNAP18 and GmSHMT08 both suppressed AtPR1 expression and significantly enhanced BCN susceptibility, while overexpression of AtSNAP2 and AtSHMT4 both substantially boosted AtPR1 expression and remarkably enhanced BCN resistance, in transgenic Arabidopsis. Overexpression of GmSNAP18 reduced, while overexpression of AtSNAP2 unaltered AtSHMT4 expression. Overexpression of GmSHMT08 and AtSHMT4 both suppressed AtSNAP2 expression in transgenic Arabidopsis. Thus, different expression patterns of AtPR1 and AtSHMT4 are likely associated with opposite BCN infection phenotypes of Arabidopsis between overexpressing GmSNAP18 and AtSNAP2, and between overexpressing GmSHMT08 and AtSHMT4; and boosted AtPR1 expression are required for enhanced BCN resistance in Arabidopsis. All these results establish a basis for extension of α-SNAPs and SHMTs in cyst nematode management.


Assuntos
Arabidopsis , Beta vulgaris , Cistos , Infecções por Nematoides , Tylenchoidea , Animais , Arabidopsis/genética , Tylenchoidea/genética , Doenças das Plantas/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Glycine max/genética , Plantas Geneticamente Modificadas/genética , Fenótipo
7.
Mol Biol Cell ; 33(5): ar38, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35171720

RESUMO

Membrane fusion requires tethers, SNAREs of R, Qa, Qb, and Qc families, and chaperones of the SM, Sec17/SNAP, and Sec18/NSF families. SNAREs have N-domains, SNARE domains that zipper into 4-helical RQaQbQc coiled coils, a short juxtamembrane (Jx) domain, and (often) a C-terminal transmembrane anchor. We reconstitute fusion with purified components from yeast vacuoles, where the HOPS protein combines tethering and SM functions. The vacuolar Rab, lipids, and R-SNARE activate HOPS to bind Q-SNAREs and catalyze trans-SNARE associations. With SNAREs initially disassembled, as they are on the organelle, we now report that R- and Qa-SNAREs require their physiological juxtamembrane (Jx) regions for fusion. Swap of the Jx domain between the R- and Qa-SNAREs blocks fusion after SNARE association in trans. This block is bypassed by either Sec17, which drives fusion without requiring complete SNARE zippering, or transmembrane-anchored Qb-SNARE in complex with Qa. The abundance of the trans-SNARE complex is not the sole fusion determinant, as it is unaltered by Sec17, Jx swap, or the Qb-transmembrane anchor. The sensitivity of fusion to Jx swap in the absence of a Qb transmembrane anchor is inherent to the SNAREs, because it remains when a synthetic tether replaces HOPS.


Assuntos
Proteínas SNARE , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases/metabolismo , Fusão de Membrana/fisiologia , Proteolipídeos/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo
8.
Plant Genome ; 15(1): e20152, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34716668

RESUMO

This study pursued the hypothesis that wild plant germplasm accessions carrying alleles of interest can be identified using available single nucleotide polymorphism (SNP) genotypes for particular alleles of other (unlinked) genes that contribute to the trait of interest. The soybean cyst nematode (SCN, Heterodera glycines [HG]) resistance locus Rhg1 is widely used in farmed soybean [Glycine max (L.) Merr.]. The two known resistance-conferring haplotypes, rhg1-a and rhg1-b, typically contain three or seven to 10 tandemly duplicated Rhg1 segments, respectively. Each Rhg1 repeat carries four genes, including Glyma.18G022500, which encodes unusual isoforms of the vesicle-trafficking chaperone α-SNAP. Using SoySNP50K data for NSFRAN07 allele presence, we discovered a new Rhg1 haplotype, rhg1-ds, in six accessions of wild soybean, Glycine soja Siebold & Zucc. (0.5% of the ∼1,100 G. soja accessions in the USDA collection). The α-SNAP encoded by rhg1-ds is unique at an important site of amino acid variation and shares with the rhg1-a and rhg1-b α-SNAP proteins the traits of cytotoxicity and altered N-ethylmaleimide sensitive factor (NSF) protein interaction. Copy number assays indicate three repeats of rhg1-ds. G. soja PI 507613 and PI 507623 exhibit resistance to HG type 2.5.7 SCN populations, in part because of contributions from other loci. In a segregating F2 population, rhg1-b and rhg1-ds made statistically indistinguishable contributions to resistance to a partially virulent HG type 2.5.7 SCN population. Hence, the unusual multigene copy number variation Rhg1 haplotype was present but rare in ancestral G. soja and was present in accessions that offer multiple traits for SCN resistance breeding. The accessions were initially identified for study based on an unlinked SNP.


Assuntos
Resistência à Doença , Tylenchoidea , Animais , Variações do Número de Cópias de DNA , Resistência à Doença/genética , Glicina , Haplótipos , Melhoramento Vegetal , Doenças das Plantas/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Glycine max/genética , Tylenchoidea/metabolismo
9.
Elife ; 102021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34698639

RESUMO

Yeast vacuolar membrane fusion has been reconstituted with R, Qa, Qb, and Qc-family SNAREs, Sec17/αSNAP, Sec18/NSF, and the hexameric HOPS complex. HOPS tethers membranes and catalyzes SNARE assembly into RQaQbQc trans-complexes which zipper through their SNARE domains to promote fusion. Previously, we demonstrated that Sec17 and Sec18 can bypass the requirement of complete zippering for fusion (Song et al., 2021), but it has been unclear whether this activity of Sec17 and Sec18 is directly coupled to HOPS. HOPS can be replaced for fusion by a synthetic tether when the three Q-SNAREs are pre-assembled. We now report that fusion intermediates with arrested SNARE zippering, formed with a synthetic tether but without HOPS, support Sec17/Sec18-triggered fusion. This zippering-bypass fusion is thus a direct result of Sec17 and Sec18 interactions: with each other, with the platform of partially zippered SNAREs, and with the apposed tethered membranes. As these fusion elements are shared among all exocytic and endocytic traffic, Sec17 and Sec18 may have a general role in directly promoting fusion.


Assuntos
Adenosina Trifosfatases/genética , Fusão de Membrana , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Proteínas de Transporte Vesicular/genética , Adenosina Trifosfatases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Proteínas de Transporte Vesicular/metabolismo
10.
PLoS One ; 16(10): e0258670, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34653219

RESUMO

Molecular steps that activate store-operated calcium entry (SOCE) via Orai channel supramolecular complex remain incompletely defined. We have earlier shown that α-SNAP regulates the on-site functional assembly and calcium selectivity of Orai1 channels. Here we investigate the molecular basis of its association with Orai, Stim and find that the affinity of α-SNAP for Orai and Stim is substantially higher than previously reported affinities between Stim and Orai sub-domains. α-SNAP binds the coiled-coil 3 (CC3) sub-domain of Stim1. Mutations of Tryptophan 430 in Stim1-CC3 disrupted α-SNAP association and SOCE, demonstrating a novel α-SNAP dependent function for this crucial subdomain. Further, α-SNAP binds the hinge region near the C-terminus of Orai1 and an additional broad region near the N-terminus and Valine 262 and Leucine 74 were necessary for these respective interactions, but not Orai, Stim co-clustering. Thus, high affinity interactions with α-SNAP are necessary for imparting functionality to Stim, Orai clusters and induction of SOCE.


Assuntos
Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Clonagem Molecular , Fibroblastos/citologia , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Camundongos , Mutação , Proteínas de Neoplasias/química , Proteína ORAI1/química , Ligação Proteica , Molécula 1 de Interação Estromal/química
11.
Mol Biol Cell ; 32(21): ar19, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34495682

RESUMO

Intracellular membrane fusion requires Rab GTPases, tethers, SNAREs of the R, Qa, Qb, and Qc families, and SNARE chaperones of the Sec17 (SNAP), Sec18 (NSF), and SM (Sec1/Munc18) families. The vacuolar HOPS complex combines the functions of membrane tethering and SM catalysis of SNARE assembly. HOPS is activated for this catalysis by binding to the vacuolar lipids and Rab. Of the eight major vacuolar lipids, we now report that phosphatidylinositol and phosphatidylinositol-3-phosphate are required to activate HOPS for SNARE complex assembly. These lipids plus ergosterol also allow full trans-SNARE complex assembly, yet do not support fusion, which is reliant on either phosphatidylethanolamine (PE) or on phosphatidic acid (PA), phosphatidylserine (PS), and diacylglycerol (DAG). Fusion with a synthetic tether and without HOPS, or even without SNAREs, still relies on either PE or on PS, PA, and DAG. These lipids are thus required for the terminal bilayer rearrangement step of fusion, distinct from the lipid requirements for the earlier step of activating HOPS for trans-SNARE assembly.


Assuntos
Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas SNARE/metabolismo , Catálise , Fosfatos de Inositol/metabolismo , Membranas Intracelulares/metabolismo , Fusão de Membrana/fisiologia , Chaperonas Moleculares/metabolismo , Fosfatos/metabolismo , Ácidos Fosfatídicos/metabolismo , Ligação Proteica , Proteolipídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
12.
PLoS One ; 16(8): e0256320, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34407152

RESUMO

Adult T-cell leukemia/lymphoma (ATLL) originates from human T-cell leukemia virus type 1 (HTLV-1) infection due to the activation of the nuclear factor-κB (NF-κB) signaling pathway to maintain proliferation and survival. An important mechanism of the activated NF-κB signaling pathway in ATLL is the activation of the macroautophagy (herafter referred to as autophagy in the remainder of this manuscript)-lysosomal degradation of p47 (NSFL1C), a negative regulator of the NF-κB pathway. Therefore, we considered the use of chloroquine (CQ) or hydroxychloroquine (HCQ) (CQ/HCQ) as an autophagy inhibitor to treat ATLL; these drugs were originally approved by the FDA as antimalarial drugs and have recently been used to treat autoimmune diseases, such as systemic lupus erythematosus (SLE). In this paper, we determined the therapeutic efficacy of CQ/HCQ, as NF-κB inhibitors, in ATLL mediated by blockade of p47 degradation. Administration of CQ/HCQ to ATLL cell lines and primary ATLL cells induced cell growth inhibition in a dose-dependent manner, and the majority of cells underwent apoptosis after CQ administration. As to the molecular mechanism, autophagy was inhibited in CQ-treated ATLL cells, and activation of the NF-κB pathway was suppressed with the restoration of the p47 level. When the antitumor effect of CQ/HCQ was examined using immunodeficient mice transplanted with ATLL cell lines, CQ/HCQ significantly suppressed tumor growth and improved the survival rate in the ATLL xenograft mouse model. Importantly, HCQ selectively induced ATLL cell death in the ATLL xenograft mouse model at the dose used to treat SLE. Taken together, our results suggest that the inhibition of autophagy by CQ/HCQ may become a novel and effective strategy for the treatment of ATLL.


Assuntos
Cloroquina/farmacologia , Hidroxicloroquina/farmacologia , Fatores Imunológicos/farmacologia , Leucemia-Linfoma de Células T do Adulto/tratamento farmacológico , NF-kappa B/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Animais , Apoptose , Autofagia , Linhagem Celular Tumoral , Regulação Leucêmica da Expressão Gênica , Vírus Linfotrópico T Tipo 1 Humano/crescimento & desenvolvimento , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Humanos , Leucemia-Linfoma de Células T do Adulto/imunologia , Leucemia-Linfoma de Células T do Adulto/mortalidade , Leucemia-Linfoma de Células T do Adulto/virologia , Masculino , Camundongos , Camundongos SCID , NF-kappa B/antagonistas & inibidores , NF-kappa B/imunologia , Cultura Primária de Células , Transdução de Sinais/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/imunologia , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Mol Plant Microbe Interact ; 34(12): 1433-1445, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34343024

RESUMO

Soybean cyst nematode (SCN) is the most economically damaging pathogen of soybean and host resistance is a core management strategy. The SCN resistance quantitative trait locus cqSCN-006, introgressed from the wild relative Glycine soja, provides intermediate resistance against nematode populations, including those with increased virulence on the heavily used rhg1-b resistance locus. cqSCN-006 was previously fine-mapped to a genome interval on chromosome 15. The present study determined that Glyma.15G191200 at cqSCN-006, encoding a γ-SNAP, contributes to SCN resistance. CRISPR/Cas9-mediated disruption of the cqSCN-006 allele reduced SCN resistance in transgenic roots. There are no encoded amino acid polymorphisms between resistant and susceptible alleles. However, other cqSCN-006-specific DNA polymorphisms in the Glyma.15G191200 promoter and gene body were identified, and we observed differing induction of γ-SNAP protein abundance at SCN infection sites between resistant and susceptible roots. We identified alternative RNA splice forms transcribed from the Glyma.15G191200 γ-SNAP gene and observed differential expression of the splice forms 2 days after SCN infection. Heterologous overexpression of γ-SNAPs in plant leaves caused moderate necrosis, suggesting that careful regulation of this protein is required for cellular homeostasis. Apparently, certain G. soja evolved quantitative SCN resistance through altered regulation of γ-SNAP. Previous work has demonstrated SCN resistance impacts of the soybean α-SNAP proteins encoded by Glyma.18G022500 (Rhg1) and Glyma.11G234500. The present study shows that a different type of SNAP protein can also impact SCN resistance. Little is known about γ-SNAPs in any system, but the present work suggests a role for γ-SNAPs during susceptible responses to cyst nematodes.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Cistos , Nematoides , Tylenchoidea , Animais , Resistência à Doença/genética , Doenças das Plantas , Locos de Características Quantitativas , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Glycine max/genética
14.
Elife ; 102021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33944780

RESUMO

Membrane fusion requires R-, Qa-, Qb-, and Qc-family SNAREs that zipper into RQaQbQc coiled coils, driven by the sequestration of apolar amino acids. Zippering has been thought to provide all the force driving fusion. Sec17/αSNAP can form an oligomeric assembly with SNAREs with the Sec17 C-terminus bound to Sec18/NSF, the central region bound to SNAREs, and a crucial apolar loop near the N-terminus poised to insert into membranes. We now report that Sec17 and Sec18 can drive robust fusion without requiring zippering completion. Zippering-driven fusion is blocked by deleting the C-terminal quarter of any Q-SNARE domain or by replacing the apolar amino acids of the Qa-SNARE that face the center of the 4-SNARE coiled coils with polar residues. These blocks, singly or combined, are bypassed by Sec17 and Sec18, and SNARE-dependent fusion is restored without help from completing zippering.


Assuntos
Adenosina Trifosfatases/metabolismo , Fusão de Membrana/genética , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Adenosina Trifosfatases/genética , Comunicação Celular , Fusão de Membrana/fisiologia , Domínios Proteicos , Proteínas SNARE/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Proteínas de Transporte Vesicular/genética
15.
Nat Commun ; 12(1): 3206, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050166

RESUMO

Fueled by ATP hydrolysis in N-ethylmaleimide sensitive factor (NSF), the 20S complex disassembles rigid SNARE (soluble NSF attachment protein receptor) complexes in single unraveling step. This global disassembly distinguishes NSF from other molecular motors that make incremental and processive motions, but the molecular underpinnings of its remarkable energy efficiency remain largely unknown. Using multiple single-molecule methods, we found remarkable cooperativity in mechanical connection between NSF and the SNARE complex, which prevents dysfunctional 20S complexes that consume ATP without productive disassembly. We also constructed ATP hydrolysis cycle of the 20S complex, in which NSF largely shows randomness in ATP binding but switches to perfect ATP hydrolysis synchronization to induce global SNARE disassembly, minimizing ATP hydrolysis by non-20S complex-forming NSF molecules. These two mechanisms work in concert to concentrate ATP consumption into functional 20S complexes, suggesting evolutionary adaptations by the 20S complex to the energetically expensive mechanical task of SNARE complex disassembly.


Assuntos
Trifosfato de Adenosina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas SNARE/metabolismo , Animais , Bovinos , Cricetulus , Hidrólise , Modelos Moleculares , Proteínas Sensíveis a N-Etilmaleimida/isolamento & purificação , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/isolamento & purificação , Ligação Proteica , Multimerização Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/isolamento & purificação , Imagem Individual de Molécula , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/isolamento & purificação , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo
16.
EMBO J ; 40(9): e105853, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33555040

RESUMO

p97ATPase-mediated membrane fusion is required for the biogenesis of the Golgi complex. p97 and its cofactor p47 function in soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) priming, but the tethering complex for p97/p47-mediated membrane fusion remains unknown. In this study, we identified formiminotransferase cyclodeaminase (FTCD) as a novel p47-binding protein. FTCD mainly localizes to the Golgi complex and binds to either p47 or p97 via its association with their polyglutamate motifs. FTCD functions in p97/p47-mediated Golgi reassembly at mitosis in vivo and in vitro via its binding to p47 and to p97. We also showed that FTCD, p47, and p97 form a big FTCD-p97/p47-FTCD tethering complex. In vivo tethering assay revealed that FTCD that was designed to localize to mitochondria caused mitochondria aggregation at mitosis by forming a complex with endogenous p97 and p47, which support a role for FTCD in tethering biological membranes in cooperation with the p97/p47 complex. Therefore, FTCD is thought to act as a tethering factor by forming the FTCD-p97/p47-FTCD complex in p97/p47-mediated Golgi membrane fusion.


Assuntos
Amônia-Liases/metabolismo , Glutamato Formimidoiltransferase/metabolismo , Complexo de Golgi/metabolismo , Enzimas Multifuncionais/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Proteína com Valosina/metabolismo , Amônia-Liases/química , Sítios de Ligação , Glutamato Formimidoiltransferase/química , Células HeLa , Células Hep G2 , Humanos , Fusão de Membrana , Mitocôndrias , Mitose , Enzimas Multifuncionais/química , Complexos Multiproteicos/metabolismo , Ligação Proteica
17.
Sci Rep ; 10(1): 17379, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060680

RESUMO

BNip1, which functions as a t-SNARE component of the syntaxin18 complex, is localized on the ER membrane and regulates retrograde transport from Golgi to the ER. BNip1 also has a BH3 domain, which generally releases pro-apoptotic proteins from Bcl2-mediated inhibition. Previously we reported that retinal photoreceptors undergo BNip1-dependent apoptosis in zebrafish ß-snap1 mutants. Here, we investigated physiological roles of BNip1-dependent photoreceptor apoptosis. First, we examined the spatio-temporal profile of photoreceptor apoptosis in ß-snap1 mutants, and found that apoptosis occurs only during a small developmental window, 2-4 days-post-fertilization (dpf), in which an apical photoreceptive membrane structure, called the outer segment (OS), grows rapidly. Transient expression of ß-SNAP1 during this OS growing period prevents photoreceptor apoptosis in ß-snap1 mutants, enabling cone to survive until at least 21 dpf. These observations suggest that BNip1-mediated apoptosis is linked to excessive activation of vesicular transport associated with rapid growth of the OS. Consistently, knockdown of Ift88 and Kif3b, which inhibits protein transport to the OS, rescued photoreceptor apoptosis in ß-snap1 mutants. Treatment with rapamycin, which inhibits protein synthesis via the mTOR pathway, also rescued photoreceptor apoptosis in ß-snap1 mutants. These data suggest that BNip1 performs risk assessment to detect excessive vesicular transport in photoreceptors.


Assuntos
Apoptose/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/fisiologia , Peixe-Zebra/metabolismo , Animais , Células Fotorreceptoras Retinianas Cones/citologia , Peixe-Zebra/embriologia
18.
Proc Natl Acad Sci U S A ; 116(47): 23573-23581, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31685636

RESUMO

Membrane fusion at each organelle requires conserved proteins: Rab-GTPases, effector tethering complexes, Sec1/Munc18 (SM)-family SNARE chaperones, SNAREs of the R, Qa, Qb, and Qc families, and the Sec17/α-SNAP and ATP-dependent Sec18/NSF SNARE chaperone system. The basis of organelle-specific fusion, which is essential for accurate protein compartmentation, has been elusive. Rab family GTPases, SM proteins, and R- and Q-SNAREs may contribute to this specificity. We now report that the fusion supported by SNAREs alone is both inefficient and promiscuous with respect to organelle identity and to stimulation by SM family proteins or complexes. SNARE-only fusion is abolished by the disassembly chaperones Sec17 and Sec18. Efficient fusion in the presence of Sec17 and Sec18 requires a tripartite match between the organellar identities of the R-SNARE, the Q-SNAREs, and the SM protein or complex. The functions of Sec17 and Sec18 are not simply negative regulation; they stimulate fusion with either vacuolar SNAREs and their SM protein complex HOPS or endoplasmic reticulum/cis-Golgi SNAREs and their SM protein Sly1. The fusion complex of each organelle is assembled from its own functionally matching pieces to engage Sec17/Sec18 for fusion stimulation rather than inhibition.


Assuntos
Adenosina Trifosfatases/fisiologia , Membranas Intracelulares/fisiologia , Fusão de Membrana/fisiologia , Chaperonas Moleculares/fisiologia , Proteínas Munc18/metabolismo , Organelas/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/fisiologia , Proteínas de Transporte Vesicular/fisiologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Complexos Multiproteicos , Especificidade de Órgãos , Organelas/ultraestrutura , Proteolipídeos/metabolismo , Proteínas Recombinantes/metabolismo , Vacúolos/metabolismo , Vacúolos/ultraestrutura
19.
J Biol Chem ; 294(46): 17168-17185, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31515268

RESUMO

The homeostasis of most organelles requires membrane fusion mediated by soluble N -ethylmaleimide-sensitive factor (NSF) attachment protein receptors (SNAREs). SNAREs undergo cycles of activation and deactivation as membranes move through the fusion cycle. At the top of the cycle, inactive cis-SNARE complexes on a single membrane are activated, or primed, by the hexameric ATPase associated with the diverse cellular activities (AAA+) protein, N-ethylmaleimide-sensitive factor (NSF/Sec18), and its co-chaperone α-SNAP/Sec17. Sec18-mediated ATP hydrolysis drives the mechanical disassembly of SNAREs into individual coils, permitting a new cycle of fusion. Previously, we found that Sec18 monomers are sequestered away from SNAREs by binding phosphatidic acid (PA). Sec18 is released from the membrane when PA is hydrolyzed to diacylglycerol by the PA phosphatase Pah1. Although PA can inhibit SNARE priming, it binds other proteins and thus cannot be used as a specific tool to further probe Sec18 activity. Here, we report the discovery of a small-molecule compound, we call IPA (inhibitor of priming activity), that binds Sec18 with high affinity and blocks SNARE activation. We observed that IPA blocks SNARE priming and competes for PA binding to Sec18. Molecular dynamics simulations revealed that IPA induces a more rigid NSF/Sec18 conformation, which potentially disables the flexibility required for Sec18 to bind to PA or to activate SNAREs. We also show that IPA more potently and specifically inhibits NSF/Sec18 activity than does N-ethylmaleimide, requiring the administration of only low micromolar concentrations of IPA, demonstrating that this compound could help to further elucidate SNARE-priming dynamics.


Assuntos
Adenosina Trifosfatases/genética , Etilmaleimida/metabolismo , Ácidos Fosfatídicos/química , Proteínas de Saccharomyces cerevisiae/genética , Bibliotecas de Moléculas Pequenas/química , Proteínas de Transporte Vesicular/genética , ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/genética , Adenosina Trifosfatases/química , Fusão de Membrana/efeitos dos fármacos , Fusão de Membrana/genética , Lipídeos de Membrana/química , Lipídeos de Membrana/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Simulação de Dinâmica Molecular , Proteínas Sensíveis a N-Etilmaleimida/química , Proteínas Sensíveis a N-Etilmaleimida/genética , Ácidos Fosfatídicos/antagonistas & inibidores , Proteínas SNARE/química , Proteínas SNARE/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/química , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Vacúolos/genética , Proteínas de Transporte Vesicular/química
20.
Proc Natl Acad Sci U S A ; 116(28): 13952-13957, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235584

RESUMO

R-SNAREs (soluble N-ethylmaleimide-sensitive factor receptor), Q-SNAREs, and Sec1/Munc18 (SM)-family proteins are essential for membrane fusion in exocytic and endocytic trafficking. The yeast vacuolar tethering/SM complex HOPS (homotypic fusion and vacuole protein sorting) increases the fusion of membranes bearing R-SNARE to those with 3Q-SNAREs far more than it enhances their trans-SNARE pairings. We now report that the fusion of these proteoliposomes is also supported by GST-PX or GST-FYVE, recombinant dimeric proteins which tether by binding the phosphoinositides in both membranes. GST-PX is purely a tether, as it supports fusion without SNARE recognition. GST-PX tethering supports the assembly of new, active SNARE complexes rather than enhancing the function of the fusion-inactive SNARE complexes which had spontaneously formed in the absence of a tether. When SNAREs are more disassembled, as by Sec17, Sec18, and ATP (adenosine triphosphate), HOPS is required, and GST-PX does not suffice. We propose a working model where tethering orients SNARE domains for parallel, active assembly.


Assuntos
Adenosina Trifosfatases/química , Glutationa Peroxidase/química , Proteínas de Fusão de Membrana/química , Proteínas R-SNARE/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/química , Proteínas de Transporte Vesicular/química , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/química , Endocitose/genética , Exocitose/genética , Glutationa Peroxidase/genética , Fusão de Membrana/genética , Proteínas de Fusão de Membrana/genética , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Multimerização Proteica/genética , Transporte Proteico/genética , Proteínas R-SNARE/genética , Proteínas Recombinantes/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Vacúolos/química , Vacúolos/genética , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA