Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105782, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395304

RESUMO

Intracellular vesicle fusion is driven by the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and their cofactors, including Sec1/Munc18 (SM), α-SNAP, and NSF. α-SNAP and NSF play multiple layers of regulatory roles in the SNARE assembly, disassembling the cis-SNARE complex and the prefusion SNARE complex. How SM proteins coupled with NSF and α-SNAP regulate SNARE-dependent membrane fusion remains incompletely understood. Munc18c, an SM protein involved in the exocytosis of the glucose transporter GLUT4, binds and activates target (t-) SNAREs to accelerate the fusion reaction through a SNARE-like peptide (SLP). Here, using an in vitro reconstituted system, we discovered that α-SNAP blocks the GLUT4 SNAREs-mediated membrane fusion. Munc18c interacts with t-SNAREs to displace α-SNAP, which overcomes the fusion inhibition. Furthermore, Munc18c shields the trans-SNARE complex from NSF/α-SNAP-mediated disassembly and accelerates SNARE-dependent fusion kinetics in the presence of NSF and α-SNAP. The SLP in domain 3a is indispensable in Munc18c-assisted resistance to NSF and α-SNAP. Together, our findings demonstrate that Munc18c protects the prefusion SNARE complex from α-SNAP and NSF, promoting SNARE-dependent membrane fusion through its SLP.


Assuntos
Fusão de Membrana , Proteínas Munc18 , Proteínas SNARE , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida , Fusão de Membrana/fisiologia , Proteínas Munc18/metabolismo , Proteínas Sensíveis a N-Etilmaleimida/genética , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Organelas/metabolismo , Peptídeos/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Animais , Camundongos
2.
Nat Commun ; 14(1): 7629, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993454

RESUMO

Plant-parasitic nematodes are one of the most economically impactful pests in agriculture resulting in billions of dollars in realized annual losses worldwide. Soybean cyst nematode (SCN) is the number one biotic constraint on soybean production making it a priority for the discovery, validation and functional characterization of native plant resistance genes and genetic modes of action that can be deployed to improve soybean yield across the globe. Here, we present the discovery and functional characterization of a soybean resistance gene, GmSNAP02. We use unique bi-parental populations to fine-map the precise genomic location, and a combination of whole genome resequencing and gene fragment PCR amplifications to identify and confirm causal haplotypes. Lastly, we validate our candidate gene using CRISPR-Cas9 genome editing and observe a gain of resistance in edited plants. This demonstrates that the GmSNAP02 gene confers a unique mode of resistance to SCN through loss-of-function mutations that implicate GmSNAP02 as a nematode virulence target. We highlight the immediate impact of utilizing GmSNAP02 as a genome-editing-amenable target to diversify nematode resistance in commercially available cultivars.


Assuntos
Glycine max , Nematoides , Animais , Glycine max/genética , Glycine max/parasitologia , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Nematoides/genética , Genes de Plantas , Análise de Sequência de DNA , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Resistência à Doença/genética
3.
Phytopathology ; 112(11): 2383-2390, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35439035

RESUMO

The rhg1-a GmSNAP18 (an α-SNAP) and Rhg4 GmSHMT08 are two major cloned genes conferring soybean cyst nematode resistance in Peking-type soybeans, but the application of α-SNAPs and SHMTs in cyst nematode management remains elusive. In this study, GmSNAP18 and GmSHMT08, together with their orthologs in Arabidopsis, AtSNAP2 (an α-SNAP) and AtSHMT4, were individually transformed into Arabidopsis Col-0 to generate the transgenic lines, and the growth of transgenic plants, beet cyst nematode (BCN) infection phenotypes, and AtSNAP2, AtSHMT4, and AtPR1 expression patterns were analyzed using Arabidopsis-BCN compatible interaction system, in addition with protein-protein interaction assay. Pulldown and BiFC assays revealed that GmSNAP18 and GmSHMT08 interacted with AtSHMT4 and AtSNAP2, respectively. Plant root growth was not impacted by overexpression of GmSNAP18 and AtSNAP2. However, overexpression of GmSHMT08 and AtSHMT4 both increased plant height, additionally, overexpression of GmSHMT08 decreased rosette leaf size. Overexpression of GmSNAP18 and GmSHMT08 both suppressed AtPR1 expression and significantly enhanced BCN susceptibility, while overexpression of AtSNAP2 and AtSHMT4 both substantially boosted AtPR1 expression and remarkably enhanced BCN resistance, in transgenic Arabidopsis. Overexpression of GmSNAP18 reduced, while overexpression of AtSNAP2 unaltered AtSHMT4 expression. Overexpression of GmSHMT08 and AtSHMT4 both suppressed AtSNAP2 expression in transgenic Arabidopsis. Thus, different expression patterns of AtPR1 and AtSHMT4 are likely associated with opposite BCN infection phenotypes of Arabidopsis between overexpressing GmSNAP18 and AtSNAP2, and between overexpressing GmSHMT08 and AtSHMT4; and boosted AtPR1 expression are required for enhanced BCN resistance in Arabidopsis. All these results establish a basis for extension of α-SNAPs and SHMTs in cyst nematode management.


Assuntos
Arabidopsis , Beta vulgaris , Cistos , Infecções por Nematoides , Tylenchoidea , Animais , Arabidopsis/genética , Tylenchoidea/genética , Doenças das Plantas/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Glycine max/genética , Plantas Geneticamente Modificadas/genética , Fenótipo
4.
Plant Genome ; 15(1): e20152, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34716668

RESUMO

This study pursued the hypothesis that wild plant germplasm accessions carrying alleles of interest can be identified using available single nucleotide polymorphism (SNP) genotypes for particular alleles of other (unlinked) genes that contribute to the trait of interest. The soybean cyst nematode (SCN, Heterodera glycines [HG]) resistance locus Rhg1 is widely used in farmed soybean [Glycine max (L.) Merr.]. The two known resistance-conferring haplotypes, rhg1-a and rhg1-b, typically contain three or seven to 10 tandemly duplicated Rhg1 segments, respectively. Each Rhg1 repeat carries four genes, including Glyma.18G022500, which encodes unusual isoforms of the vesicle-trafficking chaperone α-SNAP. Using SoySNP50K data for NSFRAN07 allele presence, we discovered a new Rhg1 haplotype, rhg1-ds, in six accessions of wild soybean, Glycine soja Siebold & Zucc. (0.5% of the ∼1,100 G. soja accessions in the USDA collection). The α-SNAP encoded by rhg1-ds is unique at an important site of amino acid variation and shares with the rhg1-a and rhg1-b α-SNAP proteins the traits of cytotoxicity and altered N-ethylmaleimide sensitive factor (NSF) protein interaction. Copy number assays indicate three repeats of rhg1-ds. G. soja PI 507613 and PI 507623 exhibit resistance to HG type 2.5.7 SCN populations, in part because of contributions from other loci. In a segregating F2 population, rhg1-b and rhg1-ds made statistically indistinguishable contributions to resistance to a partially virulent HG type 2.5.7 SCN population. Hence, the unusual multigene copy number variation Rhg1 haplotype was present but rare in ancestral G. soja and was present in accessions that offer multiple traits for SCN resistance breeding. The accessions were initially identified for study based on an unlinked SNP.


Assuntos
Resistência à Doença , Tylenchoidea , Animais , Variações do Número de Cópias de DNA , Resistência à Doença/genética , Glicina , Haplótipos , Melhoramento Vegetal , Doenças das Plantas/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Glycine max/genética , Tylenchoidea/metabolismo
5.
Elife ; 102021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34698639

RESUMO

Yeast vacuolar membrane fusion has been reconstituted with R, Qa, Qb, and Qc-family SNAREs, Sec17/αSNAP, Sec18/NSF, and the hexameric HOPS complex. HOPS tethers membranes and catalyzes SNARE assembly into RQaQbQc trans-complexes which zipper through their SNARE domains to promote fusion. Previously, we demonstrated that Sec17 and Sec18 can bypass the requirement of complete zippering for fusion (Song et al., 2021), but it has been unclear whether this activity of Sec17 and Sec18 is directly coupled to HOPS. HOPS can be replaced for fusion by a synthetic tether when the three Q-SNAREs are pre-assembled. We now report that fusion intermediates with arrested SNARE zippering, formed with a synthetic tether but without HOPS, support Sec17/Sec18-triggered fusion. This zippering-bypass fusion is thus a direct result of Sec17 and Sec18 interactions: with each other, with the platform of partially zippered SNAREs, and with the apposed tethered membranes. As these fusion elements are shared among all exocytic and endocytic traffic, Sec17 and Sec18 may have a general role in directly promoting fusion.


Assuntos
Adenosina Trifosfatases/genética , Fusão de Membrana , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Proteínas de Transporte Vesicular/genética , Adenosina Trifosfatases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Proteínas de Transporte Vesicular/metabolismo
6.
Mol Plant Microbe Interact ; 34(12): 1433-1445, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34343024

RESUMO

Soybean cyst nematode (SCN) is the most economically damaging pathogen of soybean and host resistance is a core management strategy. The SCN resistance quantitative trait locus cqSCN-006, introgressed from the wild relative Glycine soja, provides intermediate resistance against nematode populations, including those with increased virulence on the heavily used rhg1-b resistance locus. cqSCN-006 was previously fine-mapped to a genome interval on chromosome 15. The present study determined that Glyma.15G191200 at cqSCN-006, encoding a γ-SNAP, contributes to SCN resistance. CRISPR/Cas9-mediated disruption of the cqSCN-006 allele reduced SCN resistance in transgenic roots. There are no encoded amino acid polymorphisms between resistant and susceptible alleles. However, other cqSCN-006-specific DNA polymorphisms in the Glyma.15G191200 promoter and gene body were identified, and we observed differing induction of γ-SNAP protein abundance at SCN infection sites between resistant and susceptible roots. We identified alternative RNA splice forms transcribed from the Glyma.15G191200 γ-SNAP gene and observed differential expression of the splice forms 2 days after SCN infection. Heterologous overexpression of γ-SNAPs in plant leaves caused moderate necrosis, suggesting that careful regulation of this protein is required for cellular homeostasis. Apparently, certain G. soja evolved quantitative SCN resistance through altered regulation of γ-SNAP. Previous work has demonstrated SCN resistance impacts of the soybean α-SNAP proteins encoded by Glyma.18G022500 (Rhg1) and Glyma.11G234500. The present study shows that a different type of SNAP protein can also impact SCN resistance. Little is known about γ-SNAPs in any system, but the present work suggests a role for γ-SNAPs during susceptible responses to cyst nematodes.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Cistos , Nematoides , Tylenchoidea , Animais , Resistência à Doença/genética , Doenças das Plantas , Locos de Características Quantitativas , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Glycine max/genética
7.
PLoS One ; 16(8): e0256320, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34407152

RESUMO

Adult T-cell leukemia/lymphoma (ATLL) originates from human T-cell leukemia virus type 1 (HTLV-1) infection due to the activation of the nuclear factor-κB (NF-κB) signaling pathway to maintain proliferation and survival. An important mechanism of the activated NF-κB signaling pathway in ATLL is the activation of the macroautophagy (herafter referred to as autophagy in the remainder of this manuscript)-lysosomal degradation of p47 (NSFL1C), a negative regulator of the NF-κB pathway. Therefore, we considered the use of chloroquine (CQ) or hydroxychloroquine (HCQ) (CQ/HCQ) as an autophagy inhibitor to treat ATLL; these drugs were originally approved by the FDA as antimalarial drugs and have recently been used to treat autoimmune diseases, such as systemic lupus erythematosus (SLE). In this paper, we determined the therapeutic efficacy of CQ/HCQ, as NF-κB inhibitors, in ATLL mediated by blockade of p47 degradation. Administration of CQ/HCQ to ATLL cell lines and primary ATLL cells induced cell growth inhibition in a dose-dependent manner, and the majority of cells underwent apoptosis after CQ administration. As to the molecular mechanism, autophagy was inhibited in CQ-treated ATLL cells, and activation of the NF-κB pathway was suppressed with the restoration of the p47 level. When the antitumor effect of CQ/HCQ was examined using immunodeficient mice transplanted with ATLL cell lines, CQ/HCQ significantly suppressed tumor growth and improved the survival rate in the ATLL xenograft mouse model. Importantly, HCQ selectively induced ATLL cell death in the ATLL xenograft mouse model at the dose used to treat SLE. Taken together, our results suggest that the inhibition of autophagy by CQ/HCQ may become a novel and effective strategy for the treatment of ATLL.


Assuntos
Cloroquina/farmacologia , Hidroxicloroquina/farmacologia , Fatores Imunológicos/farmacologia , Leucemia-Linfoma de Células T do Adulto/tratamento farmacológico , NF-kappa B/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Animais , Apoptose , Autofagia , Linhagem Celular Tumoral , Regulação Leucêmica da Expressão Gênica , Vírus Linfotrópico T Tipo 1 Humano/crescimento & desenvolvimento , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Humanos , Leucemia-Linfoma de Células T do Adulto/imunologia , Leucemia-Linfoma de Células T do Adulto/mortalidade , Leucemia-Linfoma de Células T do Adulto/virologia , Masculino , Camundongos , Camundongos SCID , NF-kappa B/antagonistas & inibidores , NF-kappa B/imunologia , Cultura Primária de Células , Transdução de Sinais/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/imunologia , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Elife ; 102021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33944780

RESUMO

Membrane fusion requires R-, Qa-, Qb-, and Qc-family SNAREs that zipper into RQaQbQc coiled coils, driven by the sequestration of apolar amino acids. Zippering has been thought to provide all the force driving fusion. Sec17/αSNAP can form an oligomeric assembly with SNAREs with the Sec17 C-terminus bound to Sec18/NSF, the central region bound to SNAREs, and a crucial apolar loop near the N-terminus poised to insert into membranes. We now report that Sec17 and Sec18 can drive robust fusion without requiring zippering completion. Zippering-driven fusion is blocked by deleting the C-terminal quarter of any Q-SNARE domain or by replacing the apolar amino acids of the Qa-SNARE that face the center of the 4-SNARE coiled coils with polar residues. These blocks, singly or combined, are bypassed by Sec17 and Sec18, and SNARE-dependent fusion is restored without help from completing zippering.


Assuntos
Adenosina Trifosfatases/metabolismo , Fusão de Membrana/genética , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Adenosina Trifosfatases/genética , Comunicação Celular , Fusão de Membrana/fisiologia , Domínios Proteicos , Proteínas SNARE/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Proteínas de Transporte Vesicular/genética
9.
Nat Commun ; 12(1): 3206, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050166

RESUMO

Fueled by ATP hydrolysis in N-ethylmaleimide sensitive factor (NSF), the 20S complex disassembles rigid SNARE (soluble NSF attachment protein receptor) complexes in single unraveling step. This global disassembly distinguishes NSF from other molecular motors that make incremental and processive motions, but the molecular underpinnings of its remarkable energy efficiency remain largely unknown. Using multiple single-molecule methods, we found remarkable cooperativity in mechanical connection between NSF and the SNARE complex, which prevents dysfunctional 20S complexes that consume ATP without productive disassembly. We also constructed ATP hydrolysis cycle of the 20S complex, in which NSF largely shows randomness in ATP binding but switches to perfect ATP hydrolysis synchronization to induce global SNARE disassembly, minimizing ATP hydrolysis by non-20S complex-forming NSF molecules. These two mechanisms work in concert to concentrate ATP consumption into functional 20S complexes, suggesting evolutionary adaptations by the 20S complex to the energetically expensive mechanical task of SNARE complex disassembly.


Assuntos
Trifosfato de Adenosina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas SNARE/metabolismo , Animais , Bovinos , Cricetulus , Hidrólise , Modelos Moleculares , Proteínas Sensíveis a N-Etilmaleimida/isolamento & purificação , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/isolamento & purificação , Ligação Proteica , Multimerização Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/isolamento & purificação , Imagem Individual de Molécula , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/isolamento & purificação , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo
10.
J Biol Chem ; 294(46): 17168-17185, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31515268

RESUMO

The homeostasis of most organelles requires membrane fusion mediated by soluble N -ethylmaleimide-sensitive factor (NSF) attachment protein receptors (SNAREs). SNAREs undergo cycles of activation and deactivation as membranes move through the fusion cycle. At the top of the cycle, inactive cis-SNARE complexes on a single membrane are activated, or primed, by the hexameric ATPase associated with the diverse cellular activities (AAA+) protein, N-ethylmaleimide-sensitive factor (NSF/Sec18), and its co-chaperone α-SNAP/Sec17. Sec18-mediated ATP hydrolysis drives the mechanical disassembly of SNAREs into individual coils, permitting a new cycle of fusion. Previously, we found that Sec18 monomers are sequestered away from SNAREs by binding phosphatidic acid (PA). Sec18 is released from the membrane when PA is hydrolyzed to diacylglycerol by the PA phosphatase Pah1. Although PA can inhibit SNARE priming, it binds other proteins and thus cannot be used as a specific tool to further probe Sec18 activity. Here, we report the discovery of a small-molecule compound, we call IPA (inhibitor of priming activity), that binds Sec18 with high affinity and blocks SNARE activation. We observed that IPA blocks SNARE priming and competes for PA binding to Sec18. Molecular dynamics simulations revealed that IPA induces a more rigid NSF/Sec18 conformation, which potentially disables the flexibility required for Sec18 to bind to PA or to activate SNAREs. We also show that IPA more potently and specifically inhibits NSF/Sec18 activity than does N-ethylmaleimide, requiring the administration of only low micromolar concentrations of IPA, demonstrating that this compound could help to further elucidate SNARE-priming dynamics.


Assuntos
Adenosina Trifosfatases/genética , Etilmaleimida/metabolismo , Ácidos Fosfatídicos/química , Proteínas de Saccharomyces cerevisiae/genética , Bibliotecas de Moléculas Pequenas/química , Proteínas de Transporte Vesicular/genética , ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/genética , Adenosina Trifosfatases/química , Fusão de Membrana/efeitos dos fármacos , Fusão de Membrana/genética , Lipídeos de Membrana/química , Lipídeos de Membrana/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Simulação de Dinâmica Molecular , Proteínas Sensíveis a N-Etilmaleimida/química , Proteínas Sensíveis a N-Etilmaleimida/genética , Ácidos Fosfatídicos/antagonistas & inibidores , Proteínas SNARE/química , Proteínas SNARE/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/química , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Vacúolos/genética , Proteínas de Transporte Vesicular/química
11.
Proc Natl Acad Sci U S A ; 116(28): 13952-13957, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235584

RESUMO

R-SNAREs (soluble N-ethylmaleimide-sensitive factor receptor), Q-SNAREs, and Sec1/Munc18 (SM)-family proteins are essential for membrane fusion in exocytic and endocytic trafficking. The yeast vacuolar tethering/SM complex HOPS (homotypic fusion and vacuole protein sorting) increases the fusion of membranes bearing R-SNARE to those with 3Q-SNAREs far more than it enhances their trans-SNARE pairings. We now report that the fusion of these proteoliposomes is also supported by GST-PX or GST-FYVE, recombinant dimeric proteins which tether by binding the phosphoinositides in both membranes. GST-PX is purely a tether, as it supports fusion without SNARE recognition. GST-PX tethering supports the assembly of new, active SNARE complexes rather than enhancing the function of the fusion-inactive SNARE complexes which had spontaneously formed in the absence of a tether. When SNAREs are more disassembled, as by Sec17, Sec18, and ATP (adenosine triphosphate), HOPS is required, and GST-PX does not suffice. We propose a working model where tethering orients SNARE domains for parallel, active assembly.


Assuntos
Adenosina Trifosfatases/química , Glutationa Peroxidase/química , Proteínas de Fusão de Membrana/química , Proteínas R-SNARE/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/química , Proteínas de Transporte Vesicular/química , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/química , Endocitose/genética , Exocitose/genética , Glutationa Peroxidase/genética , Fusão de Membrana/genética , Proteínas de Fusão de Membrana/genética , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Multimerização Proteica/genética , Transporte Proteico/genética , Proteínas R-SNARE/genética , Proteínas Recombinantes/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Vacúolos/química , Vacúolos/genética , Proteínas de Transporte Vesicular/genética
12.
Parasit Vectors ; 11(1): 539, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30286802

RESUMO

BACKGROUND: The differently-diverged parasitic protist Giardia lamblia is known to have minimal machinery for vesicular transport. Yet, it has three paralogues of SNAP, a crucial component that together with NSF brings about disassembly of the cis-SNARE complex formed following vesicle fusion to target membranes. Given that most opisthokont hosts of this gut parasite express only one α-SNAP, this study was undertaken to determine whether these giardial SNAP proteins have undergone functional divergence. RESULTS: All three SNAP paralogues are expressed in trophozoites, encysting trophozoites and cysts. Even though one of them clusters with γ-SNAP sequences in a phylogenetic tree, functional complementation analysis in yeast indicates that all the three proteins are functionally orthologous to α-SNAP. Localization studies showed a mostly non-overlapping distribution of these α-SNAPs in trophozoites, encysting cells and cysts. In addition, two of the paralogues exhibit substantial subcellular redistribution during encystation, which was also seen following exposure to oxidative stress. However, the expression of the three genes remained unchanged during this redistribution process. There is also a difference in the affinity of each of these α-SNAP paralogues for GlNSF. CONCLUSIONS: None of the genes encoding the three α-SNAPs are pseudogenes and the encoded proteins are likely to discharge non-redundant functions in the different morphological states of G. lamblia. Based on the difference in the interaction of individual α-SNAPs with GlNSF and their non-overlapping pattern of subcellular redistribution during encystation and under stress conditions, it may be concluded that the three giardial α-SNAP paralogues have undergone functional divergence. Presence of one of the giardial α-SNAPs at the PDRs of flagella, where neither GlNSF nor any of the SNAREs localize, indicates that this α-SNAP discharges a SNARE-independent role in this gut pathogen.


Assuntos
Giardia lamblia/metabolismo , Encistamento de Parasitas/fisiologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Estresse Fisiológico/fisiologia , Sequência de Aminoácidos , Compartimento Celular , Endossomos/metabolismo , Duplicação Gênica , Teste de Complementação Genética , Giardia lamblia/genética , Giardia lamblia/crescimento & desenvolvimento , Modelos Moleculares , Filogenia , Proteínas de Protozoários/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/química , Trofozoítos/metabolismo
13.
Proc Natl Acad Sci U S A ; 115(19): E4512-E4521, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29695628

RESUMO

N-ethylmaleimide sensitive factor (NSF) and α-soluble NSF attachment protein (α-SNAP) are essential eukaryotic housekeeping proteins that cooperatively function to sustain vesicular trafficking. The "resistance to Heterodera glycines 1" (Rhg1) locus of soybean (Glycine max) confers resistance to soybean cyst nematode, a highly damaging soybean pest. Rhg1 loci encode repeat copies of atypical α-SNAP proteins that are defective in promoting NSF function and are cytotoxic in certain contexts. Here, we discovered an unusual NSF allele (Rhg1-associated NSF on chromosome 07; NSFRAN07 ) in Rhg1+ germplasm. NSFRAN07 protein modeling to mammalian NSF/α-SNAP complex structures indicated that at least three of the five NSFRAN07 polymorphisms reside adjacent to the α-SNAP binding interface. NSFRAN07 exhibited stronger in vitro binding with Rhg1 resistance-type α-SNAPs. NSFRAN07 coexpression in planta was more protective against Rhg1 α-SNAP cytotoxicity, relative to WT NSFCh07 Investigation of a previously reported segregation distortion between chromosome 18 Rhg1 and a chromosome 07 interval now known to contain the Glyma.07G195900 NSF gene revealed 100% coinheritance of the NSFRAN07 allele with disease resistance Rhg1 alleles, across 855 soybean accessions and in all examined Rhg1+ progeny from biparental crosses. Additionally, we show that some Rhg1-mediated resistance is associated with depletion of WT α-SNAP abundance via selective loss of WT α-SNAP loci. Hence atypical coevolution of the soybean SNARE-recycling machinery has balanced the acquisition of an otherwise disruptive housekeeping protein, enabling a valuable disease resistance trait. Our findings further indicate that successful engineering of Rhg1-related resistance in plants will require a compatible NSF partner for the resistance-conferring α-SNAP.


Assuntos
Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Glycine max/crescimento & desenvolvimento , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Nematoides/fisiologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Animais , Interações Hospedeiro-Parasita , Proteínas Sensíveis a N-Etilmaleimida/genética , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/parasitologia , Polimorfismo de Nucleotídeo Único , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Glycine max/genética , Glycine max/parasitologia
14.
Sci Rep ; 7: 45226, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28338077

RESUMO

Proteins with Tetratricopeptide-repeat (TPR) domains are encoded by large gene families and distributed in all plant lineages. In this study, the Soluble NSF-Attachment Protein (SNAP) subfamily of TPR containing proteins is characterized. In soybean, five members constitute the SNAP gene family: GmSNAP18, GmSNAP11, GmSNAP14, GmSNAP02, and GmSNAP09. Recently, GmSNAP18 has been reported to mediate resistance to soybean cyst nematode (SCN). Using a population of recombinant inbred lines from resistant and susceptible parents, the divergence of the SNAP gene family is analysed over time. Phylogenetic analysis of SNAP genes from 22 diverse plant species showed that SNAPs were distributed in six monophyletic clades corresponding to the major plant lineages. Conservation of the four TPR motifs in all species, including ancestral lineages, supports the hypothesis that SNAPs were duplicated and derived from a common ancestor and unique gene still present in chlorophytic algae. Syntenic analysis of regions harbouring GmSNAP genes in soybean reveals that this family expanded from segmental and tandem duplications following a tetraploidization event. qRT-PCR analysis of GmSNAPs indicates a co-regulation following SCN infection. Finally, genetic analysis demonstrates that GmSNAP11 contributes to an additive resistance to SCN. Thus, GmSNAP11 is identified as a novel minor gene conferring resistance to SCN.


Assuntos
Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Animais , Nematoides/patogenicidade , Proteínas de Plantas/química , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/química , Glycine max/genética , Glycine max/imunologia , Glycine max/parasitologia , Repetições de Tetratricopeptídeos
15.
Proc Natl Acad Sci U S A ; 113(47): E7375-E7382, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27821740

RESUMO

α-SNAP [soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein] and NSF proteins are conserved across eukaryotes and sustain cellular vesicle trafficking by mediating disassembly and reuse of SNARE protein complexes, which facilitate fusion of vesicles to target membranes. However, certain haplotypes of the Rhg1 (resistance to Heterodera glycines 1) locus of soybean possess multiple repeat copies of an α-SNAP gene (Glyma.18G022500) that encodes atypical amino acids at a highly conserved functional site. These Rhg1 loci mediate resistance to soybean cyst nematode (SCN; H. glycines), the most economically damaging pathogen of soybeans worldwide. Rhg1 is widely used in agriculture, but the mechanisms of Rhg1 disease resistance have remained unclear. In the present study, we found that the resistance-type Rhg1 α-SNAP is defective in interaction with NSF. Elevated in planta expression of resistance-type Rhg1 α-SNAPs depleted the abundance of SNARE-recycling 20S complexes, disrupted vesicle trafficking, induced elevated abundance of NSF, and caused cytotoxicity. Soybean, due to ancient genome duplication events, carries other loci that encode canonical (wild-type) α-SNAPs. Expression of these α-SNAPs counteracted the cytotoxicity of resistance-type Rhg1 α-SNAPs. For successful growth and reproduction, SCN dramatically reprograms a set of plant root cells and must sustain this sedentary feeding site for 2-4 weeks. Immunoblots and electron microscopy immunolocalization revealed that resistance-type α-SNAPs specifically hyperaccumulate relative to wild-type α-SNAPs at the nematode feeding site, promoting the demise of this biotrophic interface. The paradigm of disease resistance through a dysfunctional variant of an essential gene may be applicable to other plant-pathogen interactions.


Assuntos
Resistência à Doença , Glycine max/metabolismo , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Mutação , Nematoides/fisiologia , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Glycine max/genética , Glycine max/parasitologia
16.
J Cell Sci ; 128(15): 2781-94, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26101353

RESUMO

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) that reside in the target membranes and transport vesicles assemble into specific SNARE complexes to drive membrane fusion. N-ethylmaleimide-sensitive factor (NSF) and its attachment protein, α-SNAP (encoded by NAPA), catalyze disassembly of the SNARE complexes in the secretory and endocytic pathways to recycle them for the next round of fusion events. γ-SNAP (encoded by NAPG) is a SNAP isoform, but its function in SNARE-mediated membrane trafficking remains unknown. Here, we show that γ-SNAP regulates the endosomal trafficking of epidermal growth factor (EGF) receptor (EGFR) and transferrin. Immunoprecipitation and mass spectrometry analyses revealed that γ-SNAP interacts with a limited range of SNAREs, including endosomal ones. γ-SNAP, as well as α-SNAP, mediated the disassembly of endosomal syntaxin-7-containing SNARE complexes. Overexpression and small interfering (si)RNA-mediated depletion of γ-SNAP changed the morphologies and intracellular distributions of endosomes. Moreover, the depletion partially suppressed the exit of EGFR and transferrin from EEA1-positive early endosomes to delay their degradation and uptake. Taken together, our findings suggest that γ-SNAP is a unique SNAP that functions in a limited range of organelles - including endosomes - and their trafficking pathways.


Assuntos
Endocitose/fisiologia , Receptores ErbB/metabolismo , Transporte Proteico/fisiologia , Proteínas Qa-SNARE/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Membrana Celular/metabolismo , Endossomos/metabolismo , Células Hep G2 , Humanos , Fusão de Membrana/fisiologia , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno , Transferrina/metabolismo , Proteínas de Transporte Vesicular/metabolismo
17.
J Biol Chem ; 289(4): 2424-39, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24311785

RESUMO

Integrin-based adhesion to the extracellular matrix (ECM) plays critical roles in controlling differentiation, survival, and motility of epithelial cells. Cells attach to the ECM via dynamic structures called focal adhesions (FA). FA undergo constant remodeling mediated by vesicle trafficking and fusion. A soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein α (αSNAP) is an essential mediator of membrane fusion; however, its roles in regulating ECM adhesion and cell motility remain unexplored. In this study, we found that siRNA-mediated knockdown of αSNAP induced detachment of intestinal epithelial cells, whereas overexpression of αSNAP increased ECM adhesion and inhibited cell invasion. Loss of αSNAP impaired Golgi-dependent glycosylation and trafficking of ß1 integrin and decreased phosphorylation of focal adhesion kinase (FAK) and paxillin resulting in FA disassembly. These effects of αSNAP depletion on ECM adhesion were independent of apoptosis and NSF. In agreement with our previous reports that Golgi fragmentation mediates cellular effects of αSNAP knockdown, we found that either pharmacologic or genetic disruption of the Golgi recapitulated all the effects of αSNAP depletion on ECM adhesion. Furthermore, our data implicates ß1 integrin, FAK, and paxillin in mediating the observed pro-adhesive effects of αSNAP. These results reveal novel roles for αSNAP in regulating ECM adhesion and motility of epithelial cells.


Assuntos
Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Integrina beta1/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Animais , Bovinos , Adesão Celular/fisiologia , Linhagem Celular , Células Epiteliais/citologia , Matriz Extracelular/genética , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Técnicas de Silenciamento de Genes , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Humanos , Integrina beta1/genética , Paxilina/genética , Paxilina/metabolismo , Fosforilação/fisiologia , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética
18.
J Biol Chem ; 288(34): 24984-91, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23836889

RESUMO

Vesicle trafficking in eukaryotic cells is facilitated by SNARE-mediated membrane fusion. The ATPase NSF (N-ethylmaleimide-sensitive factor) and the adaptor protein α-SNAP (soluble NSF attachment protein) disassemble all SNARE complexes formed throughout different pathways, but the effect of SNARE sequence and domain variation on the poorly understood disassembly mechanism is unknown. By measuring SNARE-stimulated ATP hydrolysis rates, Michaelis-Menten constants for disassembly, and SNAP-SNARE binding constants for four different ternary SNARE complexes and one binary complex, we found a conserved mechanism, not influenced by N-terminal SNARE domains. α-SNAP and the ternary SNARE complex form a 1:1 complex as revealed by multiangle light scattering. We propose a model of NSF-mediated disassembly in which the reaction is initiated by a 1:1 interaction between α-SNAP and the ternary SNARE complex, followed by NSF binding. Subsequent additional α-SNAP binding events may occur as part of a processive disassembly mechanism.


Assuntos
Modelos Químicos , Complexos Multiproteicos/química , Proteínas Sensíveis a N-Etilmaleimida/química , Proteínas SNARE/química , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Cricetinae , Cricetulus , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas Sensíveis a N-Etilmaleimida/genética , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Ligação Proteica , Ratos , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo
19.
Dev Cell ; 25(4): 374-87, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23725763

RESUMO

Intracellular vesicular transport is important for photoreceptor function and maintenance. However, the mechanism underlying photoreceptor degeneration in response to vesicular transport defects is unknown. Here, we report that photoreceptors undergo apoptosis in a zebrafish ß-soluble N-ethylmaleimide-sensitive factor attachment protein (ß-SNAP) mutant. ß-SNAP cooperates with N-ethylmaleimide-sensitive factor to recycle the SNAP receptor (SNARE), a key component of the membrane fusion machinery, by disassembling the cis-SNARE complex generated in the vesicular fusion process. We found that photoreceptor apoptosis in the ß-SNAP mutant was dependent on the BH3-only protein BNip1. BNip1 functions as a component of the syntaxin-18 SNARE complex and regulates retrograde transport from the Golgi to the endoplasmic reticulum. Failure to disassemble the syntaxin-18 cis-SNARE complex caused BNip1-dependent apoptosis. These data suggest that the syntaxin-18 cis-SNARE complex functions as an alarm factor that monitors vesicular fusion competence and that BNip1 transforms vesicular fusion defects into photoreceptor apoptosis.


Assuntos
Apoptose , Fusão de Membrana , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Neurônios Retinianos/metabolismo , Neurônios Retinianos/patologia , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
20.
Cell Cycle ; 11(24): 4613-25, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23187805

RESUMO

Autophagy is a catabolic process that sequesters intracellular proteins and organelles within membrane vesicles called autophagosomes with their subsequent delivery to lyzosomes for degradation. This process involves multiple fusions of autophagosomal membranes with different vesicular compartments; however, the role of vesicle fusion in autophagosomal biogenesis remains poorly understood. This study addresses the role of a key vesicle fusion regulator, soluble N-ethylmaleimide-sensitive factor attachment protein α (αSNAP), in autophagy. Small interfering RNA-mediated downregulation of αSNAP expression in cultured epithelial cells stimulated the autophagic flux, which was manifested by increased conjugation of microtubule-associated protein light chain 3 (LC3-II) and accumulation of LC3-positive autophagosomes. This enhanced autophagy developed via a non-canonical mechanism that did not require beclin1-p150-dependent nucleation, but involved Atg5 and Atg7-mediated elongation of autophagosomal membranes. Induction of autophagy in αSNAP-depleted cells was accompanied by decreased mTOR signaling but appeared to be independent of αSNAP-binding partners, N-ethylmaleimide-sensitive factor and BNIP1. Loss of αSNAP caused fragmentation of the Golgi and downregulation of the Golgi-specific GTP exchange factors, GBF1, BIG1 and BIG2. Pharmacological disruption of the Golgi and genetic inhibition of GBF1 recreated the effects of αSNAP depletion on the autophagic flux. Our study revealed a novel role for αSNAP as a negative regulator of autophagy that acts by enhancing mTOR signaling and regulating the integrity of the Golgi complex.


Assuntos
Autofagia/fisiologia , Epitélio/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Autofagia/genética , Linhagem Celular , Complexo de Golgi/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Fagossomos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA