Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 37(14): 1815-1829, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29348457

RESUMO

Latent transforming growth factor ß (TGFß)-binding proteins (LTBPs) are important for the secretion, activation, and function of mature TGFß, especially so in cancer cell physiology. However, specific roles of the LTBPs remain understudied in the context of the primary tumor microenvironment. Herein, we investigated the role of LTBP3 in the distinct processes involved in cancer metastasis. By using three human tumor cell lines of different tissue origin (epidermoid HEp-3 and prostate PC-3 carcinomas and HT-1080 fibrosarcoma) and several metastasis models conducted in both mammalian and avian settings, we show that LTBP3 is involved in the early dissemination of primary cancer cells, namely in the intravasation step of the metastatic cascade. Knockdown of LTBP3 in all tested cell lines led to significant inhibition of tumor cell intravasation, but did not affect primary tumor growth. LTBP3 was dispensable in the late steps of carcinoma cell metastasis that follow tumor cell intravasation, including vascular arrest, extravasation, and tissue colonization. However, LTBP3 depletion diminished the angiogenesis-inducing potential of HEp-3 cells in vivo, which was restorable by exogenous delivery of LTBP3 protein. A similar compensatory approach rescued the dampened intravasation of LTBP3-deficient HEp-3 cells, suggesting that LTBP3 regulates the induction of the intravasation-supporting angiogenic vasculature within developing primary tumors. Using our recently developed microtumor model, we confirmed that LTBP3 loss resulted in the development of intratumoral vessels with an abnormal microarchitecture incompatible with efficient intravasation of HEp-3 carcinoma cells. Collectively, these findings demonstrate that LTBP3 represents a novel oncotarget that has distinctive functions in the regulation of angiogenesis-dependent tumor cell intravasation, a critical process during early cancer dissemination. Our experimental data are also consistent with the survival prognostic value of LTBP3 expression in early-stage head and neck squamous cell carcinomas, further indicating a specific role for LTBP3 in cancer progression toward metastatic disease.


Assuntos
Proteínas de Ligação a TGF-beta Latente/fisiologia , Neoplasias/genética , Neoplasias/patologia , Animais , Linhagem Celular Tumoral , Embrião de Galinha , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas de Ligação a TGF-beta Latente/antagonistas & inibidores , Proteínas de Ligação a TGF-beta Latente/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias/mortalidade , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , RNA Interferente Pequeno/farmacologia , Análise de Sobrevida
2.
Am J Physiol Lung Cell Mol Physiol ; 313(4): L687-L698, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28684544

RESUMO

Deficiency of the extracellular matrix protein latent transforming growth factor-ß (TGF-ß)-binding protein-4 (LTBP4) results in lack of intact elastic fibers, which leads to disturbed pulmonary development and lack of normal alveolarization in humans and mice. Formation of alveoli and alveolar septation in pulmonary development requires the concerted interaction of extracellular matrix proteins, growth factors such as TGF-ß, fibroblasts, and myofibroblasts to promote elastogenesis as well as vascular formation in the alveolar septae. To investigate the role of LTBP4 in this context, lungs of LTBP4-deficient (Ltbp4-/-) mice were analyzed in close detail. We elucidate the role of LTBP4 in pulmonary alveolarization and show that three different, interacting mechanisms might contribute to alveolar septation defects in Ltbp4-/- lungs: 1) absence of an intact elastic fiber network, 2) reduced angiogenesis, and 3) upregulation of TGF-ß activity resulting in profibrotic processes in the lung.


Assuntos
Tecido Elástico/patologia , Fibroblastos/patologia , Fibrose/patologia , Proteínas de Ligação a TGF-beta Latente/fisiologia , Pulmão/patologia , Neovascularização Patológica/patologia , Alvéolos Pulmonares/patologia , Animais , Células Cultivadas , Tecido Elástico/metabolismo , Matriz Extracelular/metabolismo , Feminino , Fibroblastos/metabolismo , Fibrose/metabolismo , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neovascularização Patológica/metabolismo , Organogênese/fisiologia , Alvéolos Pulmonares/metabolismo , Fator de Crescimento Transformador beta/metabolismo
3.
Oncogene ; 36(31): 4415-4426, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28346420

RESUMO

Cyclooxygenase (COX)-2 is upregulated in hepatocellular carcinoma (HCC). However, the direct causative effect of COX-2 in spontaneous HCC formation remains unknown. We thus investigate the role and molecular pathogenesis of COX-2 in HCC by using liver-specific COX-2 transgenic (TG) mice. We found spontaneous HCC formation with elevated inflammatory infiltrates and neovessels in male TG mice (3/21, 14.3%), but not in any of male WT mice (0/19). Reduced representation bisulfite sequencing (RRBS) and gene expression microarrays were performed in the HCC tumor and non-HCC liver tissues to investigate the molecular mechanisms of COX-2-driven HCC. By RRBS, DNA promoter hypermethylation was identified in HCC from TG mice. Induction of promoter hypermethylation was associated with reduced tet methylcytosine dioxygenase 1 (TET1) expression by COX-2. TET1 could catalyze the conversion of 5-methylcytosine into 5-hydroxymethylcytosine (5hmC) and prevents DNA hypermethylation. In keeping with this, loss of 5hmC was demonstrated in COX-2-induced HCC. Consistently, COX-2 overexpression in human HCC cell lines could reduce both TET1 expression and 5hmc levels. Integrative analyses of DNA methylation and gene expression profiles further identified significantly downregulated genes including LTBP1, ADCY5 and PRKCZ by promoter methylation in COX-2-induced HCC. Reduced expression of LTBP1, ADCY5 and PRKCZ by promoter hypermethylation was further validated in human HCCs. Bio-functional investigation revealed that LTBP1 inhibited cell proliferation in HCC cell lines, suggesting its potential role as a tumor suppressor in HCC. Gene expression microarrays revealed that signaling cascades (AKT (protein kinase B), STK33 (Serine/Threonine kinase 33) and MTOR (mechanistic target of rapamycin) pathways) were enriched in COX-2-induced HCC. In conclusion, this study demonstrated for the first time that enhanced COX-2 expression in hepatocytes is sufficient to induce HCC through inducing promoter hypermethylation by reducing TET1, silencing tumor-suppressive genes and activating key oncogenic pathways. Inhibition of COX-2 represents a mechanism-based target for HCC prevention.


Assuntos
Carcinoma Hepatocelular/etiologia , Ciclo-Oxigenase 2/fisiologia , Neoplasias Hepáticas/etiologia , Fígado/enzimologia , Animais , Linhagem Celular Tumoral , Metilação de DNA , Proteínas de Ligação a DNA/fisiologia , Humanos , Proteínas de Ligação a TGF-beta Latente/fisiologia , Masculino , Camundongos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/fisiologia
4.
J Cell Physiol ; 230(1): 226-36, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24962333

RESUMO

Mice deficient in Latent TGFß Binding Protein 4 (Ltbp4) display a defect in lung septation and elastogenesis. The lung septation defect is normalized by genetically decreasing TGFß2 levels. However, the elastic fiber assembly is not improved in Tgfb2(-/-) ;Ltbp4S(-/-) compared to Ltbp4S(-/-) lungs. We found that decreased levels of TGFß1 or TGFß3 did not improve lung septation indicating that the TGFß isoform elevated in Ltbp4S(-/-) lungs is TGFß2. Expression of a form of Ltbp4 that could not bind latent TGFß did not affect lung phenotype indicating that normal lung development does not require the formation of LTBP4-latent TGFß complexes. Therefore, the change in TGFß-level in the lungs is not directly related to Ltbp4 deficiency but probably is a consequence of changes in the extracellular matrix. Interestingly, combination of the Ltbp4S(-/-) mutation with a fibulin-5 null mutant in Fbln5(-/-) ;Ltbp4S(-/-) mice improves the lung septation compared to Ltbp4S(-/-) lungs. Large globular elastin aggregates characteristic for Ltbp4S(-/-) lungs do not form in Fbln5(-/-) ;Ltbp4S(-/-) lungs and EM studies showed that elastic fibers in Fbln5(-/-) ;Ltbp4S(-/-) lungs resemble those found in Fbln5(-/-) mice. These results are consistent with a role for TGFß2 in lung septation and for Ltbp4 in regulating fibulin-5 dependent elastic fiber assembly.


Assuntos
Padronização Corporal/genética , Tecido Elástico/embriologia , Proteínas da Matriz Extracelular/fisiologia , Proteínas de Ligação a TGF-beta Latente/fisiologia , Pulmão/embriologia , Fator de Crescimento Transformador beta2/metabolismo , Animais , Tecido Elástico/anormalidades , Elastina/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Fibrilinas , Proteínas de Ligação a TGF-beta Latente/genética , Pulmão/anormalidades , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Proteínas Recombinantes/genética , Transdução de Sinais/genética , Fator de Crescimento Transformador beta2/genética
5.
Matrix Biol ; 29(5): 393-401, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20382221

RESUMO

Latent transforming growth factor-beta-1 binding protein-2 (LTBP-2) is a protein of poorly understood function associated with fibrillin-1-containing microfibrils during elastinogenesis. In this study we investigated the molecular interactions of LTBP-2 with heparin and heparan sulfate proteoglycans (HSPGs) since unidentified cell surface HSPGs are critical for normal fiber assembly. In solid phase assays, heparin conjugated to albumin (HAC) bound strongly to recombinant full-length human LTBP-2. This interaction was completely blocked by addition of excess heparin, but not chondroitin sulfate, confirming specificity. Analysis of binding to LTBP-2 fragments showed that HAC bound strongly to N-terminal fragment LTBP-2 NT(H) and more weakly to central fragment LTBP-2 C(H). No binding was detected to C-terminal fragment LTBP-2 CT(H). Kds for heparin binding were calculated for full-length LTBP-2, LTBP-2 NT(H) and LTBP-2 C(H) as 0.9 nM, 0.7 nM and 80 nM respectively. HAC interaction with fragment LTBP-2 NT(H) was not sensitive to EDTA or EGTA indicating that binding had no requirement for Ca(2+) ions whereas HAC binding to fragment LTBP-2 C(H) was markedly reduced by these chelating agents indicating a degree of Ca(2+) dependence. Inhibition studies with synthetic peptides identified three major heparin binding sequences in fragment LTBP-2 NT(H), including sequence LTEKIKKIKIV in the first large cysteine-free domain of LTBP-2, adjacent to the previously identified fibulin-5 binding site. LTBP-2 was found to interact strongly in a heparin-inhibitable manner with cell surface HSPG syndecan-4, but showed no interaction with recombinant syndecan-2. LTBP-2 also showed strong interaction with the heparan sulfate chains of basement membrane HSPG, perlecan. The potential importance of HSPG-LTBP-2 interactions in elastic fiber assembly and microfibril attachment to basement membranes is discussed.


Assuntos
Membrana Basal/fisiologia , Proteoglicanas de Heparan Sulfato/fisiologia , Heparina/fisiologia , Proteínas de Ligação a TGF-beta Latente/fisiologia , Microfibrilas/fisiologia , Sindecana-4/fisiologia , Sequência de Aminoácidos , Sítios de Ligação/fisiologia , Quelantes/farmacologia , Ácido Edético/farmacologia , Ácido Egtázico/farmacologia , Ensaio de Imunoadsorção Enzimática , Cinética , Dados de Sequência Molecular , Fragmentos de Peptídeos/fisiologia , Proteínas Recombinantes/metabolismo
6.
Bone ; 43(4): 679-88, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18672106

RESUMO

Mesenchymal stem cells (MSCs) possess the capability to differentiate into bone forming cells, osteoblasts, and thus represent a new therapeutic tool in regenerative medicine. Transforming growth factor (TGF)-beta is abundantly present in bone tissue where it regulates osteoblast and osteoclast functions in a complex manner. Latent TGF-beta binding protein (LTBP)-1 mediates the extracellular matrix (ECM) targeting and accumulation of most TGF-beta in the bone. We describe here an important regulatory role for LTBP-3 in TGF-beta activation and autocrine growth control in MSCs. LTBP-3 knockdown via siRNA mediated silencing resulted in reduced cell proliferation and reduced osteogenic differentiation. When MSCs were induced to undergo differentiation, LTBP-3 levels became downregulated in parallel with reduced TGF-beta activation. These changes coincided with the matrix maturation phase of osteogenic differentiation. The mechanism of LTBP-3 is most likely via TGF-beta activation in the early proliferative phase of the differentiation process. Later, when TGF-beta activity would inhibit further maturation and mineralization, LTBP-3 expression becomes downregulated and LTBP-1 containing large latent TGF-beta1 complexes accumulate into the ECM. These complexes represent readily available targets for osteoclast mediated release and activation of TGF-beta in bone tissue. Our results provide evidence that LTBP isoforms can differentially regulate TGF-beta activation and ECM accumulation during osteogenic differentiation.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Ligação a TGF-beta Latente/fisiologia , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular/genética , Proliferação de Células , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Humanos , Immunoblotting , Proteínas de Ligação a TGF-beta Latente/genética , Proteínas de Ligação a TGF-beta Latente/metabolismo , Células-Tronco Mesenquimais/citologia , Osteogênese/genética , Osteogênese/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/fisiologia
7.
Ann Dermatol Venereol ; 135(1 Pt 2): 1S5-20, 2008 Jan.
Artigo em Francês | MEDLINE | ID: mdl-18442658

RESUMO

The skin is composed of epidermis, dermis and subcutaneous tissue that interconnect anatomically. The dermis is an integrated system of fibrous and amorphous connective tissue that accommodates nerve and vascular networks, epidermally derived appendages, fibroblasts, macrophages and mast cells. Elastic and collagen tissue are the main types of fibrous connective tissue. The elastic connective tissue is assembled in a continuous network including mature elastic fibers, immature elaunin fibers and oxytalan fibers. Mature elastic fibers and elaunin have microfibrillar and amorphous matrix components while oxytalan fibers only contain microfibrils. Several molecules have been identified as constituents of the elastic fibers. Among the most characterized of these molecules is elastin in amorphous matrix, fibrillins 1 and 2 and LTBP-2 (ligand of latent TGFbeta) in microfibrils and fibulins which interconnect elastin and fibrillins. Elastic fibers provides elasticity to the skin. Under electron microscope, collagen fibers appears as of bundles of periodically banded fibrils which are composed of collagens types I, III and V; type V collagen is believed to assist in regulating fibril diameter. They are associated with FACITs (fibril-associated collagen with interrupted triple helixes) collagens types XIV et XVI. Collagen fibers provide tensile strength to the skin. Non fibrous connective tissue molecules include finely filamentous glycoproteins, glycosaminoglycans and proteoglycans of "the ground substance" (hyaluronic acid and chondroitin sulphate, dermatan sulphate, versican, decorin). Fibroblasts, macrophages and mast cells are regular residents of the dermis. The main function of these cells are well known. Fibroblasts are responsible for the synthesis and the degradation of fibrous and non fibrous connective tissue matrix proteins. Macrophages are phagocytic; they process and present antigen to immunocompetent lymphoid cells. Mast cells are responsible for IgE mediated acute, subacute and chronic inflammation. All these cells have a long list of other functions, in particular they are involved in coagulation, wound healing and tissue remodeling.


Assuntos
Fenômenos Fisiológicos da Pele , Pele/anatomia & histologia , Proteínas de Ligação ao Cálcio/fisiologia , Colágeno/ultraestrutura , Colágeno Tipo I/fisiologia , Colágeno Tipo III/fisiologia , Colágeno Tipo V/fisiologia , Proteínas Contráteis/fisiologia , Derme/anatomia & histologia , Derme/fisiologia , Tecido Elástico/anatomia & histologia , Tecido Elástico/fisiologia , Epiderme/anatomia & histologia , Epiderme/fisiologia , Proteínas da Matriz Extracelular/fisiologia , Colágenos Associados a Fibrilas/fisiologia , Fibrilinas , Fibroblastos/citologia , Fibroblastos/fisiologia , Glicosaminoglicanos/fisiologia , Humanos , Proteínas de Ligação a TGF-beta Latente/fisiologia , Macrófagos/citologia , Macrófagos/fisiologia , Mastócitos/citologia , Mastócitos/fisiologia , Microfibrilas/fisiologia , Microfibrilas/ultraestrutura , Proteínas dos Microfilamentos/fisiologia , Tela Subcutânea/anatomia & histologia , Tela Subcutânea/fisiologia
8.
PLoS One ; 3(4): e1914, 2008 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-18392110

RESUMO

Latency Associated Peptide (LAP) binds TGF-beta1, forming a latent complex. Currently, LAP is presumed to function only as a sequestering agent for active TGF-beta1. Previous work shows that LAP can induce epithelial cell migration, but effects on leukocytes have not been reported. Because of the multiplicity of immunologic processes in which TGF-beta1 plays a role, we hypothesized that LAP could function independently to modulate immune responses. In separate experiments we found that LAP promoted chemotaxis of human monocytes and blocked inflammation in vivo in a murine model of the delayed-type hypersensitivity response (DTHR). These effects did not involve TGF-beta1 activity. Further studies revealed that disruption of specific LAP-thrombospondin-1 (TSP-1) interactions prevented LAP-induced responses. The effect of LAP on DTH inhibition depended on IL-10. These data support a novel role for LAP in regulating monocyte trafficking and immune modulation.


Assuntos
Proteínas de Ligação a TGF-beta Latente/fisiologia , Leucócitos/metabolismo , Peptídeos/química , Fator de Crescimento Transformador beta1/metabolismo , Animais , Movimento Celular , Quimiotaxia , Colágeno/metabolismo , Combinação de Medicamentos , Feminino , Inflamação , Interleucina-10/metabolismo , Laminina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Monócitos/metabolismo , Proteoglicanas/metabolismo
9.
Pancreatology ; 7(5-6): 423-35, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17898532

RESUMO

Pancreatic cancer is the 4th leading cause of cancer-related death in the United States. The number of diagnoses per year equals the number of deaths per year, making it the deadliest of all malignancies. Modern advances and breakthroughs in molecular oncology have allowed researchers to gain a better understanding of the mechanisms responsible for the pathogenesis of this disease. The transforming growth factor-beta (TGF-beta) pathway is one of the signaling systems that has been identified as a major contributor. TGF-beta plays a paradoxical role as both a tumor suppressor and a tumor promoter in pancreatic cancer. The purpose of this review is to provide the practicing clinician a thorough review of this molecule and its associated signaling partners in the context of its duplicitous role and behavior in patients with pancreatic cancer.


Assuntos
Neoplasias Pancreáticas/fisiopatologia , Fator de Crescimento Transformador beta/fisiologia , Animais , Carcinógenos/metabolismo , Ciclo Celular/efeitos dos fármacos , Humanos , Proteínas de Ligação a TGF-beta Latente/fisiologia , Pâncreas/fisiologia , Neoplasias Pancreáticas/etiologia , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/fisiologia , Transdução de Sinais , Proteínas Smad/genética , Proteínas Smad/fisiologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Proteínas Supressoras de Tumor/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA