Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Biol Chem ; 297(6): 101367, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34736895

RESUMO

Rif1 regulates DNA replication timing and double-strand break repair, and its depletion induces transcriptional bursting of two-cell (2C) zygote-specific genes in mouse ES cells. However, how Rif1 regulates zygotic transcription is unclear. We show here that Rif1 depletion promotes the formation of a unique Zscan4 enhancer structure harboring both histone H3 lysine 27 acetylation (H3K27ac) and moderate levels of silencing chromatin mark H3K9me3. Curiously, another enhancer mark H3K4me1 is missing, whereas DNA methylation is still maintained in the structure, which spreads across gene bodies and neighboring regions within the Zscan4 gene cluster. We also found by function analyses of Rif1 domains in ES cells that ectopic expression of Rif1 lacking N-terminal domain results in upregulation of 2C transcripts. This appears to be caused by dominant negative inhibition of endogenous Rif1 protein localization at the nuclear periphery through formation of hetero-oligomers between the N-terminally truncated and endogenous forms. Strikingly, in murine 2C embryos, most of Rif1-derived polypeptides are expressed as truncated forms in soluble nuclear or cytosolic fraction and are likely nonfunctional. Toward the morula stage, the full-length form of Rif1 gradually increased. Our results suggest that the absence of the functional full-length Rif1 due to its instability or alternative splicing and potential inactivation of Rif1 through dominant inhibition by N-terminally truncated Rif1 polypeptides may be involved in 2C-specific transcription program.


Assuntos
Replicação do DNA/fisiologia , Proteínas de Ligação a Telômeros/fisiologia , Ativação Transcricional/fisiologia , Zigoto/metabolismo , Acetilação , Animais , Cromatina/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Fatores de Transcrição/genética , Regulação para Cima
2.
Int J Mol Sci ; 22(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34768871

RESUMO

Replication timing (RT) is a cellular program to coordinate initiation of DNA replication in all origins within the genome. RIF1 (replication timing regulatory factor 1) is a master regulator of RT in human cells. This role of RIF1 is associated with binding G4-quadruplexes and changes in 3D chromatin that may suppress origin activation over a long distance. Many effects of RIF1 in fork reactivation and DNA double-strand (DSB) repair (DSBR) are underlined by its interaction with TP53BP1 (tumor protein p53 binding protein). In G1, RIF1 acts antagonistically to BRCA1 (BRCA1 DNA repair associated), suppressing end resection and homologous recombination repair (HRR) and promoting non-homologous end joining (NHEJ), contributing to DSBR pathway choice. RIF1 is an important element of intra-S-checkpoints to recover damaged replication fork with the involvement of HRR. High-resolution microscopic studies show that RIF1 cooperates with TP53BP1 to preserve 3D structure and epigenetic markers of genomic loci disrupted by DSBs. Apart from TP53BP1, RIF1 interact with many other proteins, including proteins involved in DNA damage response, cell cycle regulation, and chromatin remodeling. As impaired RT, DSBR and fork reactivation are associated with genomic instability, a hallmark of malignant transformation, RIF1 has a diagnostic, prognostic, and therapeutic potential in cancer. Further studies may reveal other aspects of common regulation of RT, DSBR, and fork reactivation by RIF1.


Assuntos
Reparo do DNA/fisiologia , Período de Replicação do DNA/fisiologia , Proteínas de Ligação a Telômeros/metabolismo , Proteína BRCA1/metabolismo , Cromatina/metabolismo , DNA/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA por Junção de Extremidades/fisiologia , Replicação do DNA/genética , Replicação do DNA/fisiologia , Período de Replicação do DNA/genética , Instabilidade Genômica/genética , Humanos , Reparo de DNA por Recombinação , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/fisiologia , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
3.
Int J Sports Med ; 42(3): 283-290, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32947637

RESUMO

Aging muscle is prone to sarcopenia and its associated telomere shortening and increased oxidative stress. Telomeres are protected by a shelterin protein complex, proteins expressed in response to DNA damage. Aerobic exercise training has shown to positively modulate these proteins while aging, but the effects of resistance training are less clear. This investigation was to examine the role of dynamic and isometric RT on markers of senescence and muscle apoptosis: checkpoint kinase 2, 53 kDa protein, shelterin telomere repeat binding 1 and 2, DNA repair, telomere length and redox state in the quadriceps muscle. Fifteen 49-week-old male rats were divided into three groups: control, dynamic resistance training, and isometric resistance training. Dynamic and isometric groups completed five sessions per week during 16 weeks at low to moderate intensity (20-70% maximal load). Only dynamic group decreased expression of 53 kDa protein, proteins from shelterin complex, oxidative stress, and improved antioxidant defense. There was no difference among groups regarding telomere length. In conclusion, dynamic resistance training was more effective than isometric in reducing markers of aging and muscle apoptosis in elderly rats. This modality should be considered as valuable tool do counteract the deleterious effects of aging.


Assuntos
Envelhecimento/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Treinamento Resistido/métodos , Animais , Apoptose , Biomarcadores/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Reparo do DNA , Genes p53 , Contração Isométrica , Masculino , Músculo Esquelético/citologia , Oxirredução , Estresse Oxidativo , Condicionamento Físico Animal , Ratos Wistar , Encurtamento do Telômero , Proteínas de Ligação a Telômeros/fisiologia
4.
Elife ; 92020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258446

RESUMO

Telomere shortening is a presumed tumor suppressor pathway that imposes a proliferative barrier (the Hayflick limit) during tumorigenesis. This model predicts that excessively long somatic telomeres predispose to cancer. Here, we describe cancer-prone families with two unique TINF2 mutations that truncate TIN2, a shelterin subunit that controls telomere length. Patient lymphocyte telomeres were unusually long. We show that the truncated TIN2 proteins do not localize to telomeres, suggesting that the mutations create loss-of-function alleles. Heterozygous knock-in of the mutations or deletion of one copy of TINF2 resulted in excessive telomere elongation in clonal lines, indicating that TINF2 is haploinsufficient for telomere length control. In contrast, telomere protection and genome stability were maintained in all heterozygous clones. The data establish that the TINF2 truncations predispose to a tumor syndrome. We conclude that TINF2 acts as a haploinsufficient tumor suppressor that limits telomere length to ensure a timely Hayflick limit.


Assuntos
Genes Supressores de Tumor , Encurtamento do Telômero/genética , Proteínas de Ligação a Telômeros/fisiologia , Telômero/genética , Linhagem Celular , Feminino , Células HEK293 , Heterozigoto , Humanos , Mutação com Perda de Função , Masculino , Neoplasias/genética , Telômero/patologia , Proteínas de Ligação a Telômeros/genética , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Proteínas Supressoras de Tumor
5.
Mol Med Rep ; 22(6): 5209-5218, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33174061

RESUMO

Telomeric repeat binding factor 1 (TERF1) has been identified as a tumor suppressor gene in numerous types of human cancer. However, the expression of TERF1 and its mechanism in prostate cancer (PCa) remains unclear. The present study aimed to explore the expression and functions of TERF1 in PCa. The UALCAN database was used to analyze the differential expression of TERF1 between normal prostate tissue and primary PCa tissue. Cell apoptosis was analyzed by Annexin V/propidium iodide staining, and wound healing and Transwell assays were used to detect the cell migration and invasion abilities, respectively. The cell viability was analyzed using an MTT assay. Reverse transcription­quantitative PCR and western blotting were used to analyze the mRNA and protein expression levels, respectively, of epithelial­mesenchymal transition (EMT) markers following TERF1 knockdown in the PC3 cell line. A dual luciferase reporter assay was used to verify the association between TERF1 and microRNA (miR)­155 predicted by bioinformatics analysis. Rescue experiments were performed to determine the role of the miR­155/TERF1 axis in regulating the cellular behaviors of PCa. The results demonstrated that the expression levels of TERF1 in the primary prostate tumors were significantly downregulated compared with in prostate normal tissue. TERF1 silencing was discovered to significantly promote cell viability, migration and invasion, while suppressing cell apoptosis. The impact of TERF1 on PC3 cells was suggested to occur through the EMT pathway. TERF1 was confirmed to be the direct target of miR­155. The overexpression of miR­155 promoted the viability, migration and invasion, while suppressing the apoptosis of the PC3 cell line, while the knockdown of miR­155 in PC3 cells achieved the opposite trends. In addition, TERF1 overexpression reversed the promotive effects of upregulated miR­155 expression levels on the migration and apoptosis of PC3 cells. On the contrary, the knockdown of TERF1 reversed the migration and apoptosis abilities of the downregulated miR­155 expression levels on the cellular behaviors of PC3 cells. In conclusion, TERF1, as a direct target of miR­155, was discovered to be significantly downregulated in PCa, which was suggested to promote the migration and invasion of PCa via the EMT pathway.


Assuntos
MicroRNAs/genética , Neoplasias da Próstata/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , Células PC-3 , Próstata/patologia , Neoplasias da Próstata/patologia , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Complexo Shelterina , Proteínas de Ligação a Telômeros/fisiologia
6.
Proc Natl Acad Sci U S A ; 116(47): 23527-23533, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31685617

RESUMO

Telomeres cap the ends of linear chromosomes and terminate in a single-stranded DNA (ssDNA) overhang recognized by POT1-TPP1 heterodimers to help regulate telomere length homeostasis. Here hydroxyl radical footprinting coupled with mass spectrometry was employed to probe protein-protein interactions and conformational changes involved in the assembly of telomere ssDNA substrates of differing lengths bound by POT1-TPP1 heterodimers. Our data identified environmental changes surrounding residue histidine 266 of POT1 that were dependent on telomere ssDNA substrate length. We further determined that the chronic lymphocytic leukemia-associated H266L substitution significantly reduced POT1-TPP1 binding to short ssDNA substrates; however, it only moderately impaired the heterodimer binding to long ssDNA substrates containing multiple protein binding sites. Additionally, we identified a telomerase inhibitory role when several native POT1-TPP1 proteins coat physiologically relevant lengths of telomere ssDNA. This POT1-TPP1 complex-mediated inhibition of telomerase is abrogated in the context of the POT1 H266L mutation, which leads to telomere overextension in a malignant cellular environment.


Assuntos
DNA de Cadeia Simples/metabolismo , Mutação de Sentido Incorreto , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Homeostase do Telômero/fisiologia , Proteínas de Ligação a Telômeros/fisiologia , Telômero/metabolismo , Substituição de Aminoácidos , Sistemas CRISPR-Cas , Células HCT116 , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Ligação Proteica , Proteínas Recombinantes/metabolismo , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética
7.
Int J Biol Sci ; 15(11): 2350-2362, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31595153

RESUMO

The interaction between genomic DNA and protein fundamentally determines the activity and the function of DNA elements. Capturing the protein complex and identifying the proteins associated with a specific DNA locus is difficult. Herein, we employed CRISPR, the well-known gene-targeting tool in combination with the proximity-dependent labeling tool BioID to capture a specific genome locus associated proteins and to uncover the novel functions of these proteins. By applying this research tool on telomeres, we identified DSP, out of many others, as a convincing telomere binding protein validated by both biochemical and cell-biological approaches. We also provide evidence to demonstrate that the C-terminal domain of DSP is required for its binding to telomere after translocating to the nucleus mediated by NLS sequence of DSP. In addition, we found that the telomere binding of DSP is telomere length dependent as hTERT inhibition or knockdown caused a decrease of telomere length and diminished DSP binding to the telomere. Knockdown of TRF2 also negatively influenced DSP binding to the telomere. Functionally, loss of DSP resulted in the shortened telomere DNA and induced the DNA damage response and cell apoptosis. In conclusion, our studies identified DSP as a novel potential telomere binding protein and highlighted its role in protecting against telomere DNA damage and resultant cell apoptosis.


Assuntos
Núcleo Celular/metabolismo , Desmoplaquinas/fisiologia , Homeostase do Telômero , Proteínas de Ligação a Telômeros/fisiologia , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Dano ao DNA , Desmoplaquinas/química , Desmoplaquinas/metabolismo , Células HEK293 , Humanos , Telomerase/metabolismo , Telômero/metabolismo , Encurtamento do Telômero , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/metabolismo
8.
Life Sci ; 232: 116665, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31323273

RESUMO

AIMS: Overexpression of the mechanistic target of rapamycin (mTOR), a member of the PIKK (phosphoinositide kinase-related kinase) family, protects cardiomyocytes from cell death induced by pathological stimuli such as ischemia. We previously reported that posttranslational modification of mTOR plays an important role in regulating cardiac mTOR expression. The aim of this study was to see if Tel2 (telomere maintenance 2), a protein that regulates the abundance of PIKKs, confers similar cardioprotective effects as mTOR. Tel2 is not well-characterized in cardiomyocytes, therefore we examined the effects of Tel2 on cardiomyocyte viability under ischemic stress conditions. MATERIALS AND METHODS: We overexpressed Tel2 or silenced Tel2 with siRNA in the HL-1 cardiomyocyte cell line to survey the effects of Tel2 overexpression and downregulation on cell survival during hypoxia. Adult mouse cardiomyocytes transfected with Tel2 adenoviruses were used to test whether Tel2 sufficiently prevented cardiomyocyte cell death against hydrogen peroxide (H2O2). KEY FINDINGS: Overexpressing Tel2 increased mTOR expression with a concomitant increase in mTOR Complex 1 (mTORC1) and mTORC2 activity in HL-1 cells. Tel2 deletion decreased mTOR expression, and mTORC1 and mTORC2 activity accordingly. In both HL-1 cells and adult mouse cardiomyocytes, Tel2 overexpression protected cardiomyocytes under ischemic stress. These effects were mTOR-dependent, as mTOR inhibitors blunted the effects of Tel2. While gene silencing of Tel2 did not affect cell survival under normoxia, Tel2 silencing made cardiomyocytes more vulnerable to cell death under hypoxia. SIGNIFICANCE: Upregulating Tel2 expression increases mTOR-mediated cardiomyocyte survival and targeting Tel2 could be another therapeutic strategy against ischemic heart disease.


Assuntos
Sobrevivência Celular/fisiologia , Miócitos Cardíacos/citologia , Proteínas de Ligação a Telômeros/fisiologia , Adenoviridae/genética , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Inativação Gênica , Peróxido de Hidrogênio/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Transdução de Sinais , Proteínas de Ligação a Telômeros/genética , Transfecção
9.
Nat Cell Biol ; 21(4): 487-497, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30804506

RESUMO

Failure to complete DNA replication is a stochastic by-product of genome doubling in almost every cell cycle. During mitosis, under-replicated DNA (UR-DNA) is converted into DNA lesions, which are inherited by daughter cells and sequestered in 53BP1 nuclear bodies (53BP1-NBs). The fate of such cells remains unknown. Here, we show that the formation of 53BP1-NBs interrupts the chain of iterative damage intrinsically embedded in UR-DNA. Unlike clastogen-induced 53BP1 foci that are repaired throughout interphase, 53BP1-NBs restrain replication of the embedded genomic loci until late S phase, thus enabling the dedicated RAD52-mediated repair of UR-DNA lesions. The absence or malfunction of 53BP1-NBs causes premature replication of the affected loci, accompanied by genotoxic RAD51-mediated recombination. Thus, through adjusting replication timing and repair pathway choice at under-replicated loci, 53BP1-NBs enable the completion of genome duplication of inherited UR-DNA and prevent the conversion of stochastic under-replications into genome instability.


Assuntos
Estruturas do Núcleo Celular/fisiologia , Dano ao DNA , Período de Replicação do DNA , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/fisiologia , Linhagem Celular , Segregação de Cromossomos , Reparo do DNA , Replicação do DNA , Humanos , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Recombinação Genética , Fase S/genética , Proteínas de Ligação a Telômeros/fisiologia
10.
Mol Biol Cell ; 30(8): 959-974, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30759056

RESUMO

Mechanical ventilation remains an imperative treatment for the patients with acute respiratory distress syndrome, but can also exacerbate lung injury. We have previously described a key role of RhoA GTPase in high cyclic stretch (CS)-induced endothelial cell (EC) barrier dysfunction. However, cellular mechanotransduction complexes remain to be characterized. This study tested a hypothesis that recovery of a vascular EC barrier after pathologic mechanical stress may be accelerated by cell exposure to physiologic CS levels and involves Rap1-dependent rearrangement of endothelial cell junctions. Using biochemical, molecular, and imaging approaches we found that EC pre- or postconditioning at physiologically relevant low-magnitude CS promotes resealing of cell junctions disrupted by pathologic, high-magnitude CS. Cytoskeletal remodeling induced by low CS was dependent on small GTPase Rap1. Protective effects of EC preconditioning at low CS were abolished by pharmacological or molecular inhibition of Rap1 activity. In vivo, using mice exposed to mechanical ventilation, we found that the protective effect of low tidal volume ventilation against lung injury caused by lipopolysaccharides and ventilation at high tidal volume was suppressed in Rap1 knockout mice. Taken together, our results demonstrate a prominent role of Rap1-mediated signaling mechanisms activated by low CS in acceleration of lung vascular EC barrier restoration.


Assuntos
Endotélio Vascular/fisiologia , Mecanotransdução Celular/fisiologia , Proteínas de Ligação a Telômeros/metabolismo , Animais , Permeabilidade Capilar , Técnicas de Cultura de Células , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Endotélio Vascular/metabolismo , Feminino , Humanos , Junções Intercelulares , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Artéria Pulmonar , Complexo Shelterina , Transdução de Sinais , Estresse Mecânico , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/fisiologia
11.
Protein Cell ; 10(9): 649-667, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30796637

RESUMO

RAP1 is a well-known telomere-binding protein, but its functions in human stem cells have remained unclear. Here we generated RAP1-deficient human embryonic stem cells (hESCs) by using CRISPR/Cas9 technique and obtained RAP1-deficient human mesenchymal stem cells (hMSCs) and neural stem cells (hNSCs) via directed differentiation. In both hMSCs and hNSCs, RAP1 not only negatively regulated telomere length but also acted as a transcriptional regulator of RELN by tuning the methylation status of its gene promoter. RAP1 deficiency enhanced self-renewal and delayed senescence in hMSCs, but not in hNSCs, suggesting complicated lineage-specific effects of RAP1 in adult stem cells. Altogether, these results demonstrate for the first time that RAP1 plays both telomeric and nontelomeric roles in regulating human stem cell homeostasis.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Mesenquimais/citologia , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Serina Endopeptidases/metabolismo , Proteínas de Ligação a Telômeros/fisiologia , Telômero/metabolismo , Animais , Humanos , Masculino , Metilação , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína Reelina , Complexo Shelterina
12.
Int J Hematol ; 107(6): 646-655, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29550946

RESUMO

In order to maintain the homeostasis of the hematopoietic system, hematopoietic stem cells (HSCs) need to be maintained while slowly dividing over their lifetime. However, repeated cell divisions lead to the gradual accumulation of DNA damage and ultimately impair HSC function. Since telomeres are particularly fragile when subjected to replication stress, cells have several defense machinery to protect telomeres. Moreover, HSCs must protect their genome against possible DNA damage, while maintaining telomere length. A group of proteins called the shelterin complex are deeply involved in this two-way role, and it is highly resistant to the replication stress to which HSCs are subjected. Most shelterin-deficient experimental models suffer acute cytotoxicity and severe phenotypes, as each shelterin component is essential for telomere protection. The Tin2 point mutant mice show a dyskeratosis congenita (DC) like phenotype, and the Tpp1 deletion impairs the hematopoietic system. POT1/Pot1a is highly expressed in HSCs and contributes to the maintenance of the HSC pool during in vitro culture. Here, we discuss the role of shelterin molecules in HSC regulation and review current understanding of how these are regulated in the maintenance of the HSC pool and the development of hematological disorders.


Assuntos
Hematopoese/genética , Células-Tronco Hematopoéticas , Proteínas de Ligação a Telômeros/fisiologia , Telômero , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia , Aminopeptidases/genética , Animais , Divisão Celular/genética , Dano ao DNA , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Disceratose Congênita , Deleção de Genes , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Camundongos , Mutação , Serina Proteases/genética , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Proteína 2 de Ligação a Repetições Teloméricas/deficiência
13.
Tumour Biol ; 39(4): 1010428317695034, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28381157

RESUMO

Repressor activator protein 1 plays important roles in telomere protection, while repressor activator protein 1 binds to extra-telomeric DNA and exerts the function as a transcriptional regulator. Previous study showed that repressor activator protein 1 regulates the transcriptional activity of nuclear factor-κB, and it was highly expressed in breast cancer tissues; however, the clinical significance of repressor activator protein 1 expression in cancer remains to be elucidated. In this study, we discovered that repressor activator protein 1 was highly expressed in colorectal cancer tissues. High expression of repressor activator protein 1 was significantly correlated with poor prognosis and distant metastasis. Knockdown of repressor activator protein 1 in colorectal cancer cells did not affect cell proliferation or colony formation, but dramatically decreased cell migration and F-actin-enriched membrane protrusions. Microarray screening revealed that Vimentin was downregulated after repressor activator protein 1 knockdown, which was validated by analysis of a colorectal cancer dataset. Furthermore, knockdown of Vimentin attenuated repressor activator protein 1-enhanced cell migration. Thus, our study suggests that repressor activator protein 1 is a prognostic marker and a potential target for colorectal cancer therapy.


Assuntos
Movimento Celular , Neoplasias Colorretais/patologia , Proteínas de Ligação a Telômeros/fisiologia , Vimentina/fisiologia , Adulto , Idoso , Linhagem Celular Tumoral , Neoplasias Colorretais/mortalidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Complexo Shelterina , Proteínas de Ligação a Telômeros/análise , Vimentina/análise
14.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 33(4): 573-7, 2016 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-27455024

RESUMO

As an important telomere binding protein, TPP1 protects the ends of telomeres and maintains the stability and integrity of its structure and function by interacting with other five essential core proteins (POT1, TRF1, TRF2, TIN2, and RAP1) to form a complex called Shelterin. Recently, researchers have discovered that TPP1 participates in protection of telomeres and regulation of telomerase activity. The relationship between TPP1 and tumorigenesis, tumor progression and treatment has also been investigated. This paper reviews the latest findings of TPP1 regarding to its structure, function and interaction with other proteins involved in tumorigenesis.


Assuntos
Neoplasias/genética , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/fisiologia , Telômero , Instabilidade Cromossômica , Dano ao DNA , Humanos , Complexo Shelterina
15.
PLoS Biol ; 14(2): e1002387, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26901759

RESUMO

The cellular response to DNA double-strand breaks (DSBs) is initiated by the MRX/MRN complex (Mre11-Rad50-Xrs2 in yeast; Mre11-Rad50-Nbs1 in mammals), which recruits the checkpoint kinase Tel1/ATM to DSBs. In Saccharomyces cerevisiae, the role of Tel1 at DSBs remains enigmatic, as tel1Δ cells do not show obvious hypersensitivity to DSB-inducing agents. By performing a synthetic phenotype screen, we isolated a rad50-V1269M allele that sensitizes tel1Δ cells to genotoxic agents. The MRV1269MX complex associates poorly to DNA ends, and its retention at DSBs is further reduced by the lack of Tel1. As a consequence, tel1Δ rad50-V1269M cells are severely defective both in keeping the DSB ends tethered to each other and in repairing a DSB by either homologous recombination (HR) or nonhomologous end joining (NHEJ). These data indicate that Tel1 promotes MRX retention to DSBs and this function is important to allow proper MRX-DNA binding that is needed for end-tethering and DSB repair. The role of Tel1 in promoting MRX accumulation to DSBs is counteracted by Rif2, which is recruited to DSBs. We also found that Rif2 enhances ATP hydrolysis by MRX and attenuates MRX function in end-tethering, suggesting that Rif2 can regulate MRX activity at DSBs by modulating ATP-dependent conformational changes of Rad50.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Proteínas de Ligação a Telômeros/fisiologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Recombinação Homóloga , Hidrólise , Dados de Sequência Molecular , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
DNA Repair (Amst) ; 15: 54-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24462468

RESUMO

DNA double strand breaks (DSBs) are highly toxic to the cells and accumulation of DSBs results in several detrimental effects in various cellular processes which can lead to neurological, immunological and developmental disorders. Failure of the repair of DSBs spurs mutagenesis and is a driver of tumorigenesis, thus underscoring the importance of the accurate repair of DSBs. Two major canonical DSB repair pathways are the non-homologous end joining (NHEJ) and homologous recombination (HR) pathways. 53BP1 and BRCA1 are the key mediator proteins which coordinate with other components of the DNA repair machinery in the NHEJ and HR pathways respectively, and their exclusive recruitment to DNA breaks/ends potentially decides the choice of repair by either NHEJ or HR. Recently, Rap1 interacting factor 1 has been identified as an important component of the DNA repair pathway which acts downstream of the ATM/53BP1 to inhibit the 5'-3' end resection of broken DNA ends, in-turn facilitating NHEJ repair and inhibiting homology directed repair. Rif1 is conserved from yeast to humans but its function has evolved from telomere length regulation in yeast to the maintenance of genome integrity in mammalian cells. Recently its role in the maintenance of genomic integrity has been expanded to include the regulation of chromatin structure, replication timing and intra-S phase checkpoint. We present a summary of these important findings highlighting the various aspects of Rif1 functions and discuss the key implications for genomic integrity.


Assuntos
Quebras de DNA de Cadeia Dupla , Replicação do DNA , Proteínas de Ligação a Telômeros/fisiologia , Animais , Reparo do DNA por Junção de Extremidades , Instabilidade Genômica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Transdução de Sinais , Telômero/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
17.
Front Biosci (Landmark Ed) ; 18(1): 1-20, 2013 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-23276906

RESUMO

Telomeres are nucleoprotein structures at the ends of linear chromosomes that protect them from being recognized as DNA double stranded breaks. Telomeres shorten with every cell division and in the absence of the checkpoint mechanisms critical telomere shortening leads to chromosome end fusions and genomic instability. Cancer cells achieve immortality by engaging in one of the two known mechanisms for telomere maintenance: elongation by telomerase or through recombination. Recombination based elongation of telomeres, also known as alternative lengthening of telomeres or ALT, is prevalent among cancers of mesenchymal origin. However, the conditions favoring ALT emergence are not known. Here we will discuss possible players in ALT mechanisms, including recruitment of telomeres to recombination centers, alterations of telomere associated proteins and modifications at the level of chromatin that could generate recombination permissive conditions at telomeres.


Assuntos
Homeostase do Telômero/fisiologia , Telômero/metabolismo , Animais , DNA Helicases/metabolismo , Metilação de DNA/fisiologia , Exodesoxirribonucleases/metabolismo , Instabilidade Genômica , Heterocromatina/metabolismo , Humanos , Camundongos , RecQ Helicases/metabolismo , Recombinação Genética , Complexo Shelterina , Telomerase/metabolismo , Encurtamento do Telômero , Proteínas de Ligação a Telômeros/fisiologia , Helicase da Síndrome de Werner
18.
Mol Biol (Mosk) ; 46(4): 539-55, 2012.
Artigo em Russo | MEDLINE | ID: mdl-23113342

RESUMO

Review is devoted to detailed consideration of the functioning in normal and immortal cells of one of the main chromosomal regions, telomeres, being dynamic nucleoprotein structures that cap the ends of eukaryotic chromosomes, protecting them from degradation and end-to-end fusion. The role of telomeres in maintenance of genome stability and cell division was also analyzed. Telomere function depends on many interrelated parameters such as telomerase activity, status of the telomere safety complex shelterin and telomere associated proteins (factors of replication, recombination, and reparation of DNA breaks, and so on). We have focused on mechanisms of telomere length control in normal and immortal cells as well as in cells containing active telomerase and cells wherein it is absent. We have analyzed the features attributed to alternative telomere lengthening, namely in view of recently discovered additional mechanism of telomere shortening by trimming of t-cycles. We have viewed a possibility of expression in normal mammalian cells of both telomerase dependent and recombinational ways of telomere length control and the role of shelterin proteins in choice of the one of them as the dominant way. The role oftelomeres in spatial organization of nucleus, in mitosis and meiosis has been also considered. Diversity of telomere organization in mammalians including unusual telomeres in Iberian shrews has been discussed.


Assuntos
Neoplasias/genética , Telomerase/metabolismo , Proteínas de Ligação a Telômeros/fisiologia , Telômero/fisiologia , Animais , Ciclo Celular/genética , Transformação Celular Neoplásica/genética , Senescência Celular/genética , Estruturas Cromossômicas/genética , Instabilidade Genômica , Humanos , Neoplasias/enzimologia , Telomerase/genética , Encurtamento do Telômero
19.
PLoS One ; 7(11): e49151, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23133674

RESUMO

The telomere at the end of a linear chromosome plays crucial roles in genome stability. In the fission yeast Schizosaccharomyces pombe, the Rap1 protein, one of the central players at the telomeres, associates with multiple proteins to regulate various telomere functions, such as the maintenance of telomere DNA length, telomere end protection, maintenance of telomere heterochromatin, and telomere clustering in meiosis. The molecular bases of the interactions between Rap1 and its partners, however, remain largely unknown. Here, we describe the identification of the interaction domains of Rap1 with its partners. The Bqt1/Bqt2 complex, which is required for normal meiotic progression, Poz1, which is required for telomere length control, and Taz1, which is required for the recruitment of Rap1 to telomeres, bind to distinct domains in the C-terminal half of Rap1. Intriguingly, analyses of a series of deletion mutants for rap1(+) have revealed that the long N-terminal region (1-456 a.a. [amino acids]) of Rap1 (full length: 693 a.a.) is not required for telomere DNA length control, telomere end protection, and telomere gene silencing, whereas the C-terminal region (457-693 a.a.) containing Poz1- and Taz1-binding domains plays important roles in those functions. Furthermore, the Bqt1/Bqt2- and Taz1-binding domains are essential for normal spore formation after meiosis. Our results suggest that the C-terminal half of Rap1 is critical for the primary telomere functions, whereas the N-terminal region containing the BRCT (BRCA1 C-terminus) and Myb domains, which are evolutionally conserved among the Rap1 family proteins, does not play a major role at the telomeres.


Assuntos
Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/metabolismo , Proteínas de Ligação a Telômeros/fisiologia , Telômero/ultraestrutura , Sítios de Ligação , Cromatina/química , Cromatina/metabolismo , DNA/química , Fase G1 , Inativação Gênica , Variação Genética , Meiose , Mutação , Estrutura Terciária de Proteína , Proteínas de Schizosaccharomyces pombe/química , Complexo Shelterina , Proteínas de Ligação a Telômeros/química , Técnicas do Sistema de Duplo-Híbrido
20.
Proc Natl Acad Sci U S A ; 108(35): 14572-7, 2011 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-21844336

RESUMO

The posttranslational addition of palmitate to cysteines occurs ubiquitously in eukaryotic cells, where it functions in anchoring target proteins to membranes and in vesicular trafficking. Here we show that the Saccharomyces cerevisiae palmitoyltransferase Pfa4 enhanced heterochromatin formation at the cryptic mating-type loci HMR and HML via Rif1, a telomere regulatory protein. Acylated Rif1 was detected in extracts from wild-type but not pfa4Δ mutant cells. In a pfa4Δ mutant, Rif1-GFP dispersed away from foci positioned at the nuclear periphery into the nucleoplasm. Sir3-GFP distribution was also perturbed, indicating a change in the nuclear dynamics of heterochromatin proteins. Genetic analyses indicated that PFA4 functioned upstream of RIF1. Surprisingly, the pfa4Δ mutation had only mild effects on telomeric regulation, suggesting Rif1's roles at HM loci and telomeres were more complexly related than previously thought. These data supported a model in which Pfa4-dependent palmitoylation of Rif1 anchored it to the inner nuclear membrane, influencing its role in heterochromatin dynamics.


Assuntos
Heterocromatina/metabolismo , Proteínas Repressoras/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomycetales/genética , Proteínas de Ligação a Telômeros/fisiologia , Acilação , Aciltransferases/fisiologia , Lipoilação , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Telômero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA