Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 436(12): 168595, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38724003

RESUMO

During the late stage of infection, alphabaculoviruses produce many occlusion bodies (OBs) in the nuclei of the insect host's cells through the hyperexpression of polyhedrin (POLH), a major OB component encoded by polh. The strong polh promoter has been used to develop a baculovirus expression vector system for recombinant protein expression in cultured insect cells and larvae. However, the relationship between POLH accumulation and the polh coding sequence remains largely unelucidated. This study aimed to assess the importance of polh codon usage and/or nucleotide sequences in POLH accumulation by generating a baculovirus Bombyx mori nucleopolyhedrovirus (BmNPV) expressing mutant polh (co-polh) optimized according to the codon preference of its host insect. Although the deduced amino acid sequence of CO-POLH was the same as that of wild-type POLH, POLH accumulation was significantly lower in cells infected with the co-polh mutant. This reduction was due to decreased polh mRNA levels rather than translational repression. Analysis of mutant viruses with chimeric polh revealed that a 30 base-pair (bp) 5' proximal polh coding region was necessary for maintaining high polh mRNA levels. Sequence comparison of wild-type polh and co-polh identified five nucleotide differences in this region, indicating that these nucleotides were critical for polh hyperexpression. Furthermore, luciferase reporter assays showed that the 30 bp 5' coding region was sufficient for maintaining the polh promoter-driven high level of polh mRNA. Thus, our whole-gene scanning by codon optimization identified important hidden nucleotides for polh hyperexpression in alphabaculoviruses.


Assuntos
Bombyx , Nucleopoliedrovírus , Proteínas de Matriz de Corpos de Inclusão , Nucleopoliedrovírus/genética , Animais , Proteínas de Matriz de Corpos de Inclusão/genética , Bombyx/virologia , Bombyx/genética , Nucleotídeos/genética , Nucleotídeos/metabolismo , Regiões Promotoras Genéticas , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismo , Códon/genética , Regulação Viral da Expressão Gênica , Linhagem Celular
2.
Biomolecules ; 9(10)2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31546991

RESUMO

The spatial and temporal availability of cytokines, and the microenvironments this creates, is critical to tissue development and homeostasis. Creating concentration gradients in vitro using soluble proteins is challenging as they do not provide a self-sustainable source. To mimic the sustained cytokine secretion seen in vivo from the extracellular matrix (ECM), we encapsulated a cargo protein into insect virus-derived proteins to form nanoparticle co-crystals and studied the release of this cargo protein mediated by matrix metalloproteinase-2 (MMP-2) and MMP-8. Specifically, when nerve growth factor (NGF), a neurotrophin, was encapsulated into nanoparticles, its release was promoted by MMPs secreted by a PC12 neuronal cell line. When these NGF nanoparticles were spotted onto a cover slip to create a uniform circular field, movement and alignment of PC12 cells via their extended axons along the periphery of the NGF nanoparticle field was observed. Neural cell differentiation was confirmed by the expression of specific markers of tau, neurofilament, and GAP-43. Connections between the extended axons and the growth cones were also observed, and expression of connexin 43 was consistent with the formation of gap junctions. Extensions and connection of very fine filopodia occurred between growth cones. Our studies indicate that crystalline protein nanoparticles can be utilized to generate a highly stable cytokine gradient microenvironment that regulates the alignment and differentiation of nerve cells. This technique greatly simplifies the creation of protein concentration gradients and may lead to therapies for neuronal injuries and disease.


Assuntos
Citocinas/metabolismo , Metaloproteinases da Matriz/metabolismo , Fator de Crescimento Neural/farmacologia , Neurônios/citologia , Proteínas de Matriz de Corpos de Inclusão/genética , Reoviridae/fisiologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Preparações de Ação Retardada , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 8 da Matriz/metabolismo , Nanopartículas , Fator de Crescimento Neural/química , Fator de Crescimento Neural/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas de Matriz de Corpos de Inclusão/metabolismo , Células PC12 , Tamanho da Partícula , Ratos , Reoviridae/genética , Reoviridae/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA