Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 911
Filtrar
1.
J Chem Inf Model ; 64(5): 1433-1455, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38294194

RESUMO

Solute carrier transporters (SLCs) are a class of important transmembrane proteins that are involved in the transportation of diverse solute ions and small molecules into cells. There are approximately 450 SLCs within the human body, and more than a quarter of them are emerging as attractive therapeutic targets for multiple complex diseases, e.g., depression, cancer, and diabetes. However, only 44 unique transporters (∼9.8% of the SLC superfamily) with 3D structures and specific binding sites have been reported. To design innovative and effective drugs targeting diverse SLCs, there are a number of obstacles that need to be overcome. However, computational chemistry, including physics-based molecular modeling and machine learning- and deep learning-based artificial intelligence (AI), provides an alternative and complementary way to the classical drug discovery approach. Here, we present a comprehensive overview on recent advances and existing challenges of the computational techniques in structure-based drug design of SLCs from three main aspects: (i) characterizing multiple conformations of the proteins during the functional process of transportation, (ii) identifying druggability sites especially the cryptic allosteric ones on the transporters for substrates and drugs binding, and (iii) discovering diverse small molecules or synthetic protein binders targeting the binding sites. This work is expected to provide guidelines for a deep understanding of the structure and function of the SLC superfamily to facilitate rational design of novel modulators of the transporters with the aid of state-of-the-art computational chemistry technologies including artificial intelligence.


Assuntos
Inteligência Artificial , Química Computacional , Humanos , Proteínas de Membrana Transportadoras/química , Desenho de Fármacos , Descoberta de Drogas/métodos
2.
Nat Struct Mol Biol ; 30(12): 1996-2008, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37696957

RESUMO

Over half of mitochondrial proteins are imported from the cytosol via the pre-sequence pathway, controlled by the TOM complex in the outer membrane and the TIM23 complex in the inner membrane. The mechanisms through which proteins are translocated via the TOM and TIM23 complexes remain unclear. Here we report the assembly of the active TOM-TIM23 supercomplex of Saccharomyces cerevisiae with translocating polypeptide substrates. Electron cryo-microscopy analyses reveal that the polypeptide substrates pass the TOM complex through the center of a Tom40 subunit, interacting with a glutamine-rich region. Structural and biochemical analyses show that the TIM23 complex contains a heterotrimer of the subunits Tim23, Tim17 and Mgr2. The polypeptide substrates are shielded from lipids by Mgr2 and Tim17, which creates a translocation pathway characterized by a negatively charged entrance and a central hydrophobic region. These findings reveal an unexpected pre-sequence pathway through the TOM-TIM23 supercomplex spanning the double membranes of mitochondria.


Assuntos
Proteínas de Membrana Transportadoras , Proteínas de Saccharomyces cerevisiae , Proteínas de Membrana Transportadoras/química , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas de Transporte/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Proteico , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Mitocondriais/metabolismo , Peptídeos/metabolismo , Proteínas de Membrana/metabolismo
3.
Trends Biochem Sci ; 48(9): 801-814, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37355450

RESUMO

Solute carrier (SLCs) transporters mediate the transport of a broad range of solutes across biological membranes. Dysregulation of SLCs has been associated with various pathologies, including metabolic and neurological disorders, as well as cancer and rare diseases. SLCs are therefore emerging as key targets for therapeutic intervention with several recently approved drugs targeting these proteins. Unlocking this large and complex group of proteins is essential to identifying unknown SLC targets and developing next-generation SLC therapeutics. Recent progress in experimental and computational techniques has significantly advanced SLC research, including drug discovery. Here, we review emerging topics in therapeutic discovery of SLCs, focusing on state-of-the-art approaches in structural, chemical, and computational biology, and discuss current challenges in transporter drug discovery.


Assuntos
Neoplasias , Proteínas Carreadoras de Solutos , Humanos , Proteínas Carreadoras de Solutos/química , Proteínas Carreadoras de Solutos/metabolismo , Proteínas de Membrana Transportadoras/química , Transporte Biológico/fisiologia , Descoberta de Drogas/métodos , Neoplasias/metabolismo
4.
Protein Sci ; 32(7): e4704, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37312651

RESUMO

Pulse EPR measurements provide information on distances and distance distributions in proteins but require the incorporation of pairs of spin labels that are usually attached to engineered cysteine residues. In previous work, we demonstrated that efficient in vivo labeling of the Escherichia coli outer membrane vitamin B12 transporter, BtuB, could only be achieved using strains defective in the periplasmic disulfide bond formation (Dsb) system. Here, we extend these in vivo measurements to FecA, the E. coli ferric citrate transporter. As seen for BtuB, pairs of cysteines cannot be labeled when the protein is present in a standard expression strain. However, incorporating plasmids that permit an arabinose induced expression of FecA into a strain defective in the thiol disulfide oxidoreductase, DsbA, enables efficient spin-labeling and pulse EPR of FecA in cells. A comparison of the measurements made on FecA in cells with measurements made in reconstituted phospholipid bilayers suggests that the cellular environment alters the behavior of the extracellular loops of FecA. In addition to these in situ EPR measurements, the use of a DsbA minus strain for the expression of BtuB improves the EPR signals and pulse EPR data obtained in vitro from BtuB that is labeled, purified, and reconstituted into phospholipid bilayers. The in vitro data also indicate the presence of intermolecular BtuB-BtuB interactions, which had not previously been observed in a reconstituted bilayer system. This result suggests that in vitro EPR measurements on other outer membrane proteins would benefit from protein expression in a DsbA minus strain.


Assuntos
Proteínas de Escherichia coli , Proteínas de Membrana Transportadoras , Proteínas de Membrana Transportadoras/química , Escherichia coli/metabolismo , Dissulfetos/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Marcadores de Spin , Chaperonas Moleculares/metabolismo , Receptores de Superfície Celular/química
5.
Chem Soc Rev ; 52(8): 2790-2832, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37014670

RESUMO

The great clinical success of cisplatin and its derivatives has convinced people that metal complexes could play a more significant role in human cancer therapy. However, targeting and drug resistance are still two dominant problems that need to be urgently solved for metallodrugs' efficacy and clinical translation. As an important component of metal complexes, organometallics have been experiencing rapid development in recent years. Compared with platinum drugs, emerging anti-tumor organometallics targeting dynamic bioprocesses provide an effective strategy to overcome conventional problems. This review focuses on burgeoning anti-tumor strategies and provides up-to-date advances in anti-tumor organometallics development based on their action mechanisms. Specifically, important tumor-overexpressed proteins and nucleic acids as organometallics' anti-tumor targets are systematically presented, followed by organometallics that exert their anti-tumor activity by perturbing tumor intracellular energy/redox/metal/immune homeostasis. Finally, nine cell death pathways including apoptosis, paraptosis, autophagy, oncosis, necrosis, necroptosis, ferroptosis, pyroptosis, and immunogenic cell death (ICD) that can be induced by organometallics are reviewed, and their morphological and biochemical features are summarised. This review at the interface of chemistry, biology, and medicine aims to enlighten the rational development of organometallic anti-tumor agents.


Assuntos
Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacologia , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Humanos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Homeostase , Animais , Oxirredução , Morte Celular
6.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835358

RESUMO

The Carnitine-Acylcarnitine Carrier is a member of the mitochondrial Solute Carrier Family 25 (SLC25), known as SLC25A20, involved in the electroneutral exchange of acylcarnitine and carnitine across the inner mitochondrial membrane. It acts as a master regulator of fatty acids ß-oxidation and is known to be involved in neonatal pathologies and cancer. The transport mechanism, also known as "alternating access", involves a conformational transition in which the binding site is accessible from one side of the membrane or the other. In this study, through a combination of state-of-the-art modelling techniques, molecular dynamics, and molecular docking, the structural dynamics of SLC25A20 and the early substrates recognition step have been analyzed. The results obtained demonstrated a significant asymmetry in the conformational changes leading to the transition from the c- to the m-state, confirming previous observations on other homologous transporters. Moreover, analysis of the MD simulations' trajectories of the apo-protein in the two conformational states allowed for a better understanding of the role of SLC25A20 Asp231His and Ala281Val pathogenic mutations, which are at the basis of Carnitine-Acylcarnitine Translocase Deficiency. Finally, molecular docking coupled to molecular dynamics simulations lend support to the multi-step substrates recognition and translocation mechanism already hypothesized for the ADP/ATP carrier.


Assuntos
Carnitina Aciltransferases , Proteínas de Membrana Transportadoras , Proteínas de Transporte da Membrana Mitocondrial , Humanos , Recém-Nascido , Carnitina Aciltransferases/química , Carnitina Aciltransferases/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Simulação de Acoplamento Molecular , Simulação por Computador
7.
Proc Natl Acad Sci U S A ; 119(27): e2123385119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35767641

RESUMO

Bacterial pathogens acquire heme from the host hemoglobin as an iron nutrient for their virulence and proliferation in blood. Concurrently, they encounter cytotoxic-free heme that escapes the heme-acquisition process. To overcome this toxicity, many gram-positive bacteria employ an ATP-binding cassette heme-dedicated efflux pump, HrtBA in the cytoplasmic membranes. Although genetic analyses have suggested that HrtBA expels heme from the bacterial membranes, the molecular mechanism of heme efflux remains elusive due to the lack of protein studies. Here, we show the biochemical properties and crystal structures of Corynebacterium diphtheriae HrtBA, alone and in complex with heme or an ATP analog, and we reveal how HrtBA extracts heme from the membrane and releases it. HrtBA consists of two cytoplasmic HrtA ATPase subunits and two transmembrane HrtB permease subunits. A heme-binding site is formed in the HrtB dimer and is laterally accessible to heme in the outer leaflet of the membrane. The heme-binding site captures heme from the membrane using a glutamate residue of either subunit as an axial ligand and sequesters the heme within the rearranged transmembrane helix bundle. By ATP-driven HrtA dimerization, the heme-binding site is squeezed to extrude the bound heme. The mechanism sheds light on the detoxification of membrane-bound heme in this bacterium.


Assuntos
Adenosina Trifosfatases , Proteínas de Bactérias , Corynebacterium diphtheriae , Heme , Proteínas de Membrana Transportadoras , Adenosina Trifosfatases/química , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Corynebacterium diphtheriae/enzimologia , Heme/metabolismo , Proteínas de Membrana Transportadoras/química , Conformação Proteica , Multimerização Proteica
8.
J Chem Theory Comput ; 18(4): 2556-2568, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35226479

RESUMO

Zinc is an essential transition metal ion that plays as a structural, functional (catalytic), and a signaling molecule regulating cellular function. Unbalanced levels of zinc in cells can result in various pathological conditions. In the current work, all-atom molecular dynamics simulations were used to study the structure-function correlation between different YiiP states embedded in a lipid bilayer. This study enabled us to develop a hypothesis on the zinc efflux mechanism of YiiP. We have created six different models of YiiP representing the stages of the ion-transport process. We found that zinc ion plays a crucial role in restraining the transmembrane domains (TMDs) of the protein. In addition, H153, located in the TMD, has been proposed to guide the zinc ion toward the ZnA site of the YiiP transporter. Understanding the molecular-level Zn2+-transport process sheds light on the strategies affecting intracellular transition-metal ion concentrations in order to treat diseases like diabetes and cancer.


Assuntos
Proteínas de Transporte , Proteínas de Membrana Transportadoras , Proteínas de Transporte/metabolismo , Transporte de Íons , Proteínas de Membrana Transportadoras/química , Zinco/química
9.
J Biol Chem ; 298(1): 101498, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34922944

RESUMO

ATP11C is a member of the P4-ATPase flippase family that mediates translocation of phosphatidylserine (PtdSer) across the lipid bilayer. In order to characterize the structure and function of ATP11C in a model natural lipid environment, we revisited and optimized a quick procedure for reconstituting ATP11C into Nanodiscs using methyl-ß-cyclodextrin as a reagent for the detergent removal. ATP11C was efficiently reconstituted with the endogenous lipid, or the mixture of endogenous lipid and synthetic dioleoylphosphatidylcholine (DOPC)/dioleoylphosphatidylserine (DOPS), all of which retained the ATPase activity. We obtained 3.4 Å and 3.9 Å structures using single-particle cryo-electron microscopy (cryo-EM) of AlF- and BeF-stabilized ATP11C transport intermediates, respectively, in a bilayer containing DOPS. We show that the latter exhibited a distended inner membrane around ATP11C transmembrane helix 2, possibly reflecting the perturbation needed for phospholipid release to the lipid bilayer. Our structures of ATP11C in the lipid membrane indicate that the membrane boundary varies upon conformational changes of the enzyme and is no longer flat around the protein, a change that likely contributes to phospholipid translocation across the membrane leaflets.


Assuntos
Adenosina Trifosfatases , Bicamadas Lipídicas , Fosfolipídeos , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Fosfolipídeos/química , Fosfolipídeos/metabolismo
10.
Nat Commun ; 12(1): 7082, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873152

RESUMO

Cells employ highly conserved families of insertases and translocases to insert and fold proteins into membranes. How insertases insert and fold membrane proteins is not fully known. To investigate how the bacterial insertase YidC facilitates this process, we here combine single-molecule force spectroscopy and fluorescence spectroscopy approaches, and molecular dynamics simulations. We observe that within 2 ms, the cytoplasmic α-helical hairpin of YidC binds the polypeptide of the membrane protein Pf3 at high conformational variability and kinetic stability. Within 52 ms, YidC strengthens its binding to the substrate and uses the cytoplasmic α-helical hairpin domain and hydrophilic groove to transfer Pf3 to the membrane-inserted, folded state. In this inserted state, Pf3 exposes low conformational variability such as typical for transmembrane α-helical proteins. The presence of YidC homologues in all domains of life gives our mechanistic insight into insertase-mediated membrane protein binding and insertion general relevance for membrane protein biogenesis.


Assuntos
Algoritmos , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Simulação de Dinâmica Molecular , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Cinética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Microscopia de Força Atômica , Microscopia Confocal , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Espectrometria de Fluorescência
11.
Biochemistry ; 60(48): 3738-3752, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34793140

RESUMO

ZupT fromEscherichia coliis a member of the Zrt-/Irt-like Protein (ZIP) transporter family, which is responsible for zinc uptake during zinc-sufficient conditions. ZIP transporters have been shown to transport different divalent metal ions including zinc, iron, manganese, and cadmium. In this study, we show that ZupT has an asymmetric binuclear metal center in the transmembrane domain; one metal-binding site, M1, binds zinc, cadmium, and iron, while the other, M2, binds iron only and with higher affinity than M1. Using site-specific mutagenesis and transport activity measurements in whole cells and proteoliposomes, we show that zinc is transported from M1, while iron is transported from M2. The two sites share a common bridging ligand, a conserved glutamate residue. M1 and M2 have ligands from highly conserved motifs in transmembrane domains 4 and 5. Additionally, M2 has a ligand from transmembrane domain 6, a glutamate residue, which is conserved in the gufA subfamily of ZIP transporters, including ZupT and the human ZIP11. Unlike cadmium, iron transport from M2 does not inhibit the zinc transport activity but slightly stimulates it. This stimulation of activity is mediated through the bridging carboxylate ligand. The binuclear zinc-iron binding center in ZupT has likely evolved to enable the transport of essential metals from two different sites without competition; a similar mechanism of metal transport is likely to be found in the gufA subfamily of ZIP transporter proteins.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/química , Metais/metabolismo , Zinco/química , Cádmio/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Escherichia coli/química , Proteínas de Escherichia coli/genética , Ferro/química , Manganês/metabolismo , Proteínas de Membrana Transportadoras/genética , Mutagênese Sítio-Dirigida , Domínios Proteicos/genética
12.
Phys Chem Chem Phys ; 23(44): 25401-25413, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34751688

RESUMO

Nucleosides are important precursors of nucleotide synthesis in cells, and nucleoside transporters play an important role in many physiological processes by mediating transmembrane transport and absorption. During nucleoside transport, such proteins undergo a significant conformational transition between the outward- and inward-facing states, which leads to alternating access of the substrate-binding site to either side of the membrane. In this work, a variety of molecular simulation methods have been applied to comparatively investigate the motion modes of human concentrative nucleoside transporter 3 (hCNT3) in three states, as well as global and local cavity conformational changes; and finally, a possible elevator-like transport mechanism consistent with experimental data was proposed. The results of the Gaussian network model (GNM) and anisotropic network model (ANM) show that hCNT3 as a whole tends to contract inwards and shift towards a membrane inside, exhibiting an allosteric process that is more energetically favorable than the rigid conversion. To reveal the complete allosteric process of hCNT3 in detail, a series of intermediate conformations were obtained by an adaptive anisotropic network model (aANM). One of the simulated intermediate states is similar to that of a crystal structure, which indicates that the allosteric process is reliable; the state with lower energy is slightly inclined to the inward-facing structure rather than the expected intermediate crystal structure. The final HOLE analysis showed that except for the outward-facing state, the transport channels were gradually enlarged, which was conductive to the directional transport of nucleosides. Our work provides a theoretical basis for the multistep elevator-like transportation mechanism of nucleosides, which helps to further understand the dynamic recognition between nucleoside substrates and hCNT3 as well as the design of nucleoside anticancer drugs.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Regulação Alostérica , Transporte Biológico , Humanos , Proteínas de Membrana Transportadoras/química , Modelos Moleculares
13.
Nat Commun ; 12(1): 5963, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645814

RESUMO

P4 ATPases are lipid flippases that are phylogenetically grouped into P4A, P4B and P4C clades. The P4A ATPases are heterodimers composed of a catalytic α-subunit and accessory ß-subunit, and the structures of several heterodimeric flippases have been reported. The S. cerevisiae Neo1 and its orthologs represent the P4B ATPases, which function as monomeric flippases without a ß-subunit. It has been unclear whether monomeric flippases retain the architecture and transport mechanism of the dimeric flippases. Here we report the structure of a P4B ATPase, Neo1, in its E1-ATP, E2P-transition, and E2P states. The structure reveals a conserved architecture as well as highly similar functional intermediate states relative to dimeric flippases. Consistently, structure-guided mutagenesis of residues in the proposed substrate translocation path disrupted Neo1's ability to establish membrane asymmetry. These observations indicate that evolutionarily distant P4 ATPases use a structurally conserved mechanism for substrate transport.


Assuntos
Adenosina Trifosfatases/química , Lisofosfolipídeos/química , Proteínas de Membrana Transportadoras/química , Fosfatidiletanolaminas/química , Fosfatidilserinas/química , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Membrana Celular/química , Membrana Celular/enzimologia , Clonagem Molecular , Microscopia Crioeletrônica , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Lisofosfolipídeos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
14.
Cells ; 10(8)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34440877

RESUMO

Saliva secretion requires effective translocation of aquaporin 5 (AQP5) water channel to the salivary glands (SGs) acinar apical membrane. Patients with Sjögren's syndrome (SS) display abnormal AQP5 localization within acinar cells from SGs that correlate with sicca manifestation and glands hypofunction. Several proteins such as Prolactin-inducible protein (PIP) may regulate AQP5 trafficking as observed in lacrimal glands from mice. However, the role of the AQP5-PIP complex remains poorly understood. In the present study, we show that PIP interacts with AQP5 in vitro and in mice as well as in human SGs and that PIP misexpression correlates with an altered AQP5 distribution at the acinar apical membrane in PIP knockout mice and SS hMSG. Furthermore, our data show that the protein-protein interaction involves the AQP5 C-terminus and the N-terminal of PIP (one molecule of PIP per AQP5 tetramer). In conclusion, our findings highlight for the first time the role of PIP as a protein controlling AQP5 localization in human salivary glands but extend beyond due to the PIP-AQP5 interaction described in lung and breast cancers.


Assuntos
Aquaporina 5/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Glândulas Salivares/metabolismo , Síndrome de Sjogren/metabolismo , Células Acinares/metabolismo , Animais , Aquaporina 5/química , Aquaporina 5/genética , Sítios de Ligação , Linhagem Celular , Humanos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Knockout , Ligação Proteica , Síndrome de Sjogren/genética
15.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361043

RESUMO

Intravesicular pH plays a crucial role in melanosome maturation and function. Melanosomal pH changes during maturation from very acidic in the early stages to neutral in late stages. Neutral pH is critical for providing optimal conditions for the rate-limiting, pH-sensitive melanin-synthesizing enzyme tyrosinase (TYR). This dramatic change in pH is thought to result from the activity of several proteins that control melanosomal pH. Here, we computationally investigated the pH-dependent stability of several melanosomal membrane proteins and compared them to the pH dependence of the stability of TYR. We confirmed that the pH optimum of TYR is neutral, and we also found that proteins that are negative regulators of melanosomal pH are predicted to function optimally at neutral pH. In contrast, positive pH regulators were predicted to have an acidic pH optimum. We propose a competitive mechanism among positive and negative regulators that results in pH equilibrium. Our findings are consistent with previous work that demonstrated a correlation between the pH optima of stability and activity, and they are consistent with the expected activity of positive and negative regulators of melanosomal pH. Furthermore, our data suggest that disease-causing variants impact the pH dependence of melanosomal proteins; this is particularly prominent for the OCA2 protein. In conclusion, melanosomal pH appears to affect the activity of multiple melanosomal proteins.


Assuntos
Antígenos de Neoplasias/química , ATPases Transportadoras de Cobre/química , Melanossomas/metabolismo , Proteínas de Membrana Transportadoras/química , Simulação de Dinâmica Molecular , Monofenol Mono-Oxigenase/química , Prótons , Antígenos de Neoplasias/metabolismo , ATPases Transportadoras de Cobre/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Melanossomas/química , Proteínas de Membrana Transportadoras/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Estabilidade Proteica
16.
Bioengineered ; 12(1): 3358-3366, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34224313

RESUMO

Magnolia sieboldii K. Koch is endemic to China and has high medicinal and ornamental values. However, its seed exhibits morphophysiological dormancy, and the molecular mechanisms of which are not clearly understood. To reveal the regulation mechanism of the ABA signal in seed dormancy, the M. sieboldii ABA receptor Pyrabactin Resistance 1 (PYR1) gene was cloned and analyzed. Analysis of the MsPYR1 sequence analysis showed that the full-length cDNA contained a complete open reading frame of 987 bp and encoded a predicted protein of 204 amino acid residues. The protein had a relative molecular weight of 22.661 kDa and theoretical isoelectric point of 5.01. The transcript levels of MsPYR1 were immediately upregulated at 16 DAI and then decreased at 40 DAI. The highest transcript level of MsPYR1 was found in the dry seeds, indicating that the MsPYR1 gene may play an important role in the regulation of dormancy. The MsPYR1 gene cDNA was successfully expressed in E. coli Rosetta (DE3), and the protein bands were consistent with the prediction. The Anti-MsPYR1antibody could detect the expression of MsPYR1 in M. sieboldii. The results provided a foundation for further study of the function of the MsPYR1 gene.ABBREVIATIONSABA: Abscisic acid; MPD: morphophysiological; PYR1: Pyrabactin Resistance1; PYL: Pyr1-Like; RCAR: Regulatory Components of Aba Receptors; PP2C: protein phosphatases 2C; SnRK2: sucrose non-fermenting1-related protein kinase2; DAI: day after imbibition; NCBI: National Center for Biotechnology Information; BCA: Bicinchoninic acid; CDD: Conserved Domains.


Assuntos
Magnolia , Proteínas de Membrana Transportadoras , Proteínas de Plantas , Clonagem Molecular , Magnolia/genética , Magnolia/fisiologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Dormência de Plantas/genética , Dormência de Plantas/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sementes/química , Sementes/metabolismo , Transdução de Sinais/genética
17.
J Bacteriol ; 203(17): e0017821, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34096781

RESUMO

Antimicrobial peptides (AMPs) are one of the key immune responses that can eliminate pathogenic bacteria through membrane perturbation. As a successful skin commensal, Staphylococcus epidermidis can sense and respond to AMPs through the GraXRS two-component system and an efflux system comprising the VraG permease and VraF ATPase. GraS is a membrane sensor known to function in AMP resistance through a negatively charged, 9-residue extracellular loop, which is predicted to be linear without any secondary structure. An important question is how GraS can impart effective sensing of AMPs through such a small unstructured sequence. In this study, we verified the role of graS and vraG in AMP sensing in S. epidermidis, as demonstrated by the failure of the ΔgraS or ΔvraG mutants to sense. Deletion of the extracellular loop of VraG did not affect sensing but reduced survival with polymyxin B. Importantly, a specific region within the extracellular loop, termed the guard loop (GL), has inhibitory activity since sensing of polymyxin B was enhanced in the ΔGL mutant, indicating that the GL may act as a gatekeeper for sensing. Bacterial two-hybrid analysis demonstrated that the extracellular regions of GraS and VraG interact, but interaction appears dispensable to sensing activity. Mutation of the extracellular loop of VraG, the GL, and the active site of VraF suggested that an active detoxification function of VraG is necessary for AMP resistance. Altogether, we provide evidence for a unique sensory scheme that relies on the function of a permease to impart effective information processing. IMPORTANCE Staphylococcus epidermidis has become an important opportunistic pathogen that is responsible for nosocomial and device-related infections that account for considerable morbidity worldwide. A thorough understanding of the mechanisms that enable S. epidermidis to colonize human skin successfully is essential for the development of alternative treatment strategies and prophylaxis. Here, we demonstrate the importance of an AMP response system in a clinically relevant S. epidermidis strain. Furthermore, we provide evidence for a unique sensory scheme that would rely on the detoxification function of a permease to effect information processing.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/enzimologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Humanos , Proteínas de Membrana Transportadoras/genética , Conformação Proteica em alfa-Hélice , Infecções Estafilocócicas/metabolismo , Staphylococcus epidermidis/química , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/genética
18.
Biochem Biophys Res Commun ; 559: 203-209, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33951500

RESUMO

Optineurin produces intracellular multi-functions involving autophagy, vesicular trafficking, and negative regulation of inflammation signaling through interaction with various proteins such as ATG8/LC3, Rab8, and polyubiquitin. Optineurin is a component of cytoplasmic inclusion bodies (IBs) in motor neurons from amyotrophic lateral sclerosis (ALS), and its mutation E478G, has been identified in patients with ALS. However, the mechanism by which polyubiquitin binding modulates the interaction partners of OPTN and ALS-associated IB formation is still unclear. To address this issue, we analyzed the interaction of Optineurin with Rab8 and LC3 in the absence and presence of linear polyubiquitin chains using fluorescence cross-correlation spectroscopy and IB formation efficiency of the E478G mutant of Optineurin during Rab8 depletion using fluorescence microscopy. Here, we hypothesize that linear polyubiquitin binding to Optineurin dynamically induces LC3 association and Rab8 dissociation, likely through a conformational change of Optineurin, and the dynamic conformational change may prevent the aggregate formation of mutant Optineurin.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Poliubiquitina/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proteínas de Membrana Transportadoras/genética , Camundongos , Modelos Biológicos , Mutação/genética , Agregados Proteicos , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Transporte Proteico , Proteínas rab de Ligação ao GTP/metabolismo
19.
Genes (Basel) ; 12(4)2021 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-33800529

RESUMO

Melanin pigment helps protect our body from broad wavelength solar radiation and skin cancer. Among other pigmentation disorders in humans, albinism is reported to manifest in both syndromic and nonsyndromic forms as well as with varying inheritance patterns. Oculocutaneous albinism (OCA), an autosomal recessive nonsyndromic form of albinism, presents as partial to complete loss of melanin in the skin, hair, and iris. OCA has been known to be caused by pathogenic variants in seven different genes, so far, according to all the currently published population studies. However, the detection rate of alleles causing OCA varies from 50% to 90%. One of the significant challenges of uncovering the pathological variant underlying disease etiology is inter- and intra-familial locus heterogeneity. This problem is especially pertinent in highly inbred populations. As examples of such familial locus heterogeneity, we present nine consanguineous Pakistani families with segregating OCA due to variants in one or two different known albinism-associated genes. All of the identified variants are predicted to be pathogenic, which was corroborated by several in silico algorithms and association with diverse clinical phenotypes. We report an individual affected with OCA carries heterozygous, likely pathogenic variants in TYR and OCA2, raising the question of a possible digenic inheritance. Altogether, our study highlights the significance of exome sequencing for the complete genetic diagnosis of inbred families and provides the ramifications of potential genetic interaction and digenic inheritance of variants in the TYR and OCA2 genes.


Assuntos
Albinismo Oculocutâneo/genética , Proteínas de Membrana Transportadoras/genética , Monofenol Mono-Oxigenase/genética , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Consanguinidade , Feminino , Estudos de Associação Genética , Heterogeneidade Genética , Predisposição Genética para Doença , Heterozigoto , Humanos , Masculino , Proteínas de Membrana Transportadoras/química , Pessoa de Meia-Idade , Modelos Moleculares , Linhagem , Sequenciamento do Exoma , Adulto Jovem
20.
Biochem Biophys Res Commun ; 557: 187-191, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33872987

RESUMO

Human ATP-binding cassette transporter 8 of subfamily B (hABCB8) is an ABC transporter that located in the inner membrane of mitochondria. The ABCB8 is involved in the maturation of Fe-S and protects the heart from oxidative stress. Here, we present the cryo-EM structure of human ABCB8 binding with AMPPNP in inward-facing conformation with resolution of 4.1 Å. hABCB8 shows an open-inward conformation when ATP is bound. Unexpectedly, cholesterol molecules were identified in the transmembrane domain of hABCB8. Our results provide structural basis for the transport mechanism of the ABC transporter in mitochondria.


Assuntos
Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Trifosfato de Adenosina/química , Adenilil Imidodifosfato/química , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Sítios de Ligação , Colesterol/química , Microscopia Crioeletrônica , Expressão Gênica , Proteínas de Membrana Transportadoras/química , Mitocôndrias/química , Mitocôndrias/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Proteínas Recombinantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA