Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.240
Filtrar
1.
Mol Biol Rep ; 51(1): 659, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748061

RESUMO

BACKGROUND: Mitochondrial DNA (mtDNA) has become a significant tool for exploring genetic diversity and delineating evolutionary links across diverse taxa. Within the group of cold-water fish species that are native to the Indian Himalayan region, Schizothorax esocinus holds particular importance due to its ecological significance and is potentially vulnerable to environmental changes. This research aims to clarify the phylogenetic relationships within the Schizothorax genus by utilizing mitochondrial protein-coding genes. METHODS: Standard protocols were followed for the isolation of DNA from S. esocinus. For the amplification of mtDNA, overlapping primers were used, and then subsequent sequencing was performed. The genetic features were investigated by the application of bioinformatic approaches. These approaches covered the evaluation of nucleotide composition, codon usage, selective pressure using nonsynonymous substitution /synonymous substitution (Ka/Ks) ratios, and phylogenetic analysis. RESULTS: The study specifically examined the 13 protein-coding genes of Schizothorax species which belongs to the Schizothoracinae subfamily. Nucleotide composition analysis showed a bias towards A + T content, consistent with other cyprinid fish species, suggesting evolutionary conservation. Relative Synonymous Codon Usage highlighted leucine as the most frequent (5.18%) and cysteine as the least frequent (0.78%) codon. The positive AT-skew and the predominantly negative GC-skew indicated the abundance of A and C. Comparative analysis revealed significant conservation of amino acids in multiple genes. The majority of amino acids were hydrophobic rather than polar. The purifying selection was revealed by the genetic distance and Ka/Ks ratios. Phylogenetic study revealed a significant genetic divergence between S. esocinus and other Schizothorax species with interspecific K2P distances ranging from 0.00 to 8.87%, with an average of 5.76%. CONCLUSION: The present study provides significant contributions to the understanding of mitochondrial genome diversity and genetic evolution mechanisms in Schizothoracinae, hence offering vital insights for the development of conservation initiatives aimed at protecting freshwater fish species.


Assuntos
Filogenia , Animais , Proteínas Mitocondriais/genética , Composição de Bases/genética , DNA Mitocondrial/genética , Uso do Códon/genética , Truta/genética , Truta/classificação , Códon/genética , Genoma Mitocondrial/genética , Evolução Molecular , Proteínas de Peixes/genética , Genômica/métodos , Variação Genética/genética , Cyprinidae/genética , Cyprinidae/classificação
2.
Food Res Int ; 187: 114462, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763689

RESUMO

The risk of tuna adulteration is high driven by economic benefits. The authenticity of tuna is required to protect both consumers and tuna stocks. Given this, the study is designed to identify species-specific peptides for distinguishing three commercial tropical tuna species. The peptides derived from trypsin digestion were separated and detected using ultrahigh-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF/MS) in data-dependent acquisition (DDA) mode. Venn analysis showed that there were differences in peptide composition among the three tested tuna species. The biological specificity screening through the National Center for Biotechnology Information's Basic Local Alignment Search Tool (NCBI BLAST) revealed that 93 peptides could serve as potential species-specific peptides. Finally, the detection specificity of species-specific peptides of raw meats and processed products was carried out by multiple reaction monitoring (MRM) mode based on a Q-Trap mass spectrometer. The results showed that three, one and two peptides of Katsuwonus pelamis, Thunnus obesus and Thunnus albacores, respectively could serve as species-specific peptides.


Assuntos
Peptídeos , Especificidade da Espécie , Atum , Animais , Peptídeos/análise , Espectrometria de Massas/métodos , Cromatografia Líquida de Alta Pressão/métodos , Alimentos Marinhos/análise , Contaminação de Alimentos/análise , Proteínas de Peixes/análise
3.
Fish Shellfish Immunol ; 149: 109614, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710342

RESUMO

Chemokines are critical molecules involved in immune reaction and immune system homeostasis, and some chemokines play a role in antiviral immunity. It is not known if the C-C motif chemokine ligand 3 (CCL3), a member of the CC chemokine family, possesses antiviral properties in fish. In this study, a ccl3 was cloned from the mandarin fish (Siniperca chuatsi), and it has an open reading frame (ORF) of 276 base pairs, which are predicted to encode a 91-amino acid peptide. Mandarin fish CCL3 revealed conserved sequence features with four cysteine residues and closely relationships with the CCL3s from other vertebrates based on the sequence alignment and phylogenetic analysis. The transcripts of ccl3 were notably enriched in immune-related organs, such as spleen and gills in healthy mandarin fish, and the ccl3 was induced in the isolated mandarin fish brain (MFB) cells following infection with infectious spleen and kidney necrosis virus (ISKNV). Moreover, in MFB cells, overexpression of CCL3 induced immune factors, such as IL1ß, TNFα, MX, IRF1 and IFNh, and exhibited antiviral activity against ISKNV. This study sheds light on the immune role of CCL3 in immune response of mandarin fish, and its antiviral defense mechanism is of interest for further investigation.


Assuntos
Sequência de Aminoácidos , Infecções por Vírus de DNA , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Iridoviridae , Perciformes , Filogenia , Alinhamento de Sequência , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Perciformes/imunologia , Perciformes/genética , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Iridoviridae/fisiologia , Alinhamento de Sequência/veterinária , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Quimiocina CCL3/genética , Quimiocina CCL3/imunologia , Clonagem Molecular , Perfilação da Expressão Gênica/veterinária , Sequência de Bases
4.
Front Immunol ; 15: 1352469, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711504

RESUMO

Vibriosis, caused by Vibrio, seriously affects the health of fish, shellfish, and shrimps, causing large economic losses. Teleosts are represent the first bony vertebrates with both innate and adaptive immune responses against pathogens. Aquatic animals encounter hydraulic pressure and more pathogens, compared to terrestrial animals. The skin is the first line of defense in fish, constituting the skin-associated lymphoid tissue (SALT), which belongs to the main mucosa-associated lymphoid tissues (MALT). However, little is known about the function of immunity related proteins in fish. Therefore, this study used iTRAQ (isobaric tags for relative and absolute quantitation) to compare the skin proteome between the resistant and susceptible families of Cynoglossus semilaevis. The protein integrin beta-2, the alpha-enolase isoform X1, subunit B of V-type proton ATPase, eukaryotic translation initiation factor 6, and ubiquitin-like protein ISG15, were highly expressed in the resistant family. The 16S sequencing of the skin tissues of the resistant and susceptible families showed significant differences in the microbial communities of the two families. The protein-microbial interaction identified ten proteins associated with skin microbes, including immunoglobulin heavy chain gene (IGH), B-cell lymphoma/leukemia 10 (BCL10) and pre-B-cell leukemia transcription factor 1 isoform X2 (PBX2). This study highlights the interaction between skin proteins and the microbial compositions of C. semilaevis and provides new insights into understanding aquaculture breeding research.


Assuntos
Resistência à Doença , Doenças dos Peixes , Proteínas de Peixes , Linguados , Microbiota , Pele , Vibrioses , Vibrio , Animais , Pele/imunologia , Pele/microbiologia , Pele/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Resistência à Doença/imunologia , Vibrioses/imunologia , Vibrioses/veterinária , Linguados/imunologia , Linguados/microbiologia , Microbiota/imunologia , Vibrio/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/imunologia , Proteoma , Proteômica/métodos
5.
BMC Biotechnol ; 24(1): 28, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702622

RESUMO

Scientists know very little about the mechanisms underlying fish skin mucus, despite the fact that it is a component of the immune system. Fish skin mucus is an important component of defence against invasive infections. Recently, Fish skin and its mucus are gaining interest among immunologists. Characterization was done on the obtained silver nanoparticles Ag combined with Clarias gariepinus catfish epidermal mucus proteins (EMP-Ag-NPs) through UV-vis, FTIR, XRD, TEM, and SEM. Ag-NPs ranged in size from 4 to 20 nm, spherical in form and the angles were 38.10°, 44.20°, 64.40°, and 77.20°, Where wavelength change after formation of EMP-Ag-NPs as indicate of dark brown, the broad band recorded at wavelength at 391 nm. Additionally, the antimicrobial, antibiofilm and anticancer activities of EMP-Ag-NPs was assessed. The present results demonstrate high activity against unicellular fungi C. albicans, followed by E. faecalis. Antibiofilm results showed strong activity against both S. aureus and P. aeruginosa pathogens in a dose-dependent manner, without affecting planktonic cell growth. Also, cytotoxicity effect was investigated against normal cells (Vero), breast cancer cells (Mcf7) and hepatic carcinoma (HepG2) cell lines at concentrations (200-6.25 µg/mL) and current results showed highly anticancer effect of Ag-NPs at concentrations 100, 5 and 25 µg/mL exhibited rounding, shrinkage, deformation and granulation of Mcf7 and HepG2 with IC50 19.34 and 31.16 µg/mL respectively while Vero cells appeared rounded at concentration 50 µg/mL and normal shape at concentration 25, 12.5 and 6.25 µg/ml with IC50 35.85 µg/mL. This study evidence the potential efficacy of biologically generated Ag-NPs as a substitute medicinal agent against harmful microorganisms. Furthermore, it highlights their inhibitory effect on cancer cell lines.


Assuntos
Biofilmes , Peixes-Gato , Nanopartículas Metálicas , Prata , Nanopartículas Metálicas/química , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Prata/química , Prata/farmacologia , Animais , Humanos , Muco/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Células Vero , Proteínas de Peixes/farmacologia , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Chlorocebus aethiops , Linhagem Celular Tumoral , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Candida albicans/efeitos dos fármacos , Epiderme/metabolismo
6.
Fish Shellfish Immunol ; 149: 109552, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599364

RESUMO

Infectious hematopoietic necrosis (IHN), caused by IHN virus, is a highly contagious and lethal disease that seriously hampers the development of rainbow trout (Oncorhynchus mykiss) aquaculture. However, the immune response mechanism of rainbow trout underlying IHNV infection remains largely unknown. MicroRNAs act as post-transcriptional regulators of gene expression and perform a crucial role in fish immune response. Herein, the regulatory mechanism and function of miR-206 in rainbow trout resistance to IHNV were investigated by overexpression and silencing. The expression analysis showed that miR-206 and its potential target receptor-interacting serine/threonine-protein kinase 2 (RIP2) exhibited significant time-dependent changes in headkidney, spleen and rainbow trout primary liver cells infected with IHNV and their expression displayed a negative correlation. In vitro, the interaction between miR-206 and RIP2 was verified by luciferase reporter assay, and miR-206 silencing in rainbow trout primary liver cells markedly increased RIP2 and interferon (IFN) expression but significantly decreased IHNV copies, and opposite results were obtained after miR-206 overexpression or RIP2 knockdown. In vivo, overexpressed miR-206 with agomiR resulted in a decrease in the expression of RIP2 and IFN in liver, headkidney and spleen. This study revealed the key role of miR-206 in anti-IHNV, which provided potential for anti-viral drug screening in rainbow trout.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Vírus da Necrose Hematopoética Infecciosa , MicroRNAs , Oncorhynchus mykiss , Infecções por Rhabdoviridae , Animais , Oncorhynchus mykiss/imunologia , Oncorhynchus mykiss/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Vírus da Necrose Hematopoética Infecciosa/fisiologia , Infecções por Rhabdoviridae/veterinária , Infecções por Rhabdoviridae/imunologia , MicroRNAs/genética , MicroRNAs/imunologia , MicroRNAs/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Imunidade Inata/genética
7.
Fish Shellfish Immunol ; 149: 109553, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615704

RESUMO

Viral diseases have caused great economic losses to the aquaculture industry. However, there are currently no specific drugs to treat these diseases. Herein, we utilized Siniperca chuatsi as an experimental model, and successfully extracted two tissue factor pathway inhibitors (TFPIs) that were highly distributed in different tissues. We then designed four novel peptides based on the TFPIs, named TS20, TS25, TS16, and TS30. Among them, TS25 and TS30 showed good biosafety and high antiviral activity. Further studies showed that TS25 and TS30 exerted their antiviral functions by preventing viruses from invading Chinese perch brain (CPB) cells and disrupting Siniperca chuatsi rhabdovirus (SCRV)/Siniperca chuatsi ranairidovirus (SCRIV) viral structures. Additionally, compared with the control group, TS25 and TS30 could significantly reduce the mortality of Siniperca chuatsi, the relative protection rates of TS25 against SCRV and SCRIV were 71.25 % and 53.85 % respectively, and the relative protection rate of TS30 against SCRIV was 69.23 %, indicating that they also had significant antiviral activity in vivo. This study provided an approach for designing peptides with biosafety and antiviral activity based on host proteins, which had potential applications in the prevention and treatment of viral diseases.


Assuntos
Doenças dos Peixes , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Doenças dos Peixes/virologia , Infecções por Rhabdoviridae/veterinária , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/prevenção & controle , Rhabdoviridae/fisiologia , Antivirais/farmacologia , Antivirais/química , Percas , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Peptídeos/farmacologia , Peptídeos/química , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/prevenção & controle
8.
Fish Shellfish Immunol ; 149: 109564, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631439

RESUMO

Grass carp reovirus (GCRV) infections and hemorrhagic disease (GCHD) outbreaks are typically seasonally periodic and temperature-dependent, yet the molecular mechanism remains unclear. Herein, we depicted that temperature-dependent IL-6/STAT3 axis was exploited by GCRV to facilitate viral replication via suppressing type Ⅰ IFN signaling. Combined multi-omics analysis and qPCR identified IL-6, STAT3, and IRF3 as potential effector molecules mediating GCRV infection. Deploying GCRV challenge at 18 °C and 28 °C as models of resistant and permissive infections and switched to the corresponding temperatures as temperature stress models, we illustrated that IL-6 and STAT3 expression, genome level of GCRV, and phosphorylation of STAT3 were temperature dependent and regulated by temperature stress. Further research revealed that activating IL-6/STAT3 axis enhanced GCRV replication and suppressed the expression of IFNs, whereas blocking the axis impaired viral replication. Mechanistically, grass carp STAT3 inhibited IRF3 nuclear translocation via interacting with it, thus down-regulating IFNs expression, restraining transcriptional activation of the IFN promoter, and facilitating GCRV replication. Overall, our work sheds light on an immune evasion mechanism whereby GCRV facilitates viral replication by hijacking IL-6/STAT3 axis to down-regulate IFNs expression, thus providing a valuable reference for targeted prevention and therapy of GCRV.


Assuntos
Carpas , Doenças dos Peixes , Interferon Tipo I , Interleucina-6 , Infecções por Reoviridae , Reoviridae , Fator de Transcrição STAT3 , Transdução de Sinais , Replicação Viral , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-6/metabolismo , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária , Reoviridae/fisiologia , Carpas/imunologia , Carpas/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/imunologia , Transdução de Sinais/imunologia , Interferon Tipo I/imunologia , Interferon Tipo I/genética , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Imunidade Inata/genética
9.
Fish Shellfish Immunol ; 149: 109571, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636736

RESUMO

Bacteria-enhanced inducible nitric oxide synthase (iNOS) overproduces nitric oxide (NO) leading to mitochondrial and cellular damage. In mammals, arginase (ARG), the enzyme consuming the same substrate l-arginine with iNOS, was believed to inhibit iNOS activity by competing the substrate. But in fish, this conception has been widely challenged. In this study, the gene expression using real-time quantitative PCR (RT-qPCR) technology showed that when stimulated by Aeromonas hydrophila (A. hydrophila), grass carp (gc) iNOS was up-regulated in head kidney monocytes/macrophages (M0/MФ), and its changes were not detected in the whole tissue of liver or spleen, showing a high degree of cell-specific expression pattern. At the same time, gcARG2 had a high basal expression in tissues and was up-regulated by A. hydrophila stimulation. Next, phthalaldehyde-primaquine reaction was first used in the determination of intracellular urea in fish cells. It was found that the induced gcARG2 led to an increase in the intracellular urea content. Moreover, urea and NO production in M0/MФ were increased in a substrate dose-dependent manner from 30 to 100 µM of l-arginine and reached the highest yield at 300 and 3000 µM of l-arginine, respectively. Furthermore, head kidney M0/MФ was cultured in RPMI1640 medium containing physiological concentration (500 µM) of l-arginine to evaluate the effect of ARG. Under A. hydrophila stimulation, treatment with the arginase inhibitor S-(2-boronoethyl)-l-cysteine (BEC) showed that inhibition of arginase could further enhance the NO production stimulated by A. hydrophila. This in turn led to a cumulation in peroxynitrite (ONOO-) content and an injury of the mitochondrial membrane potential. Our study showed for the first time that fish ARG in head kidney M0/MФ can limit excessive production of NO and harmful products by iNOS to maintain mitochondrial and cellular homeostasis.


Assuntos
Aeromonas hydrophila , Arginase , Carpas , Doenças dos Peixes , Proteínas de Peixes , Infecções por Bactérias Gram-Negativas , Mitocôndrias , Óxido Nítrico , Animais , Aeromonas hydrophila/fisiologia , Arginase/genética , Arginase/metabolismo , Doenças dos Peixes/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Óxido Nítrico/metabolismo , Carpas/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Arginina
10.
Fish Shellfish Immunol ; 149: 109586, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670410

RESUMO

Recent research has highlighted complex and close interaction between miRNAs, autophagy, and viral infection. In this study, we observed the autophagy status in CIK cells infected with GCRV at various time points. We found that GCRV consistently induced cellar autophagy from 0 h to 12 h post infection. Subsequently, we performed deep sequencing on CIK cells infected with GCRV at 0 h and 12 h respectively, identifying 38 DEMs and predicting 9581 target genes. With the functional enrichment analyses of GO and KEGG, we identified 35 autophagy-related target genes of these DEMs, among which akt3 was pinpointed as the most central hub gene using module assay of the PPI network. Then employing the miRanda and Targetscan programs for prediction, and verification through a double fluorescent enzyme system and qPCR method, we confirmed that miR-193 b-3p could target the 3'-UTR of grass carp akt3, reducing its gene expression. Ultimately, we illustrated that grass carp miR-193 b-3p could promote autophagy in CIK cells. Above results collectively indicated that miRNAs might play a critical role in autophagy of grass carp during GCRV infection and contributed significantly to antiviral immunity by targeting autophagy-related genes. This study may provide new insights into the intricate mechanisms involved in virus, autophagy, and miRNAs.


Assuntos
Autofagia , Carpas , Doenças dos Peixes , MicroRNAs , Proteínas Proto-Oncogênicas c-akt , Infecções por Reoviridae , Reoviridae , Animais , MicroRNAs/genética , MicroRNAs/imunologia , Carpas/imunologia , Carpas/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reoviridae/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Linhagem Celular , Regulação da Expressão Gênica/imunologia
11.
Fish Shellfish Immunol ; 149: 109584, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670411

RESUMO

Pseudomonas plecoglossicida, the causative agent of Visceral White Spot Disease, poses substantial risks to large yellow croaker (Larimichthys crocea) aquaculture. Previous genome-wide association studies (GWAS), directed towards elucidating the resistance mechanisms of large yellow croaker against this affliction, suggested that the transmembrane protein 208 (named Lctmem208) may confer a potential advantage. TMEM proteins, particularly TMEM208 located in the endoplasmic reticulum, plays significant roles in autophagy, ER stress, and dynamics of cancer cell. However, research on TMEM's function in teleost fish immunity remains sparse, highlighting a need for further study. This study embarks on a comprehensive examination of LcTmem208, encompassing cloning, molecular characterization, and its dynamics in immune function in response to Pseudomonas plecoglossicida infection. Our findings reveal that LcTmem208 is highly conserved across teleost species, exhibiting pronounced expression in immune-relevant tissues, which escalates significantly upon pathogenic challenge. Transcriptome analysis subsequent to LcTmem208 overexpression in kidney cells unveiled its pivotal role in modulating immune-responsive processes, notably the p53 signaling pathway and cytokine-mediated interactions. Enhanced phagocytic activity in macrophages overexpressing LcTmem208 underscores its importance in innate immunity. Taken together, this is the first time reported the critical involvement of LcTmem208 in regulating innate immune responses of defensing P. plecoglossicida, thereby offering valuable insights into teleost fish immunity and potential strategies for the selective breeding of disease-resistant strains of large yellow croaker in aquaculture practices.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Perfilação da Expressão Gênica , Imunidade Inata , Perciformes , Infecções por Pseudomonas , Pseudomonas , Animais , Doenças dos Peixes/imunologia , Perciformes/imunologia , Perciformes/genética , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Pseudomonas/fisiologia , Imunidade Inata/genética , Perfilação da Expressão Gênica/veterinária , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/veterinária , Regulação da Expressão Gênica/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Transcriptoma , Filogenia , Alinhamento de Sequência/veterinária , Clonagem Molecular
12.
Fish Shellfish Immunol ; 149: 109581, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670412

RESUMO

Deubiquitinating enzyme A (DUBA), a member of the ovarian tumor (OTU) subfamily of deubiquitinases (DUBs), is recognized for its negative regulatory role in type I interferon (IFN) expression downstream of Toll-like receptor 3 (TLR3). However, its involvement in the TLR3 signaling pathway in fish remains largely unexplored. In this study, we investigated the regulatory role of DUBA (OmDUBA) in the TLR3 response in rainbow trout (Oncorhynchus mykiss). OmDUBA features a conserved OTU domain, and its expression increased in RTH-149 cells following stimulation with the TLR3 agonist poly(I:C). Gain- and loss-of-function experiments demonstrated that OmDUBA attenuated the activation of TANK-binding kinase 1 (TBK1), resulting in a subsequent reduction in type I IFN expression and IFN-stimulated response element (ISRE) activation in poly(I:C)-stimulated cells. OmDUBA interacted with TRAF3, a crucial mediator in TLR3-mediated type I IFN production. Under poly(I:C) stimulation, there was an augmentation in the K63-linked polyubiquitination of TRAF3, a process significantly inhibited upon OmDUBA overexpression. These findings suggest that OmDUBA may function similarly to its mammalian counterparts in downregulating the poly(I:C)-induced type I IFN response in rainbow trout by removing the K63-linked ubiquitin chain on TRAF3. Our study provides novel insights into the role of fish DUBA in antiviral immunity.


Assuntos
Proteínas de Peixes , Interferon Tipo I , Oncorhynchus mykiss , Poli I-C , Transdução de Sinais , Fator 3 Associado a Receptor de TNF , Animais , Oncorhynchus mykiss/imunologia , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/metabolismo , Fator 3 Associado a Receptor de TNF/imunologia , Interferon Tipo I/imunologia , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Transdução de Sinais/imunologia , Poli I-C/farmacologia , Imunidade Inata , Regulação da Expressão Gênica/imunologia , Ubiquitinação , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Receptor 3 Toll-Like/imunologia
13.
Front Immunol ; 15: 1319698, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646543

RESUMO

This study explored the impacts of supplementation of different levels of coated methionine (Met) in a high-plant protein diet on growth, blood biochemistry, antioxidant capacity, digestive enzymes activity and expression of genes related to TOR signaling pathway in gibel carp (Carassius auratus gibeilo). A high-plant protein diet was formulated and used as a basal diet and supplemented with five different levels of coated Met at 0.15, 0.30, 0.45, 0.60 and 0.75%, corresponding to final analyzed Met levels of 0.34, 0.49, 0.64, 0.76, 0.92 and 1.06%. Three replicate groups of fish (initial mean weight, 11.37 ± 0.02 g) (20 fish per replicate) were fed the test diets over a 10-week feeding period. The results indicated that with the increase of coated Met level, the final weight, weight gain (WG) and specific growth rate initially boosted and then suppressed, peaking at 0.76% Met level (P< 0.05). Increasing dietary Met level led to significantly increased muscle crude protein content (P< 0.05) and reduced serum alanine aminotransferase activity (P< 0.05). Using appropriate dietary Met level led to reduced malondialdehyde concentration in hepatopancreas (P< 0.05), improved superoxide dismutase activity (P< 0.05), and enhanced intestinal amylase and protease activities (P< 0.05). The expression levels of genes associated with muscle protein synthesis such as insulin-like growth factor-1, protein kinase B, target of rapamycin and eukaryotic initiation factor 4E binding protein-1 mRNA were significantly regulated, peaking at Met level of 0.76% (P< 0.05). In conclusion, supplementing optimal level of coated Met improved on fish growth, antioxidant capacity, and the expression of TOR pathway related genes in muscle. The optimal dietary Met level was determined to be 0.71% of the diet based on quadratic regression analysis of WG.


Assuntos
Ração Animal , Antioxidantes , Suplementos Nutricionais , Metionina , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Metionina/administração & dosagem , Serina-Treonina Quinases TOR/metabolismo , Antioxidantes/metabolismo , Ração Animal/análise , Carpa Dourada/crescimento & desenvolvimento , Carpa Dourada/genética , Carpa Dourada/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos
14.
Dev Comp Immunol ; 156: 105175, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38574831

RESUMO

Peroxiredoxin-1 (Prdx1) is a thiol-specific antioxidant enzyme that detoxifies reactive oxygen species (ROS) and regulates the redox status of cells. In this study, the Prdx1 cDNA sequence was isolated from the pre-established Amphiprion clarkii (A. clarkii) (AcPrdx1) transcriptome database and characterized structurally and functionally. The AcPrdx1 coding sequence comprises 597 bp and encodes 198 amino acids with a molecular weight of 22.1 kDa and a predicted theoretical isoelectric point of 6.3. AcPrdx1 is localized and functionally available in the cytoplasm and nucleus of cells. The TXN domain of AcPrdx1 comprises two peroxiredoxin signature VCP motifs, which contain catalytic peroxidatic (Cp-C52) and resolving cysteine (CR-C173) residues. The constructed phylogenetic tree and sequence alignment revealed that AcPrdx1 is evolutionarily conserved, and its most closely related counterpart is Amphiprion ocellaris. Under normal physiological conditions, AcPrdx1 was ubiquitously detected in all tissues examined, with the most robust expression in the spleen. Furthermore, AcPrdx1 transcripts were significantly upregulated in the spleen, head kidney, and blood after immune stimulation by polyinosinic:polycytidylic acid (poly (I:C)), lipopolysaccharide (LPS), and Vibrio harveyi injection. Recombinant AcPrdx1 (rAcPrdx1) demonstrated antioxidant and DNA protective properties in a concentration-dependent manner, as evidenced by insulin disulfide reduction, peroxidase activity, and metal-catalyzed oxidation (MCO) assays, whereas cells transfected with pcDNA3.1(+)/AcPrdx1 showed significant cytoprotective function under oxidative and nitrosative stress. Overexpression of AcPrdx1 in fathead minnow (FHM) cells led to a lower viral copy number following viral hemorrhagic septicemia virus (VHSV) infection, along with upregulation of several antiviral genes. Collectively, this study provides insights into the function of AcPrdx1 in defense against oxidative stressors and its role in the immune response against pathogenic infections in A. clarkii.


Assuntos
Proteínas de Peixes , Peroxirredoxinas , Filogenia , Vibrioses , Animais , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/imunologia , Vibrioses/imunologia , Poli I-C/imunologia , Doenças dos Peixes/imunologia , Imunidade Inata , Vibrio/imunologia , Vibrio/fisiologia , Clonagem Molecular , Sequência de Aminoácidos , Perciformes/imunologia , Lipopolissacarídeos/imunologia , Alinhamento de Sequência , Espécies Reativas de Oxigênio/metabolismo
15.
Mar Drugs ; 22(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38667768

RESUMO

Metabolic disorders are increasingly prevalent conditions that manifest pathophysiologically along a continuum. Among reported metabolic risk factors, elevated fasting serum glucose (FSG) levels have shown the most substantial increase in risk exposure. Ultimately leading to insulin resistance (IR), this condition is associated with notable deteriorations in the prognostic outlook for major diseases, including neurodegenerative diseases, cancer risk, and mortality related to cardiovascular disease. Tackling metabolic dysfunction, with a focus on prevention, is a critically important aspect for human health. In this study, an investigation into the potential antidiabetic properties of a salmon protein hydrolysate (SPH) was conducted, focusing on its potential dipeptidyl peptidase-IV (DPP-IV) inhibition and direct glucose uptake in vitro. Characterization of the SPH utilized a bioassay-guided fractionation approach to identify potent glucoregulatory peptide fractions. Low-molecular-weight (MW) fractions prepared by membrane filtration (MWCO = 3 kDa) showed significant DPP-IV inhibition (IC50 = 1.01 ± 0.12 mg/mL) and glucose uptake in vitro (p ≤ 0.0001 at 1 mg/mL). Further fractionation of the lowest MW fractions (<3 kDa) derived from the permeate resulted in three peptide subfractions. The subfraction with the lowest molecular weight demonstrated the most significant glucose uptake activity (p ≤ 0.0001), maintaining its potency even at a dilution of 1:500 (p ≤ 0.01).


Assuntos
Inibidores da Dipeptidil Peptidase IV , Glucose , Hidrolisados de Proteína , Salmo salar , Animais , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/isolamento & purificação , Inibidores da Dipeptidil Peptidase IV/química , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Glucose/metabolismo , Humanos , Dipeptidil Peptidase 4/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Proteínas de Peixes/farmacologia
16.
Genes (Basel) ; 15(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38674421

RESUMO

To investigate whether Mandarin fish developed oxidative stress after being domesticated with artificial feed, we conducted a series of experiments. Oxidative stress is an important factor leading to diseases and aging in the body. The liver integrates functions such as digestion, metabolism, detoxification, coagulation, and immune regulation, while the gills are important respiratory organs that are sensitive to changes in the water environment. Therefore, we used the liver and gills of Mandarin fish as research materials. The aim of this study was to investigate the effects of short-term artificial feed domestication on the expression of oxidative stress genes and the changes in oxidative-stress-related enzyme activity in the liver and gills of Mandarin fish. We divided the Mandarin fish into two groups for treatment. The control group was fed with live bait continuously for 14 days, while the experimental group was fed with half artificial feed and half live bait from 0 to 7 days (T-7 d), followed by solely artificial feed from 7 to 14 days (T-14 d). The experimental results showed that there was no difference in the body weight, length, and standard growth rate of the Mandarin fish between the two groups of treatments; after two treatments, there were differences in the expression of genes related to oxidative stress in the gills (keap1, kappa, gsta, gstt1, gstk1, SOD, and CAT) and in the liver (GPx, keap1, kappa, gsta, gstt1, gr, and SOD). In the liver, GPx activity and the content of MDA were significantly upregulated after 7 days of domestication, while in the gills, SOD activity was significantly upregulated after 7 days of domestication and GPx activity was significantly downregulated after 14 days of domestication. These results suggest that artificial feed domestication is associated with oxidative stress. Moreover, these results provide experimental basic data for increasing the production of aquaculture feed for Mandarin fish.


Assuntos
Ração Animal , Domesticação , Brânquias , Fígado , Estresse Oxidativo , Animais , Fígado/metabolismo , Brânquias/metabolismo , Ração Animal/análise , Antioxidantes/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Peixes/genética , Peixes/metabolismo , Aquicultura/métodos
17.
J Agric Food Chem ; 72(17): 10076-10088, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629202

RESUMO

This study aimed to explore antioxidant peptides derived from sturgeon (Acipenser schrenckii) ovaries that exhibit antiosteoporotic effects in oxidative-induced MC3T3-E1 cells. The F3-15 component obtained from sturgeon ovarian protein hydrolysates (SOPHs) via gel filtration and RP-HPLC significantly increased the cell survival rate (from 49.38 ± 2.88 to 76.26 ± 2.09%). Two putative antioxidant-acting peptides, FDWDRL (FL6) and FEGPPFKF (FF8), were screened from the F3-15 faction via liquid chromatography-tandem mass spectrometry (LC-MS/MS) and through prediction by computer simulations. Molecular docking results indicated that the possible antioxidant mechanisms of FL6 and FF8 involved blocking the active site of human myeloperoxidase (hMPO). The in vitro tests showed that FL6 and FF8 were equally adept at reducing intracellular ROS levels, increasing the activity of antioxidant enzymes, and protecting cells from oxidative injuries by inhibiting the mitogen-activated protein kinase (MAPK) pathway and activating the phosphoinositide-3 kinase (PI3K)/protein kinase B (AKT)/glycogen synthase kinase-3ß (GSK-3ß) signaling pathway. Moreover, both peptides could increase differentiation and mineralization abilities in oxidatively damaged MC3T3-E1 cells. Furthermore, FF8 exhibited high resistance to pepsin and trypsin, showcasing potential for practical applications.


Assuntos
Proteínas de Peixes , Peixes , Osteoblastos , Ovário , Estresse Oxidativo , Peptídeos , Hidrolisados de Proteína , Animais , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Feminino , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/citologia , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/isolamento & purificação , Proteínas de Peixes/química , Proteínas de Peixes/farmacologia , Proteínas de Peixes/metabolismo , Ovário/efeitos dos fármacos , Ovário/metabolismo , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/química , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Espectrometria de Massas em Tandem
18.
Mar Biotechnol (NY) ; 26(2): 404-420, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558367

RESUMO

Optimization of antioxidants and angiotensin-converting enzyme (ACE) inhibitory potential gelatin hydrolysate production from Labeo rohita (rohu) swim bladder (SBGH) by alcalase using central composite design (CCD) of response surface methodology (RSM) was investigated. The maximum degree of hydrolysis (DH), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS), total antioxidants (TAO), and ACE inhibitory activity were achieved at 0.1:1.0 (w/w) enzyme to substrate ratio, 61 °C hydrolysis temperature, and 94-min hydrolysis time. The resulting SBGH obtained at 19.92% DH exhibited the DPPH (24.28 µM TE/mg protein), ABTS (34.47 µM TE/mg protein), TAO (12.01 µg AAE/mg protein), and ACE inhibitory (4.91 µg/mg protein) activity. Furthermore, SBGH at 100 µg/ml displayed osteogenic property without any toxic effects on MC3T3-E1 cells. Besides, the protein content of rohu swim bladder gelatin (SBG) and SBGH was 93.68% and 94.98%, respectively. Both SBG and SBGH were rich in glycine, proline, glutamic acid, alanine, arginine, and hydroxyproline amino acids. Therefore, SBGH could be an effective nutraceutical in functional food development.


Assuntos
Sacos Aéreos , Peixes , Animais , Sacos Aéreos/química , Sacos Aéreos/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Antioxidantes/farmacologia , Antioxidantes/química , Compostos de Bifenilo/química , Cyprinidae/metabolismo , Proteínas de Peixes/metabolismo , Gelatina/química , Hidrólise , Osteogênese/efeitos dos fármacos , Picratos , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Subtilisinas/metabolismo , Peixes/metabolismo
19.
Food Chem ; 448: 138999, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522302

RESUMO

Umami peptides originating from fermented sea bass impart a distinctive flavor to food. Nevertheless, large-scale and rapid screening for umami peptides using conventional techniques is challenging because of problems such as prolonged duration and complicated operation. Therefore, we aimed to screen fermented sea bass using peptidomics and machine learning approaches. The taste presentation mechanism of umami peptides was assessed by molecular docking of T1R1/T1R3. Seventy umami peptides identified in fermented sea bass predominantly originated from 28 precursor proteins, including troponin, myosin, motor protein, and creatine kinase. Six umami peptides with the lowest energies formed stable complexes by binding to T1R3. SER170, SER147, GLN389, and HIS145 are critical binding sites for T1R1/T1R3. Four dominant interacting surface forces were identified: aromatic interactions, hydrogen bonding, hydrophilic bonds, and solvent-accessible surfaces. Our study unveils a method to screen umami peptides efficiently, providing a basis for further exploration of their flavor in fermented sea bass.


Assuntos
Bass , Aprendizado de Máquina , Peptídeos , Paladar , Bass/metabolismo , Animais , Peptídeos/química , Fermentação , Simulação de Acoplamento Molecular , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Aromatizantes/química , Aromatizantes/metabolismo , Humanos , Proteômica
20.
Artigo em Inglês | MEDLINE | ID: mdl-38452850

RESUMO

Declining flesh quality has drawn considerable attention in the farmed large yellow croaker (LYC; Larimichthys crocea) industry. Inosine monophosphate (IMP) is the primary flavor substance in aquatic animals. Adenosine monophosphate deaminase 1 (AMPD1) plays a critical role in IMP formation by catalyzing the deamination of AMP to IMP in the purine nucleotide cycle. To further evaluate the correlation between ampd1 mRNA expression levels and IMP content in the LYC muscle tissue, the relevant open reading frame (ORF) of L. crocea (Lcampd1) was cloned, and the IMP content and Lcampd1 mRNA expression in the muscles of LYCs of different sizes were examined. The ORF cDNA of Lcampd1 was 2211 bp in length and encoded a polypeptide of 736 amino acids (AAs). The deduced protein, LcAMPD1, possesses conserved AMPD active regions (SLSTDDP) and shows high homology with AMPD proteins of other teleost fishes. The genomic DNA sequence of Lcampd1 exhibits a high degree of evolutionary conservation in terms of structural organization among species. Phylogenetic analysis of the deduced AA sequence revealed that teleost fish and mammalian AMPD1 were separate from each other and formed a cluster with AMPD3, suggesting that AMPD1 and AMPD3 arose by duplication of a common primordial gene. In healthy LYC, Lcampd1 mRNA was expressed only in the muscle tissue. The IMP content in the muscle of LYCs with different average body weights was measured by high-performance liquid chromatography; the results showed that the IMP content in the muscle of LYCs with greater body weight was significantly higher than that in LYC with lower body weight. Moreover, a similar trend in Lcampd1 expression was observed in these muscle tissues. The Pearson correlation analysis further showed that the Lcampd1 mRNA expression was positively correlated with IMP content in the muscles of different-sized LYCs. These results suggest the potential function of Lcampd1 in determining the IMP content in LYC and provide a theoretical basis for flesh quality improvement, as well as a scientific basis for the development of the molecular breeding of LYC.


Assuntos
Inosina Monofosfato , Perciformes , Animais , Sequência de Bases , Sequência de Aminoácidos , Inosina Monofosfato/metabolismo , Filogenia , Perciformes/genética , Perciformes/metabolismo , Monofosfato de Adenosina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peso Corporal/genética , Proteínas de Peixes/metabolismo , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA