Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
1.
Hum Immunol ; 83(11): 768-777, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36055899

RESUMO

Cancer is a disease having global consequences. Though several new strategies and treatments have been developed so far, they often come with malicious side effects and this paved ways for demand of naturally extracted/driven product as potent anti-cancer agent owing to their reduced toxicity and side effects. One such common Indian household plant Neem (Azadirachta Indica) and its extract have variegated immunomodulatory effects as anti-cancer agent. Neem Leaf Glycoprotein (NLGP) modifies immune cells present in the tumor surroundings as well as in the peripheral system, rather than directly attacking the cancer cells. NLGP acts as a natural immunomodulator showing several functions like sustained tumor growth regulation by stimulating central and effector memory cells as a vaccination adjuvant, normalization of angiogenic activities, controls hypoxia, improves immune evasion techniques as well as suppresses the activity of several immunological cells (Tregs, myeloid-derived suppressor cells, and tumor-associated macrophages) which promote tumor growth and metastasis in the tumor microenvironment (TME). NLGP prioritises type1 immune-microenvironment which consists of T-bet+IFN-γ-producing group 1 innate lymphoid cell (ILC) (ILC1 and natural killer cells), CD8+ cytotoxic T cells (TC1), and CD4+ T helper1 (Th1) cells. In this review we aim to summarize detailed activity of NLGP in cancer immunoregulation.


Assuntos
Azadirachta , Neoplasias , Glicoproteínas/uso terapêutico , Humanos , Imunidade Inata , Fatores Imunológicos/uso terapêutico , Extratos Vegetais/uso terapêutico , Folhas de Planta , Proteínas de Plantas/uso terapêutico , Linfócitos T Citotóxicos , Microambiente Tumoral
2.
Toxins (Basel) ; 14(8)2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-36006226

RESUMO

Targeted toxins (TT) for cancer treatment are a class of hybrid biologic comprised of a targeting domain coupled chemically or genetically to a proteinaceous toxin payload. The targeting domain of the TT recognises and binds to a defined target molecule on the cancer cell surface, thereby delivering the toxin that is then required to internalise to an appropriate intracellular compartment in order to kill the target cancer cell. Toxins from several different sources have been investigated over the years, and the two TTs that have so far been licensed for clinical use in humans; both utilise bacterial toxins. Relatively few clinical studies have, however, been undertaken with TTs that utilise single-chain type I ribosome inactivating proteins (RIPs). This paper reviews the clinical experience that has so far been obtained for a range of TTs based on five different type I RIPs and concludes that the majority studied in early phase trials show significant clinical activity that justifies further clinical investigation. A range of practical issues relating to the further clinical development of TT's are also covered briefly together with some suggested solutions to outstanding problems.


Assuntos
Imunotoxinas , Proteínas de Plantas/uso terapêutico , Proteínas Inativadoras de Ribossomos Tipo 1/uso terapêutico , Toxinas Biológicas , Humanos , Imunotoxinas/uso terapêutico , Neoplasias/tratamento farmacológico , Proteínas de Plantas/metabolismo
3.
Anticancer Agents Med Chem ; 22(18): 3163-3171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692152

RESUMO

BACKGROUND: Calotropis procera is a laticiferous plant (Apocynaceae) found in tropical regions all over the world. The ultrastructural characteristics of laticifers, their restricted distribution among different taxonomic groups, and in some species in each clade, as peptidases from latex, make them very attractive for biological analysis. OBJECTIVE: The study aims to investigate the effects of LP-PII-IAA (laticifer protein (LP) sub-fraction II (PII) of C. procera presenting an iodoacetamide-inhibited cysteine proteinase activity) on irinotecan-induced intestinal mucositis, a serious adverse effect of this medicine for the treatment of cancer. METHODS: LP-PII-IAA is composed of closely related isoforms (90%) of peptidases derived from catalysis and an osmotin protein (5%). Animals receiving co-administration of LP-PII-IAA presented a significant decrease in mortality, absence of diarrhea, histological preservation, and normalization of intestinal functions. RESULTS: Clinical homeostasis was accompanied by a reduction in MPO activity and declined levels of IL-1ß, IL-6 and KC, while the IL-10 level increased in LP-PII-IAA-treated animals. COX-2 and NF-kB immunostaining was reduced and the levels of oxidative markers (GSH, MDA) were normalized in animals that received LP-PII-IAA. CONCLUSION: We suggest that peptidases from the latex of Calotropis procera were instrumental in the suppression of the adverse clinical and physiological effects of irinotecan.


Assuntos
Calotropis , Cisteína Proteases , Animais , Calotropis/química , Ciclo-Oxigenase 2 , Interleucina-10 , Interleucina-6 , Iodoacetamida , Irinotecano/farmacologia , Látex/química , Látex/farmacologia , NF-kappa B , Proteínas de Plantas/farmacologia , Proteínas de Plantas/uso terapêutico
4.
Crit Rev Food Sci Nutr ; 62(22): 6187-6203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33703974

RESUMO

Isolation and utilization of proteins from seaweeds have been a novel trend in the world at present due to the increasing demand for healthy non-animal proteins. The attention of scientific community has been paid on the protein derived from seaweed Undaria pinnatifida due to their high nutritional quality and bioactivity. This article aims to provide an integrated overview on methods of extraction, isolation and purification of U. pinnatifida-derived proteins and composition, nutritional value and potential nutraceutical and food applications with an interest to stimulate further research to optimize the utilization. Potential food applications of U. pinnatifida derived proteins are nutritional components in human diet, food ingredients and additives, alternative meat and meat analogues and animal and fish feed. Excellent antioxidant, antihypertension, anticoagulant, anti-diabetes, antimicrobial and anti-cancer activities possessed by proteins of U. pinnatifida enable the use of these proteins in various nutraceutical applications. A number of studies have been carried out on antioxidant and antihypertensive activities of U. pinnatifida proteins, whereas other bioactivites are yet to be further studied. Hence, more research works are crucial to be done in order to facilitate and promote the emerging novel foods and nutraceuticals, using proteins from seaweed U. pinnatifida.


Assuntos
Proteínas de Plantas , Alga Marinha , Undaria , Animais , Suplementos Nutricionais , Humanos , Proteínas de Plantas/uso terapêutico , Proteínas de Vegetais Comestíveis , Alga Marinha/química , Undaria/química
5.
Nutrients ; 13(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34959865

RESUMO

Bromelain is a major sulfhydryl proteolytic enzyme found in pineapple plants, having multiple activities in many areas of medicine. Due to its low toxicity, high efficiency, high availability, and relative simplicity of acquisition, it is the object of inexhaustible interest of scientists. This review summarizes scientific reports concerning the possible application of bromelain in treating cardiovascular diseases, blood coagulation and fibrinolysis disorders, infectious diseases, inflammation-associated diseases, and many types of cancer. However, for the proper application of such multi-action activities of bromelain, further exploration of the mechanism of its action is needed. It is supposed that the anti-viral, anti-inflammatory, cardioprotective and anti-coagulatory activity of bromelain may become a complementary therapy for COVID-19 and post-COVID-19 patients. During the irrepressible spread of novel variants of the SARS-CoV-2 virus, such beneficial properties of this biomolecule might help prevent escalation and the progression of the COVID-19 disease.


Assuntos
Anti-Inflamatórios/uso terapêutico , Anticoagulantes/uso terapêutico , Transtornos da Coagulação Sanguínea/tratamento farmacológico , Bromelaínas/uso terapêutico , Tratamento Farmacológico da COVID-19 , Cardiotônicos/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Neoplasias/tratamento farmacológico , Proteínas de Plantas/uso terapêutico , SARS-CoV-2 , Ananas/enzimologia , Anti-Inflamatórios/química , Anticoagulantes/química , Bromelaínas/química , Cardiotônicos/química , Fibrinólise/efeitos dos fármacos , Humanos , Proteínas de Plantas/química
6.
J Cancer Res Ther ; 17(6): 1445-1453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34916376

RESUMO

BACKGROUND: Azoxymethane (AOM) is a potent carcinogenic agent commonly used to induce colon cancer in rats and mice, with the cytotoxicity of AOM mediated by oxidative stress. AIM OF STUDY: This study investigated the protective effect of a natural antioxidant (GliSODin) against AOM-induced oxidative stress and carcinogenesis in rat colon. METHODS: Twenty male Wistar rats were randomly divided into four groups (five rats/group). The control group was fed a basal diet. AOM-treated group (AOM) was fed a basal diet and received intraperitoneal injections of AOM for 2 weeks at a dose of 15 mg/kg. The GliSODin treatment group (superoxide dismutase [SOD]) received oral supplementation of GliSODin (300 mg/kg) for 3 months, and the fourth combined group received AOM and GliSODin (AOM + SOD). All animals were continuously fed ad libitum until the age of 16 weeks when all rats were sacrificed. The colon tissues were examined microscopically for pathological changes and aberrant crypt foci (ACF) development, oxidant status (lipid peroxidation-LPO), and enzyme antioxidant system (glutathione [GSH], GSH-S-transferase, catalase, and SOD). RESULTS: Our results showed that AOM induced ACF development and oxidative stress (GSH depletion and lipid peroxidation) in rat colonic cells. The concomitant treatment of AOM with GliSODin significantly ameliorated the cytotoxic effects of AOM. CONCLUSION: The results of this study provide in vivo evidence that GliSODin reduced the AOM-induced colon cancer in rats, through their potent antioxidant activities.


Assuntos
Antioxidantes/farmacologia , Neoplasias do Colo/tratamento farmacológico , Gliadina/farmacologia , Proteínas de Plantas/farmacologia , Superóxido Dismutase/farmacologia , Animais , Antioxidantes/uso terapêutico , Azoximetano/toxicidade , Carcinogênese/induzido quimicamente , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Colo/efeitos dos fármacos , Colo/patologia , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/patologia , Cucurbitaceae/enzimologia , Ensaios de Seleção de Medicamentos Antitumorais , Gliadina/uso terapêutico , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Plantas/uso terapêutico , Ratos , Superóxido Dismutase/uso terapêutico , Triticum/química
7.
Int Immunopharmacol ; 96: 107801, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34162162

RESUMO

Cystatins are natural inhibitors of cysteine peptidases that are found practically in all living organisms. CaneCPI-5 is a sugarcane cystatin with inhibitory activity against human cathepsins B, K and L, which are cysteine proteases highly expressed in a variety of pathological conditions, usually marked by persistent inflammation and processing of the extracellular matrix. This work evaluated the effects of daily administration of the recombinant cystatin CaneCPI-5 [0.01, 0.1 or 1.0 µg in 10 µL of Phosphate-Buffered Saline (PBS)] on the inflammatory, angiogenic and fibrogenic components during chronic inflammatory response induced by subcutaneous sponge implants. The anti-inflammatory effect of treatment with CaneCPI-5 was confirmed by reduction of the levels of the pro-inflammatory mediators TNF-α, CXCL1 and CCL2/JE/MCP-1, as well as the activity of the myeloperoxidase and n-acetyl-ß-D-glucosaminidase. Treatment with CaneCPI-5 promoted angiogenesis in the implants, increasing the production of cytokines VEGF and FGF and the formation of new blood vessels. Finally, the administration of the recombinant cystatin favored the production of the pro-fibrogenic cytokine TGF-ß1 and collagen deposition next to the implants. Together, these results show the potential therapeutic application of CaneCPI-5 as an anti-inflammatory agent, capable of favoring angiogenesis and fibrogenesis processes, necessary for tissue repair.


Assuntos
Anti-Inflamatórios/uso terapêutico , Colágeno/metabolismo , Cistatinas/uso terapêutico , Corpos Estranhos/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas de Plantas/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Cistatinas/genética , Cistatinas/farmacologia , Citocinas/imunologia , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Corpos Estranhos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas de Plantas/genética , Proteínas de Plantas/farmacologia , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Saccharum , Pele/irrigação sanguínea , Pele/efeitos dos fármacos , Pele/imunologia , Pele/metabolismo , Tampões de Gaze Cirúrgicos
8.
Clin Transl Oncol ; 23(8): 1549-1560, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33474678

RESUMO

OBJECTIVES: Epithelial growth factor receptor (EGFR), as a malignancy marker, is overly expressed in multiple solid tumors including colorectal neoplasms, one of the most prevalent malignancies worldwide. The main objective of this study is to enhance the efficacy of anti-tumor therapy targeting EGFR by constructing a novel EGFR-specific immunotoxin (C-CUS245C) based on Cetuximab and recombinant Cucurmosin (CUS245C). METHODS: E. coli BL21 (DE3) PlysS (E. coli) was used to express CUS245C with a cysteine residue inserting to the C-terminus of Cucurmosin. Then immobilized metal ion affinity chromatography (IMAC) was used to purify CUS245C. The chemical conjugation method was used for the preparation of C-CUS245C. Then dialysis and IMAC were used to purify C-CUS245C. Western blot as well as SDS-PAGE was carried out to characterize the formation of C-CUS245C. At last the anti-colorectal cancer activity of C-CUS245C was investigated in vitro and in vivo. RESULTS: CUS245C with high purity could be obtained from the prokaryotic system. C-CUS245C was successfully constructed and highly purified. The cytotoxicity assays in vitro showed a significant proliferation inhibition of C-CUS245C on EGFR-positive cells for 120 h with IC50 values less than 0.1 pM. Besides, the anti-tumor efficacy of C-CUS245C was remarkably more potent than that of Cetuximab, CUS245C, and C + CUS245C (P < 0.001). Whereas the cytotoxicity of C-CUS245C could hardly be detected on EGFR-null cell line. Our results also showed that C-CUS245C had efficacy of anti-colorectal cancer in mouse xenograft model, indicating the therapeutic potential of C-CUS245C for the targeted therapy of colorectal neoplasms. CONCLUSIONS: C-CUS245C exhibits potent and EGFR-specific cytotoxicity. Insertional mutagenesis technique is worthy to be adopted in the preparation of immunotoxin. Immunotoxin can be highly purified through dialysis followed by IMAC.


Assuntos
Cetuximab/uso terapêutico , Neoplasias Colorretais/terapia , Imunotoxinas/uso terapêutico , Terapia de Alvo Molecular/métodos , Proteínas de Plantas/uso terapêutico , Animais , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cetuximab/farmacologia , Cromatografia de Afinidade/métodos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Escherichia coli/metabolismo , Humanos , Imunoconjugados/química , Imunoconjugados/uso terapêutico , Imunotoxinas/química , Imunotoxinas/isolamento & purificação , Imunotoxinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutagênese Insercional/métodos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Oncol Rep ; 45(2): 493-500, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33416157

RESUMO

Epidermal growth factor receptor (EGFR) is overexpressed in various tumors and is associated with cancer initiation, progression, and poor prognosis. Despite the achievements made by tyrosine kinase inhibitors and monoclonal antibodies in certain cases, many patients have not benefited from such treatment due to resistance. Immunotoxins (ITs) are antibody­cytotoxin chimeric molecules with specific cell killing ability, which have achieved different degrees of success in the treatment of a wide range of cancers in clinical trials. The aim of the current study was to examine a novel targeting EGFR recombinant immunotoxin Bs/cucurmosin (CUS) generated by fusing CUS to the EGFR­specific nanobody 7D12­9G8. Bs/CUS was successfully expressed in Escherichia coli strain BL21 (DE3) in a soluble form. Furthermore, it retained binding capacity and specificity with EGFR and was superior to rE/CUS, a monospecific IT we reported previously. In vitro results showed that Bs/CUS could be internalized into the cytoplasm and selectively kill cells in the picomolar range. Flow cytometry showed that Bs/CUS killed the cells mediated by the apoptosis pathway. Taken together, results of the current study indicated that Bs/CUS is a promising candidate that should be further evaluated as a cancer therapeutic for the treatment of EGFR­positive tumors.


Assuntos
Imunotoxinas/farmacologia , Neoplasias/tratamento farmacológico , Proteínas de Plantas/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Animais , Anticorpos Biespecíficos/genética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Humanos , Imunotoxinas/genética , Imunotoxinas/uso terapêutico , Neoplasias/patologia , Proteínas de Plantas/genética , Proteínas de Plantas/uso terapêutico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Peptides ; 135: 170430, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33096195

RESUMO

Cyclotides are plant-derived mini-proteins of 28 - 37 amino acids. They have a characteristic head-to-tail cyclic backbone and three disulfide cross-linkages formed by six highly conserved cysteine residues, creating a unique knotted ring structure, known as a cyclic cystine knot (CCK) motif. The CCK topology confers immense stability to cyclotides with resistance to thermal and enzymatic degradation. Native cyclotides are of interest due to their multiple biological activities with several potential applications in agricultural (e.g. biopesticides, antifungal) and pharmaceutical (e.g. anti-HIV, cytotoxic to tumor cells) sectors. The most recent application of insecticidal activity of cyclotides is the commercially available biopesticidal spray known as 'Sero X' for cotton crops. Cyclotides have a general mode of action and their potency of bioactivity is determined through their binding ability, pore formation and disruption of the target biological membranes. Keeping in view the important potential applications of biological activities of cyclotides and the lack of an extensive and analytical compilation of bioactive cyclotides, the present review systematically describes eight major biological activities of the native cyclotides from four angiosperm families viz. Fabaceae, Poaceae, Rubiaceae, Violaceae. The bioactivities of 94 cytotoxic, 57 antibacterial, 44 hemolytic, 25 antifungal, 21 anti-HIV, 20 nematocidal, 10 insecticidal and 5 molluscicidal cyclotides have been comprehensively elaborated. Further, their distribution in angiosperm families, mode of action and future prospects have also been discussed.


Assuntos
Anti-Infecciosos/química , Antineoplásicos/química , Ciclotídeos/química , Proteínas de Plantas/química , Agricultura , Sequência de Aminoácidos/genética , Anti-Infecciosos/uso terapêutico , Antineoplásicos/uso terapêutico , Biofarmácia , Ciclotídeos/genética , Ciclotídeos/uso terapêutico , Humanos , Proteínas de Plantas/genética , Proteínas de Plantas/uso terapêutico
11.
Immunotherapy ; 12(11): 799-818, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32698648

RESUMO

Aim: As tumor causes atrophy in the thymus to target effector-T cells, this study is aimed to decipher the efficacy of neem leaf glycoprotein (NLGP) in tumor- and age-associated thymic atrophy. Materials & methods: Different thymus parameters were studied using flow cytometry, reverse transcriptase PCR and immunocyto-/histochemistry in murine melanoma and sarcoma models. Results: Longitudinal NLGP therapy in tumor hosts show tumor-reduction along with significant normalization of thymic alterations. NLGP downregulates intrathymic IL-10, which eventually promotes Notch1 to rescue blockade in CD25+CD44+c-Kit+DN2 to CD25+CD44-c-Kit-DN3 transition in T cell maturation and suppress Ikaros/IRF8/Pu.1 to prevent DN2-T to DC differentiation in tumor hosts. The CD5intTCRαßhigh DP3 population was also increased to endorse CD8+ T cell generation. Conclusion: NLGP rescues tumor-induced altered thymic events to generate more effector T cells to restrain tumor.


Assuntos
Envelhecimento/fisiologia , Antineoplásicos Fitogênicos/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Glicoproteínas/uso terapêutico , Neoplasias Experimentais/terapia , Proteínas de Plantas/uso terapêutico , Timo/efeitos dos fármacos , Animais , Azadirachta/imunologia , Circulação Sanguínea , Linfócitos T CD8-Positivos/efeitos dos fármacos , Modelos Animais de Doenças , Glicoproteínas/isolamento & purificação , Humanos , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Folhas de Planta , Proteínas de Plantas/isolamento & purificação , Sarcoma 180 , Timo/patologia
12.
Int J Mol Sci ; 21(15)2020 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-32722628

RESUMO

Plant defensins form a family of proteins with a broad spectrum of protective activities against fungi, bacteria, and insects. Furthermore, some plant defensins have revealed anticancer activity. In general, plant defensins are non-toxic to plant and mammalian cells, and interest in using them for biotechnological and medicinal purposes is growing. Recent studies provided significant insights into the mechanisms of action of plant defensins. In this review, we focus on structural and dynamics aspects and discuss structure-dynamics-function relations of plant defensins.


Assuntos
Antineoplásicos Fitogênicos/química , Defensinas/química , Modelos Moleculares , Proteínas de Plantas/química , Plantas/química , Antineoplásicos Fitogênicos/uso terapêutico , Defensinas/uso terapêutico , Humanos , Proteínas de Plantas/uso terapêutico , Relação Estrutura-Atividade
13.
Food Funct ; 11(7): 5853-5865, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32589172

RESUMO

Colorectal cancer (CRC) is one of the most common types of cancer, especially in Western countries, and its incidence rate is increasing every year. In this study, for the first time Vigna unguiculata L. Walp. (cowpea) water boiled seed extracts were found to reduce the viability of different colorectal cancer (CRC) cell lines, such as E705, DiFi and SW480 and the proliferation of Caco-2 line too, without affecting CCD841 healthy cell line. Furthermore, the extracts showed the ability to reduce the level of Epidermal Growth Factor Receptor (EGFR) phosphorylation in E705, DiFi and SW480 cell lines and to lower the EC50 of a CRC common drug, cetuximab, on E705 and DiFi lines from 161.7 ng mL-1 to 0.06 ng mL-1 and from 49.5 ng mL-1 to 0.2 ng mL-1 respectively. The extract was characterized in its protein and metabolite profiles by tandem mass spectrometry and 1H-NMR analyses. A Bowman-Birk protease inhibitor was identified within the protein fraction and was supposed to be the main active component. These findings confirm the importance of a legume-based diet to prevent the outbreak of many CRC and to reduce the amount of drug administered during a therapeutic cycle.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Fitoterapia , Extratos Vegetais/uso terapêutico , Inibidores de Proteases/uso terapêutico , Sementes/química , Vigna/química , Antineoplásicos Fitogênicos/farmacologia , Células CACO-2 , Linhagem Celular Tumoral , Sobrevivência Celular , Cetuximab , Neoplasias Colorretais/prevenção & controle , Receptores ErbB/metabolismo , Humanos , Fosforilação , Extratos Vegetais/farmacologia , Proteínas de Plantas/farmacologia , Proteínas de Plantas/uso terapêutico , Inibidores de Proteases/farmacologia
14.
Inflamm Res ; 69(9): 951-966, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32488316

RESUMO

OBJECTIVE AND DESIGN: Oral mucositis (OM) is an intense inflammatory reaction progressing to tissue damage and ulceration. The medicinal uses of Calotropis procera are supported by anti-inflammatory capacity. PII-IAA, a highly homogenous cocktail of laticifer proteins (LP) prepared from the latex of C. procera, with recognized pharmacological properties was tested to treat OM. MATERIALS AND SUBJECTS: Male Golden Sirius hamsters were used in all treatments. TREATMENT: The latex protein samples were injected i.p. (5 mg/Kg) 24 h before mucositis induction (mechanical trauma) and 24 h later. METHODS: Histology, cytokine measurements [ELISA], and macroscopic evaluation [scores] were performed. RESULTS: PII-IAA eliminated OM, accompanied by total disappearance of myeloperoxidase activity and release of IL-1b, as well as reduced TNF-a. Oxidative stress was relieved by PII-IAA treatment, as revealed by MDA and GSH measurements. PII-IAA also reduced the expression of adhesion molecules (ICAM-1) and Iba-1, two important markers of inflammation, indicating modulatory effects. Histological analyses of the cheek epithelium revealed greater deposition of type I collagen fibers in animals given PII-IAA compared with the control group. This performance was only reached when LPPII was treated with iodoacetamide (IAA), an irreversible inhibitor of proteolytic activity of cysteine proteases. The endogenous proteolytic activity of LPPII induced adverse effects in animals. Candidate proteins involved in the phytomodulatory activity are proposed. CONCLUSIONS: Therapy was successful in treating OM with the laticifer protein fraction, containing peptidases and osmotin, from Calotropis procera. The effective candidate from the latex proteins for therapeutic use is PII-IAA.


Assuntos
Anti-Inflamatórios/uso terapêutico , Calotropis/química , Látex/química , Proteínas de Plantas/uso terapêutico , Estomatite/tratamento farmacológico , Animais , Fluoruracila/toxicidade , Masculino , Mesocricetus , Estomatite/patologia
15.
Complement Med Res ; 27(4): 260-271, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31927541

RESUMO

PURPOSE: We aimed at updating the evidence found in controlled studies addressing general and event-free survival of cancer patients treated with the fermented mistletoe extract Iscador. METHODS: The databases Embase, PubMed, CAMbase, Scopus, AMED and Cochrane were searched for clinical studies on cancer patients treated with Iscador. Quality of studies and risk of bias were evaluated according to the Cochrane guidelines and the Newcastle Ottawa Scale. Outcome data were expressed as hazard ratios (HR) and the respective 95% confidence intervals (CI). Meta-analysis was carried out using a random-effects model. RESULTS: Eighty-two controlled studies met the inclusion criteria, of which 32 with 55 strata provided data for extracting HR and CI. The overall HR was 0.59 (95% CI: [0.53; 0.65], p < 0.0001) in favour of Iscador treatment. Heterogeneity of study results was moderate (I2 = 50.9%; p < 0.0001, τ2 = 0.053). Meta-regression did not reveal significant effects of sample size or study design. However, significant differences were found between cancer entities (p < 0.01), with most pronounced effects in cervical (HR = 0.43) and less pronounced effects in lung cancer (HR = 0.84). CONCLUSIONS: We found almost identical effects on cancer survival based on a broader database of higher quality. However, none of the studies was blinded and, therefore, there might be risk of performance bias. Implications for cancer survivors are as follows: findings indicate that adjuvant treatment of cancer patients with Iscador can be associated with a better survival.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/mortalidade , Extratos Vegetais/uso terapêutico , Proteínas de Plantas/uso terapêutico , Humanos , Taxa de Sobrevida
16.
Food Chem ; 308: 125601, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-31670190

RESUMO

The aim of this work was to analyse the hypotensive effect of amaranth protein/peptides on spontaneously hypertensive rats (SHR). The mechanism of action of these peptides was studied in vivo and ex vivo. We also tested the effect of protection against gastrointestinal digestion (GID) exerted by an O:W emulsion on the integrity of the antihypertensive peptides. All samples tested produced a decrease in blood pressure (SBP). The animals treated with emulsion (GE) and emulsion + peptide (GE+VIKP) showed the most significant reduction in the SBP (42 ±â€¯2 mmHg and 35 ±â€¯2 mmHg, respectively). The results presented suggest that after GID, a variety of peptides with biological activities were released or were resistant to this process. These peptides play a role in the regulation of the SBP by acting on plasma ACE, plasma renin and the vascular system. These results support the use of amaranth protein/peptides in the elaboration of functional foods for hypertensive individuals.


Assuntos
Amaranthus/química , Anti-Hipertensivos/farmacologia , Hipertensão/tratamento farmacológico , Peptídeos/farmacologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Animais , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Masculino , Peptídeos/uso terapêutico , Proteínas de Plantas/farmacologia , Proteínas de Plantas/uso terapêutico , Ratos , Ratos Endogâmicos SHR
17.
Int Immunopharmacol ; 81: 106024, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31784404

RESUMO

Acute lung injury (ALI) is a common lung disease accompanied by acute and persistent pulmonary inflammatory response syndrome, which leads to alveolar epithelial cells and capillary endothelial cell damage. Yam glycoprotein, separated from traditional Chinese yam, has been shown to have anti-inflammatory and immunomodulatory effects. In this experiment, we mainly studied the therapeutic effect and mechanism of a glycoprotein on the lipopolysaccharide (LPS)-induced ALI mice. An oral glycoprotein method was used to treat the mouse ALI model induced by LPS injection in the peritoneal cavity. Afterward, we measured the wet/dry (W/D) ratio, the activity of myeloperoxidase (MPO), the oxidative index superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-PX) and the production of inflammatory cytokines interleukin-1ß (IL-1ß), tumour necrosis factor-α (TNF-α), and interleukin-6 (IL-6) to evaluate the effect of yam glycoprotein on lung tissue changes. We examined the protein expression of TLR4, ASC, NF-κBp65, p-NF-κBp65, Caspase-1, IκB, NLRP3, p-IκB, and ß-actin by western blot analysis. Immunohistochemical analyses of NLRP3 and p-p65 in lung tissue were carried out to assess the mechanism of glycoprotein action. This result suggests that glycoprotein markedly depressed LPS-induced lung W/D ratio, MPO activity, MDA content SOD and GSH-Px depletion, and the contents of inflammatory cytokines IL-1ß, IL-6, and TNF-α. Moreover, glycoprotein blocked TLR4/NF-κBp65 signaling activation and NLRP3inflammasome expression in LPS-induced ALI mice. As this particular study shows, glycoprotein has a safeguarding effects on LPS-induced ALI mice, possibly via activating NLRP3inflammasome and TLR4/NF-κB signaling pathways.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Dioscorea , Glicoproteínas/farmacologia , Proteínas de Plantas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Animais , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Glicoproteínas/isolamento & purificação , Glicoproteínas/uso terapêutico , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Lipopolissacarídeos/imunologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Oxirredução/efeitos dos fármacos , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/uso terapêutico , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo
18.
Curr Protein Pept Sci ; 21(5): 443-487, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31746291

RESUMO

Biologically active molecules obtained from plant sources, mostly including secondary metabolites, have been considered to be of immense value with respect to the treatment of various human diseases. However, some inevitable limitations associated with these secondary metabolites like high cytotoxicity, low bioavailability, poor absorption, low abundance, improper metabolism, etc., have forced the scientific community to explore medicinal plants for alternate biologically active molecules. In this context, therapeutically active proteins/peptides from medicinal plants have been promoted as a promising therapeutic intervention for various human diseases. A large number of proteins isolated from the medicinal plants have been shown to exhibit anti-microbial, anti-oxidant, anti-HIV, anticancerous, ribosome-inactivating and neuro-modulatory activities. Moreover, with advanced technological developments in the medicinal plant research, medicinal plant proteins such as Bowman-Birk protease inhibitor and Mistletoe Lectin-I are presently under clinical trials against prostate cancer, oral carcinomas and malignant melanoma. Despite these developments and proteins being potential drug candidates, to date, not a single systematic review article has documented the therapeutical potential of the available biologically active medicinal plant proteome. The present article was therefore designed to describe the current status of the therapeutically active medicinal plant proteins/peptides vis-à-vis their potential as future protein-based drugs for various human diseases. Future insights in this direction have also been highlighted.


Assuntos
Antibacterianos/uso terapêutico , Fármacos Anti-HIV/uso terapêutico , Antifúngicos/uso terapêutico , Antineoplásicos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Proteínas de Plantas/uso terapêutico , Plantas Medicinais/química , Antibacterianos/isolamento & purificação , Fármacos Anti-HIV/isolamento & purificação , Antifúngicos/isolamento & purificação , Antineoplásicos/isolamento & purificação , Antioxidantes/isolamento & purificação , Antioxidantes/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Infecções Bacterianas/patologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/patologia , Infecções por HIV/virologia , Humanos , Micoses/tratamento farmacológico , Micoses/microbiologia , Micoses/patologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Fármacos Neuroprotetores/isolamento & purificação , Extratos Vegetais/química , Proteínas de Plantas/isolamento & purificação , Inibidores da Síntese de Proteínas/isolamento & purificação , Inibidores da Síntese de Proteínas/uso terapêutico
19.
Mem. Inst. Oswaldo Cruz ; 115: e200458, 2020. graf
Artigo em Inglês | LILACS, SES-SP | ID: biblio-1135229

RESUMO

BACKGROUND Calotropis procera latex protein fraction (LP) was previously shown to protect animals from septic shock. Further investigations showed that LP modulate nitric oxide and cytokines levels. OBJECTIVES To evaluate whether the protective effects of LP, against lethal bacterial infection, is observed in its subfractions (LPPII and LPPIII). METHODS Subfractions (5 and 10 mg/kg) were tested by i.p. administration, 24 h before challenging with lethal injection (i.p.) of Salmonella Typhimurium. LPPIII (5 mg/kg) which showed higher survival rate was assayed to evaluate bacterial clearance, histopathology, leukocyte recruitment, plasma coagulation time, cytokines and NO levels. FINDINGS LPPIII protected 70% of animals of death. The animals given LPPIII exhibited reduced bacterial load in blood and peritoneal fluid after 24 h compared to the control. LPPIII promoted macrophage infiltration in spleen and liver. LPPIII restored the coagulation time of infected animals, increased IL-10 and reduced NO in blood. MAIN CONCLUSIONS LPPIII recruited macrophages to the target organs of bacterial infection. This addressed inflammatory stimulus seems to reduce bacterial colonisation in spleen and liver, down regulate bacterial spread and contribute to avoid septic shock.


Assuntos
Animais , Proteínas de Plantas/uso terapêutico , Infecções por Salmonella/tratamento farmacológico , Extratos Vegetais/farmacologia , Calotropis/química , Homeostase/efeitos dos fármacos , Inflamação/tratamento farmacológico , Látex/química , Antibacterianos/uso terapêutico , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Regulação para Baixo , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia
20.
Eur J Pharmacol ; 863: 172669, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31542486

RESUMO

The antiresorptive agents still are the mainstay of osteoporosis treatment. This study aimed to investigate the efficacy of recombinant Lingzhi-8 (rLZ-8) on osteoclast in vitro and bone resorption in vivo. The rLZ-8 protein was derived from Ganoderma lucidum transformation and produced by a genetic system. Receptor activator of nuclear factor kappa-Β ligand induced RAW 264.7 cells to differentiate into osteoclastic cells in vitro. Cells were exposed to different doses of rLZ-8 for 7 days to measure differences of osteoclastic differentiation, apoptosis rate and gene expression. rLZ-8 was labeled with Alexa Fluor 568 to observe its intracellular distribution under super-resolution light microscopy. In addition, retinoic acid was administered to female rats for 14 days to develop osteopenia changes. Different doses of rLZ-8 were simultaneously administered to rats treated with retinoic acid to observe changes of bone mineral density, biochemical parameters and organ weight ratio. Results indicated that rLZ-8 regulated receptor activator of nuclear factor kappa-Β (RANK) - tumor necrosis factor receptor-associated factor 6 (TRAF6) - c-Jun N-terminal kinase (JNK) signaling pathway, by which rLZ-8 inhibited osteoclastic differentiation and promoted osteoclastic apoptosis. Through 3D-structured illumination microscopy, it was observed that rLZ-8 entered RAW264.7 cells and accumulated gradually into the cytoplasm but little into nucleus. Administration with rLZ-8 reversed loss of bone mass and improved ALP activity in osteoporotic rats. Low-to high-dose rLZ-8 treatments displayed little toxic effects on rat organs and did not seem to impact their overall health. All data suggested that rLZ-8 has possible action against osteoporosis.


Assuntos
Doenças Ósseas Metabólicas/induzido quimicamente , Doenças Ósseas Metabólicas/tratamento farmacológico , Proteínas de Plantas/farmacologia , Proteínas Recombinantes/farmacologia , Reishi/química , Tretinoína/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Proteínas de Plantas/uso terapêutico , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA