Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 434(10): 167581, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35398319

RESUMO

The budding yeast protein Rad5 is highly conserved among eukaryotes. Rad5 and its orthologs including helicase like transcription factor (HLTF) and SNF2 histone linker PHD RING helicase (SHPRH) in humans constitute a unique family of enzymes that play critical roles in the cellular response to DNA replication stresses. The function of the Rad5 family of enzymes is fulfilled by their multiple activities, including ubiquitin ligase, replication fork regression activities and others. Herein, we review recent studies that provided mechanistic insights into their multiple activities and their coordination.


Assuntos
DNA Helicases , Replicação do DNA , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases/metabolismo , Dano ao DNA , DNA Helicases/classificação , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Biochemistry (Mosc) ; 86(9): 1151-1161, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34565318

RESUMO

Despite its similarity to protein biosynthesis in bacteria, translation in the mitochondria of modern eukaryotes has several unique features, such as the necessity for coordination of translation of mitochondrial mRNAs encoding proteins of the electron transport chain complexes with translation of other protein components of these complexes in the cytosol. In the mitochondria of baker's yeast Saccharomyces cerevisiae, this coordination is carried out by a system of translational activators that predominantly interact with the 5'-untranslated regions of mitochondrial mRNAs. No such system has been found in human mitochondria, except a single identified translational activator, TACO1. Here, we studied the role of the ZMYND17 gene, an ortholog of the yeast gene for the translational activator Mss51p, on the mitochondrial translation in human cells. Deletion of the ZMYND17 gene did not affect translation in the mitochondria, but led to the decrease in the cytochrome c oxidase activity and increase in the amount of free F1 subunit of ATP synthase. We also investigated the evolutionary history of Mss51p and ZMYND17 and suggested a possible mechanism for the divergence of functions of these orthologous proteins.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Evolução Molecular , Edição de Genes , Células HeLa , Humanos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , NADH Desidrogenase/metabolismo , Filogenia , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/classificação , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
3.
Mol Cell ; 81(11): 2417-2427.e5, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33838103

RESUMO

mRNA translation is coupled to multiprotein complex assembly in the cytoplasm or to protein delivery into intracellular compartments. Here, by combining systematic RNA immunoprecipitation and single-molecule RNA imaging in yeast, we have provided a complete depiction of the co-translational events involved in the biogenesis of a large multiprotein assembly, the nuclear pore complex (NPC). We report that binary interactions between NPC subunits can be established during translation, in the cytoplasm. Strikingly, the nucleoporins Nup1/Nup2, together with a number of nuclear proteins, are instead translated at nuclear pores, through a mechanism involving interactions between their nascent N-termini and nuclear transport receptors. Uncoupling this co-translational recruitment further triggers the formation of cytoplasmic foci of unassembled polypeptides. Altogether, our data reveal that distinct, spatially segregated modes of co-translational interactions foster the ordered assembly of NPC subunits and that localized translation can ensure the proper delivery of proteins to the pore and the nucleus.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/genética , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transporte Ativo do Núcleo Celular , Citoplasma/genética , Citoplasma/metabolismo , Regulação Fúngica da Expressão Gênica , Carioferinas/genética , Carioferinas/metabolismo , Poro Nuclear/genética , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/classificação , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
G3 (Bethesda) ; 4(7): 1297-306, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24847916

RESUMO

Nonhomologous end joining (NHEJ) is the main means for repairing DNA double-strand breaks (DSBs) in human cells. Molecular understanding of NHEJ has benefited from analyses in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. In human cells, the DNA ligation reaction of the classical NHEJ pathway is carried out by a protein complex composed of DNA ligase IV (LigIV) and XRCC4. In S. cerevisiae, this reaction is catalyzed by a homologous complex composed of Dnl4 and Lif1. Intriguingly, no homolog of XRCC4 has been found in S. pombe, raising the possibility that such a factor may not always be required for classical NHEJ. Here, through screening the ionizing radiation (IR) sensitivity phenotype of a genome-wide fission yeast deletion collection in both the vegetative growth state and the spore state, we identify Xrc4, a highly divergent homolog of human XRCC4. Like other fission yeast NHEJ factors, Xrc4 is critically important for IR resistance of spores, in which no homologous recombination templates are available. Using both extrachromosomal and chromosomal DSB repair assays, we show that Xrc4 is essential for classical NHEJ. Exogenously expressed Xrc4 colocalizes with the LigIV homolog Lig4 at the chromatin region of the nucleus in a mutually dependent manner. Furthermore, like their human counterparts, Xrc4 and Lig4 interact with each other and this interaction requires the inter-BRCT linker and the second BRCT domain of Lig4. Our discovery of Xrc4 suggests that an XRCC4 family protein is universally required for classical NHEJ in eukaryotes.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , Genoma Fúngico , Radiação Ionizante , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Sequência de Aminoácidos , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/classificação , Proteínas de Ligação a DNA/genética , Humanos , Dados de Sequência Molecular , Filogenia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/classificação , Schizosaccharomyces/fisiologia , Alinhamento de Sequência , Esporos Fúngicos/efeitos da radiação
5.
Genome Biol Evol ; 5(12): 2460-77, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24277689

RESUMO

Hsp70 molecular chaperones are ubiquitous. By preventing aggregation, promoting folding, and regulating degradation, Hsp70s are major factors in the ability of cells to maintain proteostasis. Despite a wealth of functional information, little is understood about the evolutionary dynamics of Hsp70s. We undertook an analysis of Hsp70s in the fungal clade Ascomycota. Using the well-characterized 14 Hsp70s of Saccharomyces cerevisiae, we identified 491 orthologs from 53 genomes. Saccharomyces cerevisiae Hsp70s fall into seven subfamilies: four canonical-type Hsp70 chaperones (SSA, SSB, KAR, and SSC) and three atypical Hsp70s (SSE, SSZ, and LHS) that play regulatory roles, modulating the activity of canonical Hsp70 partners. Each of the 53 surveyed genomes harbored at least one member of each subfamily, and thus establishing these seven Hsp70s as units of function and evolution. Genomes of some species contained only one member of each subfamily that is only seven Hsp70s. Overall, members of each subfamily formed a monophyletic group, suggesting that each diversified from their corresponding ancestral gene present in the common ancestor of all surveyed species. However, the pattern of evolution varied across subfamilies. At one extreme, members of the SSB subfamily evolved under concerted evolution. At the other extreme, SSA and SSC subfamilies exhibited a high degree of copy number dynamics, consistent with a birth-death mode of evolution. KAR, SSE, SSZ, and LHS subfamilies evolved in a simple divergent mode with little copy number dynamics. Together, our data revealed that the evolutionary history of this highly conserved and ubiquitous protein family was surprising complex and dynamic.


Assuntos
Adenosina Trifosfatases/genética , Proteínas Fúngicas/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas Mitocondriais/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/classificação , Sequência de Aminoácidos , Sequência de Bases , Evolução Molecular , Proteínas Fúngicas/classificação , Genes Fúngicos , Variação Genética , Proteínas de Choque Térmico HSP70/classificação , Proteínas Mitocondriais/classificação , Família Multigênica , Filogenia , Proteínas de Saccharomyces cerevisiae/classificação , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
6.
Fungal Genet Biol ; 48(10): 947-55, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21708278

RESUMO

Thermodimorphic fungi include most causative agents of systemic mycoses, but the molecular mechanisms that underlie their defining trait, i.e. the ability to shift between mould and yeast on temperature change alone, remain poorly understood. We hypothesised that the heat shock factor (Hsf), a protein that evolved to sense thermal stimuli quickly, might play a role in this process in addition to the known regulator Drk1 and the Ryp proteins. To test this hypothesis, we characterised the Hsf from the thermodimorph Paracoccidioides lutzii (formerly Paracoccidioides brasiliensis isolate 01). We show in the present work that PlHsf possesses regulatory domains that are exclusive of the Eurotiomycetidae family, suggesting evolutionary specialisation; that it can successfully rescue the otherwise lethal loss of the native protein of Saccharomyces cerevisiae; and that its DNA-binding domain is able to recognise regulatory elements from the promoters of both Drk1 and Ryp1. An in silico screening of all 1 kb sequences upstream of P. lutzii ORFs revealed that 7% of them possess a heat shock element. This is the first description of a heat shock factor in a thermodimorphic fungus.


Assuntos
Proteínas de Choque Térmico/genética , Paracoccidioides/genética , Paracoccidioidomicose/microbiologia , Sequência de Bases , Proteínas de Ligação a DNA/classificação , Proteínas de Ligação a DNA/genética , Evolução Molecular , Proteínas de Choque Térmico/classificação , Humanos , Dados de Sequência Molecular , Paracoccidioides/fisiologia , Filogenia , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Temperatura , Fatores de Transcrição/classificação , Fatores de Transcrição/genética
7.
Proc Natl Acad Sci U S A ; 106(27): 11073-8, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19549854

RESUMO

Protein aggregation is a hallmark of a large and diverse number of conformational diseases. Molecular chaperones of the Hsp40 family (Escherichia coli DnaJ homologs) recognize misfolded disease proteins and suppress the accumulation of toxic protein species. Type I Hsp40s are very potent at suppressing protein aggregation and facilitating the refolding of damaged proteins. Yet, the molecular mechanism for the recognition of nonnative polypeptides by Type I Hsp40s such as yeast Ydj1 is not clear. Here we computationally identify a unique motif that is selectively recognized by Ydj1p. The motif is characterized by the consensus sequence GX[LMQ]{P}X{P}{CIMPVW}, where [XY] denotes either X or Y and {XY} denotes neither X nor Y. We further verify the validity of the motif by site-directed mutagenesis and show that substrate binding by Ydj1 requires recognition of this motif. A yeast proteome screen revealed that many proteins contain more than one stretch of residues that contain the motif and are separated by varying numbers of amino acids. In light of our results, we propose a 2-site peptide-binding model and a plausible mechanism of peptide presentation by Ydj1p to the chaperones of the Hsp70 family. Based on our results, and given that Ydj1p and its human ortholog Hdj2 are functionally interchangeable, we hypothesize that our results can be extended to understanding human diseases.


Assuntos
Sequência Consenso , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Aminoácidos , Sítios de Ligação , Biologia Computacional , Análise Mutacional de DNA , Proteínas de Choque Térmico HSP40/classificação , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Reprodutibilidade dos Testes , Proteínas de Saccharomyces cerevisiae/classificação , Especificidade por Substrato
8.
Mol Biol Cell ; 20(6): 1618-28, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19158382

RESUMO

Actin plays an essential role in many eukaryotic cellular processes, including motility, generation of polarity, and membrane trafficking. Actin function in these roles is regulated by association with proteins that affect its polymerization state, dynamics, and organization. Numerous proteins have been shown to localize with cortical patches of yeast actin during endocytosis, but the role of many of these proteins remains poorly understood. Here, we reveal that the yeast protein Ysc84 represents a new class of actin-binding proteins, conserved from yeast to humans. It contains a novel N-terminal actin-binding domain termed Ysc84 actin binding (YAB), which can bind and bundle actin filaments. Intriguingly, full-length Ysc84 alone does not bind to actin, but binding can be activated by a specific motif within the polyproline region of the yeast WASP homologue Las17. We also identify a new monomeric actin-binding site on Las17. Together, the polyproline region of Las17 and Ysc84 can promote actin polymerization. Using live cell imaging, kinetics of assembly and disassembly of proteins at the endocytic site were analyzed and reveal that loss of Ysc84 and its homologue Lsb3 decrease inward movement of vesicles consistent with a role in actin polymerization during endocytosis.


Assuntos
Actinas/metabolismo , Endocitose , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Actinas/ultraestrutura , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Proteínas dos Microfilamentos , Microscopia Eletrônica , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/genética , Proteína da Síndrome de Wiskott-Aldrich/classificação , Proteína da Síndrome de Wiskott-Aldrich/genética
9.
Proc Natl Acad Sci U S A ; 105(36): 13345-50, 2008 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-18757753

RESUMO

Amyloid polymorphism underlies the prion strain phenomenon where a single protein polypeptide adopts different chain-folding patterns to form self-propagating cross-beta structures. Three strains of the yeast prion [PSI], namely [VH], [VK], and [VL], have been previously characterized and are amyloid conformers of the yeast translation termination factor Sup35. Here we define specific sequences of the Sup35 protein that are necessary for in vivo propagation of each of these prion strains. By sequential substitution of residues 5-55 of Sup35 by proline and insertion of glycine at alternate sites in this segment, specific mutations have been identified that interfere selectively with the propagation of each of the three prion strains in yeast: the [VH] strain requires amino acid residues 7-21; [VK] requires residues 9-37; and [VL] requires residues 5 to at least 52. Minimal polypeptide segments capable of encoding prion conformations were defined by assembly of recombinant Sup35 fragments on purified prion nuclei to form amyloid fibers in vitro, whose infectivity was assayed in yeast. For the [VK] and [VL] strains, the minimal fragments approximately coincide with the strain-specific sequences defined by mutations of the N-terminal portion of the intact Sup35 (1-685); and for the [VH] strain, a longer Sup (1-53) fragment is required. Polymorphic structures of other amyloids might similarly involve different stretches of polypeptides to form cross-beta amyloid cores with distinct molecular recognition surfaces.


Assuntos
Príons/química , Príons/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Benzotiazóis , Glicina/química , Fatores de Terminação de Peptídeos , Príons/classificação , Príons/genética , Prolina/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/genética , Tiazóis/metabolismo
10.
Pflugers Arch ; 456(5): 883-96, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18421473

RESUMO

Tandem pore-loop potassium channels differ from the majority of K(+) channels in that a single polypeptide chain carries two K(+)-specific segments (P) each sandwiched between two transmembrane helices (M) to form an MP(1)M-MP(2)M series. Two of these peptide molecules assemble to form one functional potassium channel, which is expected to have biaxial symmetry (commonly described as asymmetric) due to independent mutation in the two MPM units. The resulting intrinsic asymmetry is exaggerated in fungal 2P channels, especially in Tok1p of Saccharomyces, by the N-terminal presence of four more transmembrane helices. Functional implications of such structural asymmetry have been investigated via mutagenesis of residues (L290 in P(1) and Y424 in P(2)) that are believed to provide the outermost ring of carbonyl oxygen atoms for coordination with potassium ions. Both complementary mutations (L290Y and Y424L) yield functional potassium channels having quasi-normal conductance when expressed in Saccharomyces itself, but the P(1) mutation (only) accelerates channel opening about threefold in response to depolarizing voltage shifts. The more pronounced effect at P(1) than at P(2) appears paradoxical in relation to evolution, because a comparison of fungal Tok1p sequences (from 28 ascomycetes) shows the filter sequence of P(2) (overwhelmingly TIGYGD) to be much stabler than that of P(1) (mostly TIGLGD). Profound functional asymmetry is revealed by the fact that combining mutations (L290Y + Y424L)-which inverts the order of residues from the wild-type channel-reduces the expressed channel conductance by a large factor (20-fold, cf.

Assuntos
Sequência de Aminoácidos , Leucina/genética , Canais de Potássio/genética , Proteínas de Saccharomyces cerevisiae/genética , Tirosina/genética , Teste de Complementação Genética , Dados de Sequência Molecular , Mutação , Técnicas de Patch-Clamp , Filogenia , Canais de Potássio/classificação , Canais de Potássio/metabolismo , Estrutura Secundária de Proteína , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
11.
Nucleic Acids Res ; 36(2): 629-39, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18063569

RESUMO

Emg1 was previously shown to be required for maturation of the 18S rRNA and biogenesis of the 40S ribosomal subunit. Here we report the determination of the crystal structure of Emg1 at 2 A resolution in complex with the methyl donor, S-adenosyl-methionine (SAM). This structure identifies Emg1 as a novel member of the alpha/beta knot fold methyltransferase (SPOUT) superfamily. In addition to the conserved SPOUT core, Emg1 has two unique domains that form an extended surface, which we predict to be involved in binding of RNA substrates. A point mutation within a basic patch on this surface almost completely abolished RNA binding in vitro. Three point mutations designed to disrupt the interaction of Emg1 with SAM each caused>100-fold reduction in SAM binding in vitro. Expression of only Emg1 with these mutations could support growth and apparently normal ribosome biogenesis in strains genetically depleted of Emg1. We conclude that the catalytic activity of Emg1 is not essential and that the presence of the protein is both necessary and sufficient for ribosome biogenesis.


Assuntos
Metiltransferases/química , Proteínas Ribossômicas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Dimerização , Metiltransferases/classificação , Metiltransferases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , RNA Fúngico/metabolismo , Proteínas Ribossômicas/classificação , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
12.
Nature ; 447(7143): 487-92, 2007 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-17495930

RESUMO

Reactive oxygen species trigger cellular responses by activation of stress-responsive mitogen-activated protein kinase (MAPK) signalling pathways. Reversal of MAPK activation requires the transcriptional induction of specialized cysteine-based phosphatases that mediate MAPK dephosphorylation. Paradoxically, oxidative stresses generally inactivate cysteine-based phosphatases by thiol modification and thus could lead to sustained or uncontrolled MAPK activation. Here we describe how the stress-inducible MAPK phosphatase, Sdp1, presents an unusual solution to this apparent paradox by acquiring enhanced catalytic activity under oxidative conditions. Structural and biochemical evidence reveals that Sdp1 employs an intramolecular disulphide bridge and an invariant histidine side chain to selectively recognize a tyrosine-phosphorylated MAPK substrate. Optimal activity critically requires the disulphide bridge, and thus, to the best of our knowledge, Sdp1 is the first example of a cysteine-dependent phosphatase that couples oxidative stress with substrate recognition. We show that Sdp1, and its paralogue Msg5, have similar properties and belong to a new group of phosphatases unique to yeast and fungal taxa.


Assuntos
Fungos/enzimologia , Proteínas Tirosina Fosfatases/classificação , Proteínas Tirosina Fosfatases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Cisteína/metabolismo , Dissulfetos/metabolismo , Fosfatases de Especificidade Dupla , Histidina/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução/efeitos dos fármacos , Estresse Oxidativo , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/classificação , Fosfoproteínas Fosfatases/metabolismo , Fosfotirosina/metabolismo , Proteínas Tirosina Fosfatases/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
13.
Nucleic Acids Res ; 34(22): 6505-20, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17130173

RESUMO

WRKY and GCM1 are metal chelating DNA-binding domains (DBD) which share a four stranded fold. Using sensitive sequence searches, we show that this WRKY-GCM1 fold is also shared by the FLYWCH Zn-finger domain and the DBDs of two classes of Mutator-like element (MULE) transposases. We present evidence that they share a stabilizing core, which suggests a possible origin from a BED finger-like intermediate that was in turn ultimately derived from a C2H2 Zn-finger domain. Through a systematic study of the phyletic pattern, we show that this WRKY-GCM1 superfamily is a widespread eukaryote-specific group of transcription factors (TFs). We identified several new members across diverse eukaryotic lineages, including potential TFs in animals, fungi and Entamoeba. By integrating sequence, structure, gene expression and transcriptional network data, we present evidence that at least two major global regulators belonging to this superfamily in Saccharomyces cerevisiae (Rcs1p and Aft2p) have evolved from transposons, and attained the status of transcription regulatory hubs in recent course of ascomycete yeast evolution. In plants, we show that the lineage-specific expansion of WRKY-GCM1 domain proteins acquired functional diversity mainly through expression divergence rather than by protein sequence divergence. We also use the WRKY-GCM1 superfamily as an example to illustrate the importance of transposons in the emergence of new TFs in different lineages.


Assuntos
Evolução Molecular , Fatores de Transcrição/classificação , Transposases/classificação , Dedos de Zinco , Sequência de Aminoácidos , Animais , Arabidopsis/embriologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Cisteína/análise , Elementos de DNA Transponíveis , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/classificação , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Análise de Sequência de Proteína , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transposases/química , Transposases/genética
14.
PLoS Comput Biol ; 2(8): e100, 2006 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16884331

RESUMO

Recent proteome-wide screening approaches have provided a wealth of information about interacting proteins in various organisms. To test for a potential association between protein connectivity and the amount of predicted structural disorder, the disorder propensities of proteins with various numbers of interacting partners from four eukaryotic organisms (Caenorhabditis elegans, Saccharomyces cerevisiae, Drosophila melanogaster, and Homo sapiens) were investigated. The results of PONDR VL-XT disorder analysis show that for all four studied organisms, hub proteins, defined here as those that interact with > or = 10 partners, are significantly more disordered than end proteins, defined here as those that interact with just one partner. The proportion of predicted disordered residues, the average disorder score, and the number of predicted disordered regions of various lengths were higher overall in hubs than in ends. A binary classification of hubs and ends into ordered and disordered subclasses using the consensus prediction method showed a significant enrichment of wholly disordered proteins and a significant depletion of wholly ordered proteins in hubs relative to ends in worm, fly, and human. The functional annotation of yeast hubs and ends using GO categories and the correlation of these annotations with disorder predictions demonstrate that proteins with regulation, transcription, and development annotations are enriched in disorder, whereas proteins with catalytic activity, transport, and membrane localization annotations are depleted in disorder. The results of this study demonstrate that intrinsic structural disorder is a distinctive and common characteristic of eukaryotic hub proteins, and that disorder may serve as a determinant of protein interactivity.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas ELAV/metabolismo , Ligases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Aminoácidos/química , Animais , Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/classificação , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/química , Proteínas de Transporte/classificação , Proteínas de Transporte/genética , Biologia Computacional , Proteínas de Drosophila/química , Proteínas de Drosophila/classificação , Proteínas de Drosophila/genética , Drosophila melanogaster/química , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas ELAV/química , Proteínas ELAV/classificação , Proteínas ELAV/genética , Proteína Semelhante a ELAV 2 , Humanos , Ligases/química , Ligases/classificação , Ligases/genética , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/genética
15.
Biochim Biophys Acta ; 1761(4): 474-83, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16647879

RESUMO

Increasing evidence indicates that DHHC cysteine-rich domain-containing proteins (DHHC proteins) are protein acyltransferases. Although multiple DHHC proteins are found in eukaryotes, characterization has been examined for only a few. Here, we have cloned all the yeast and human DHHC genes and investigated their intracellular localization and tissue-specific expression. Most DHHC proteins are localized in the ER and/or Golgi, with a few localized in the plasma membrane and one in the yeast vacuole. Human DHHC mRNAs also differ in their tissue-specific expression. These results may provide clues to aid in discovering the specific function(s) of each DHHC protein.


Assuntos
Aciltransferases/metabolismo , Isoenzimas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Aciltransferases/classificação , Aciltransferases/genética , Linhagem Celular , Humanos , Isoenzimas/classificação , Isoenzimas/genética , Filogenia , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/genética , Frações Subcelulares/enzimologia , Distribuição Tecidual
16.
Biochem Soc Trans ; 33(Pt 6): 1418-20, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16246134

RESUMO

The model eukaryote Saccharomyces cerevisiae is well suited to investigate the causes of metabolic disturbance. PRPP [5-phospho-D-ribosyl-1(alpha)-pyrophosphate] may be regarded as a junction of carbon and nitrogen metabolism. As a result of this central position, perturbations in its synthesis can give rise to many unexpected cellular events, such as impaired cell integrity. We have taken advantage of S. cerevisiae's genetic tractability to investigate the metabolic links responsible for connecting the biochemical intermediate PRPP to apparently unrelated cellular functions. This approach provides insight into the co-ordination of different biological processes.


Assuntos
Fosforribosil Pirofosfato/biossíntese , Saccharomyces cerevisiae/metabolismo , Estrutura Molecular , Peptídeos/classificação , Peptídeos/genética , Peptídeos/metabolismo , Fenótipo , Fosforribosil Pirofosfato/classificação , Filogenia , Ribose-Fosfato Pirofosfoquinase/classificação , Ribose-Fosfato Pirofosfoquinase/genética , Ribose-Fosfato Pirofosfoquinase/metabolismo , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Nature ; 435(7043): 765-72, 2005 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-15944694

RESUMO

Self-perpetuating changes in the conformations of amyloidogenic proteins play vital roles in normal biology and disease. Despite intense research, the architecture and conformational conversion of amyloids remain poorly understood. Amyloid conformers of Sup35 are the molecular embodiment of the yeast prion known as [PSI], which produces heritable changes in phenotype through self-perpetuating changes in protein folding. Here we determine the nature of Sup35's cooperatively folded amyloid core, and use this information to investigate central questions in prion biology. Specific segments of the amyloid core form intermolecular contacts in a 'Head-to-Head', 'Tail-to-Tail' fashion, but the 'Central Core' is sequestered through intramolecular contacts. The Head acquires productive interactions first, and these nucleate assembly. Variations in the length of the amyloid core and the nature of intermolecular interfaces form the structural basis of distinct prion 'strains', which produce variant phenotypes in vivo. These findings resolve several problems in yeast prion biology and have broad implications for other amyloids.


Assuntos
Príons/química , Príons/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Amiloide/química , Amiloide/genética , Amiloide/metabolismo , Cisteína/genética , Cisteína/metabolismo , Variação Genética/genética , Modelos Moleculares , Dados de Sequência Molecular , Fatores de Terminação de Peptídeos , Fenótipo , Príons/classificação , Príons/metabolismo , Dobramento de Proteína , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade
18.
J Mol Biol ; 347(1): 81-93, 2005 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-15733919

RESUMO

Tom20 is the master receptor for protein import into mitochondria. Analysis of motifs present in Tom20 sequences from fungi and animals found several highly conserved regions, including features of the transmembrane segment, the ligand-binding domain and functionally important flexible segments at the N terminus and the C terminus of the protein. Hidden Markov model searches of genome sequence data revealed novel isoforms of Tom20 in vertebrate and invertebrate animals. A three-dimensional comparative model of the novel type I Tom20, based on the structurally characterized type II isoform, shows important differences in the amino acid residues lining the ligand-binding groove, where the type I protein from animals is more similar to the fungal form of Tom20. Given that the two receptor types from mouse interact with the same set of precursor protein substrates, comparative analysis of the substrate-binding site provides unique insight into the mechanism of substrate recognition. No Tom20-related protein was found in genome sequence data from plants or protozoans, suggesting the receptor Tom20 evolved after the split of animals and fungi from the main lineage of eukaryotes.


Assuntos
Conformação Proteica , Isoformas de Proteínas , Receptores Citoplasmáticos e Nucleares , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Animais , Sítios de Ligação , Evolução Molecular , Humanos , Cadeias de Markov , Proteínas de Transporte da Membrana Mitocondrial , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/metabolismo , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/classificação , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
19.
Bioinformatics ; 21(10): 2424-9, 2005 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15746280

RESUMO

MOTIVATION: The functional interpretation of microarray datasets still represents a time-consuming and challenging task. Up to now functional categories that are relevant for one or more experimental context(s) have been commonly extracted from a set of regulated genes and presented in long lists. RESULTS: To facilitate interpretation, we integrated Gene Ontology (GO) annotations into Correspondence Analysis to display genes, experimental conditions and gene-annotations in a single plot. The position of the annotations in these plots can be directly used for the functional interpretation of clusters of genes or experimental conditions without the need for comparing long lists of annotations. Correspondence Analysis is not limited in the number of experimental conditions that can be compared simultaneously, allowing an easy identification of characterizing annotations even in complex experimental settings. Due to the rapidly increasing amount of annotation data available, we apply an annotation filter. Hereby the number of displayed annotations can be significantly reduced to a set of descriptive ones, further enhancing the interpretability of the plot. We validated the method on transcription data from Saccharomyces cerevisiae and human pancreatic adenocarcinomas. AVAILABILITY: The M-CHiPS software is accessible for collaborators at http://www.mchips.org


Assuntos
Algoritmos , Bases de Dados de Proteínas , Documentação/métodos , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Proteínas/análise , Proteínas/classificação , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Sistemas de Gerenciamento de Base de Dados , Humanos , Armazenamento e Recuperação da Informação/métodos , Processamento de Linguagem Natural , Proteínas de Neoplasias/análise , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Integração de Sistemas
20.
Eukaryot Cell ; 3(4): 976-83, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15302830

RESUMO

Saccharomyces cerevisiae Yaf9p and the mammalian leukemia-associated protein ENL share a high degree of similarity. To investigate the biological function of Yaf9p, this protein was used to search for interacting proteins in a two-hybrid system. Here, we demonstrate that Yaf9p binds directly to Swc4p, the yeast homolog of the mammalian DNA-methyltransferase-associated protein 1. Yaf9p and Swc4p associate through C-terminal domains, and both proteins coprecipitate in vitro in pull-down experiments and in vivo by immunoprecipitation. In living cells, Swc4p is present in a megadalton protein complex that shows a fractionation behavior in gel filtration similar to that of Esa1p, the histone acetyltransferase of the NuA4 complex. Recruitment of Yaf9p to DNA leads to promoter-specific transcriptional activation that can be inhibited by dominant negative Swc4p lacking the Yaf9p binding domain. Interference with Swc4p function also increases sensitivity to the microtubule toxin benomyl, a trait that corresponds to the known phenotype of a yaf9(-) knockout strain. In summary, the results suggest that Yaf9p and Swc4p form a protein pair that has a role in chromatin modification with possible implications also for the function of their mammalian counterparts.


Assuntos
Acetiltransferases/metabolismo , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Acetiltransferases/química , Acetiltransferases/genética , Sequência de Aminoácidos , Animais , Regulação Fúngica da Expressão Gênica , Histona Acetiltransferases , Dados de Sequência Molecular , Peso Molecular , Complexos Multiproteicos , Filogenia , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA