Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 565
Filtrar
1.
Sci Adv ; 10(19): eadj5185, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728403

RESUMO

CK1 kinases participate in many signaling pathways, and their regulation is of meaningful biological consequence. CK1s autophosphorylate their C-terminal noncatalytic tails, and eliminating these tails increases substrate phosphorylation in vitro, suggesting that the autophosphorylated C-termini act as inhibitory pseudosubstrates. To test this prediction, we comprehensively identified the autophosphorylation sites on Schizosaccharomyces pombe Hhp1 and human CK1ε. Phosphoablating mutations increased Hhp1 and CK1ε activity toward substrates. Peptides corresponding to the C-termini interacted with the kinase domains only when phosphorylated, and substrates competitively inhibited binding of the autophosphorylated tails to the substrate binding grooves. Tail autophosphorylation influenced the catalytic efficiency with which CK1s targeted different substrates, and truncating the tail of CK1δ broadened its linear peptide substrate motif, indicating that tails contribute to substrate specificity as well. Considering autophosphorylation of both T220 in the catalytic domain and C-terminal sites, we propose a displacement specificity model to describe how autophosphorylation modulates substrate specificity for the CK1 family.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Especificidade por Substrato , Fosforilação , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Humanos , Domínio Catalítico , Ligação Proteica , Peptídeos/metabolismo , Peptídeos/química , Mutação , Caseína Quinase 1 épsilon/metabolismo , Caseína Quinase 1 épsilon/genética , Sequência de Aminoácidos
2.
Biochem Biophys Res Commun ; 714: 149970, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38663097

RESUMO

Movement dynamics in the nucleus involve various biological processes, including DNA repair, which is crucial for cancer prevention. Changes in the movement of the components of the nucleus indicate the changes in movement dynamics in the nucleus. In Schizosaccharomyces pombe, the inner nuclear membrane protein Bqt4 plays an essential role in attaching telomeres to the nuclear envelope. We observed that the deletion of bqt4+ caused a significant decrease in the mean square displacement (MSD) calculated from the distance between the nucleolar center and spindle pole body (SPB), hereafter referred to as MSD(SPB-Nucleolus). The MSD(SPB-Nucleolus) decrease in bqt4Δ was microtubule-dependent. The Rap1-binding ability loss mutant, bqt4F46A, and nonspecific DNA-binding ability mutants, bqt43E-A, did not exhibit an MSD(SPB-Nucleolus) decrease compared to the WT. Moreover, the bqt43E-Arap1Δ double mutant and 1-262 amino acids truncated mutant bqt4ΔN (263-432), which does not have either Rap1-binding or nonspecific DNA-binding abilities, did not exhibit the MSD(SPB-Nucleolus) decrease to the same extent as bqt4Δ. These results suggest that the unknown function of Bqt4 in the C-terminal domain is essential for the maintenance of the pattern of relative movement between SPB and the nucleolus.


Assuntos
Nucléolo Celular , Proteínas de Ligação a DNA , Proteínas Nucleares , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Corpos Polares do Fuso , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Nucléolo Celular/metabolismo , Corpos Polares do Fuso/metabolismo , Mutação , Microtúbulos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Ligação Proteica
3.
Yeast ; 41(5): 349-363, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583078

RESUMO

The cAMP-PKA signaling pathway plays a crucial role in sensing and responding to nutrient availability in the fission yeast Schizosaccharomyces pombe. This pathway monitors external glucose levels to control cell growth and sexual differentiation. However, the temporal dynamics of the cAMP-PKA pathway in response to external stimuli remains unclear mainly due to the lack of tools to quantitatively visualize the activity of the pathway. Here, we report the development of the kinase translocation reporter (KTR)-based biosensor spPKA-KTR1.0, which allows us to measure the dynamics of PKA activity in fission yeast cells. The spPKA-KTR1.0 is derived from the transcription factor Rst2, which translocates from the nucleus to the cytoplasm upon PKA activation. We found that spPKA-KTR1.0 translocates between the nucleus and cytoplasm in a cAMP-PKA pathway-dependent manner, indicating that the spPKA-KTR1.0 is a reliable indicator of the PKA activity in fission yeast cells. In addition, we implemented a system that simultaneously visualizes and manipulates the cAMP-PKA signaling dynamics by introducing bPAC, a photoactivatable adenylate cyclase, in combination with spPKA-KTR1.0. This system offers an opportunity for investigating the role of the signaling dynamics of the cAMP-PKA pathway in fission yeast cells with higher temporal resolution.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Optogenética , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Transdução de Sinais , Schizosaccharomyces/genética , Schizosaccharomyces/enzimologia , Schizosaccharomyces/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , AMP Cíclico/metabolismo , Técnicas Biossensoriais , Imagem Óptica/métodos , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Fatores de Transcrição
4.
Biol Open ; 13(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38526189

RESUMO

CENP-A determines the identity of the centromere. Because the position and size of the centromere and its number per chromosome must be maintained, the distribution of CENP-A is strictly regulated. In this study, we have aimed to understand mechanisms to regulate the distribution of CENP-A (Cnp1SP) in fission yeast. A mutant of the ufd1+ gene (ufd1-73) encoding a cofactor of Cdc48 ATPase is sensitive to Cnp1 expressed at a high level and allows mislocalization of Cnp1. The level of Cnp1 in centromeric chromatin is increased in the ufd1-73 mutant even when Cnp1 is expressed at a normal level. A preexisting mutant of the cdc48+ gene (cdc48-353) phenocopies the ufd1-73 mutant. We have also shown that Cdc48 and Ufd1 proteins interact physically with centromeric chromatin. Finally, Cdc48 ATPase with Ufd1 artificially recruited to the centromere of a mini-chromosome (Ch16) induce a loss of Cnp1 from Ch16, leading to an increased rate of chromosome loss. It appears that Cdc48 ATPase, together with its cofactor Ufd1 remove excess Cnp1 from chromatin, likely in a direct manner. This mechanism may play a role in centromere disassembly, a process to eliminate Cnp1 to inactivate the kinetochore function during development, differentiation, and stress response.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Cromatina/genética , Cromatina/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Histonas/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Centrômero/genética , Centrômero/metabolismo , Adenosina Trifosfatases/metabolismo , Extratos Vegetais/metabolismo
5.
Biosci Biotechnol Biochem ; 88(5): 475-492, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38449372

RESUMO

The fission yeast Schizosaccharomyces pombe is an excellent model organism to explore cellular events owing to rich tools in genetics, molecular biology, cellular biology, and biochemistry. Schizosaccharomyces pombe proliferates continuously when nutrients are abundant but arrests in G1 phase upon depletion of nutrients such as nitrogen and glucose. When cells of opposite mating types are present, cells conjugate, fuse, undergo meiosis, and finally form 4 spores. This sexual differentiation process in S. pombe has been studied extensively. To execute sexual differentiation, the glucose-sensing cAMP-PKA (cyclic adenosine monophosphate-protein kinase A) pathway, nitrogen-sensing TOR (target of rapamycin) pathway, and SAPK (stress-activating protein kinase) pathway are crucial, and the MAPK (mitogen-activating protein kinase) cascade is essential for pheromone sensing. These signals regulate ste11 at the transcriptional and translational levels, and Ste11 is modified in multiple ways. This review summarizes the initiation of sexual differentiation in S. pombe based on results I have helped to obtain, including the work of many excellent researchers.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Fatores de Transcrição , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Regulação Fúngica da Expressão Gênica , Transdução de Sinais , Meiose , Feromônios/metabolismo , Diferenciação Sexual/genética , Glucose/metabolismo , Nitrogênio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/genética , Esporos Fúngicos/fisiologia
6.
Mitochondrion ; 76: 101875, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499131

RESUMO

Pentatricopeptide repeat proteins are involved in mitochondrial both transcriptional and posttranscriptional regulation. Schizosaccharomyces pombe Ppr2 is a general mitochondrial translation factor that plays a critical role in the synthesis of all mitochondrial DNA-encoded oxidative phosphorylation subunits, which are essential for mitochondrial respiration. Our previous analysis showed that ppr2 deletion resulted in increased expression of iron uptake genes and caused ferroptosis-like cell death in S. pombe. In the present work, we showed that deletion of ppr2 reduced viability on glycerol- and galactose-containing media.Php4 is a transcription repressor that regulates iron homeostasis in fission yeast. We found that in the ppr2 deletion strain, Php4 was constitutively active and accumulated in the nucleus in the stationary phase. We also found that deletion of ppr2 decreased the ferroptosis-related protein Gpx1 in the mitochondria. Overexpression of Gpx1 improves the viability of Δppr2 cells. We showed that the deletion of ppr2 increased the production of ROS, downregulated heme synthesis and iron-sulfur cluster proteins, and induced stress proteins. Finally, we observed the nuclear accumulation of Pap1-GFP and Sty1-GFP, suggesting that Sty1 and Pap1 in response to cellular stress in the ppr2 deletion strain. These results suggest thatppr2 deletion may cause mitochondrial dysfunction, which is likely to lead to iron-sensing defect and iron starvation response, resulting in perturbation of iron homeostasis and increased hydroxyl radical production. The increased hydroxyl radical production triggers cellular responses in theppr2 deletion strain.


Assuntos
Deleção de Genes , Ferro , Estresse Oxidativo , Proteínas Associadas a Pancreatite , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Ferro/metabolismo , Proteínas Associadas a Pancreatite/metabolismo , Proteínas Associadas a Pancreatite/genética , Regulação Fúngica da Expressão Gênica , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Espécies Reativas de Oxigênio/metabolismo , Viabilidade Microbiana , Fator de Ligação a CCAAT , Fatores de Transcrição de Zíper de Leucina Básica
7.
J Biol Chem ; 300(3): 105670, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272226

RESUMO

Schizosaccharomyces pombe Php4 is the regulatory subunit of the CCAAT-binding complexes and plays an important role in the regulation of iron homeostasis and iron-dependent metabolism. Here, we show that Php4 undergoes ubiquitin-dependent degradation in the late logarithmic and stationary phases. The degradation and ubiquitination of Php4 could be attenuated by deletion of hul6, a gene encoding a putative HECT-type E3 ubiquitin ligase. The expression levels of Hul6 and Php4 are oppositely regulated during cell growth. Hul6 interacts with the C-terminal region of Php4. Two lysine residues (K217 and K274) located in the C-terminal region of Php4 are required for its polyubiquitination. Increasing the levels of Php4 by deletion of hul6 or overexpression of php4 decreased expression of Php4 target proteins involved in iron-dependent metabolic pathways such as the tricarboxylic cycle and mitochondrial oxidative phosphorylation, thus causing increased sensitivity to high-iron and reductions in succinate dehydrogenase and mitochondrial complex II activities. Hul6 is located primarily in the mitochondrial outer membrane and most likely targets cytosolic Php4 for ubiquitination and degradation. Taken together, our data suggest that Hul6 regulates iron-dependent metabolism through degradation of Php4 under normal growth conditions. Our results also suggest that Hul6 promotes iron-dependent metabolism to help the cell to adapt to a nutrient-starved growth phase.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Citosol/metabolismo , Ferro/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Ubiquitina/metabolismo
8.
J Microbiol ; 62(1): 21-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38180730

RESUMO

It was reported that LAMMER kinase in Schizosaccharomyces pombe plays an important role in cation-dependent and galactose-specific flocculation. Analogous to other flocculating yeasts, when cell wall extracts of the Δlkh1 strain were treated to the wild-type strain, it displayed flocculation. Gas2, a 1,3-ß-glucanosyl transferase, was isolated from the EDTA-extracted cell-surface proteins in the Δlkh1 strain. While disruption of the gas2+ gene was not lethal and reduced the flocculation activity of the ∆lkh1 strain, the expression of a secreted form of Gas2, in which the GPI anchor addition sequences had been removed, conferred the ability to flocculate upon the WT strain. The Gas2-mediated flocculation was strongly inhibited by galactose but not by glucose. Immunostaining analysis showed that the cell surface localization of Gas2 was crucial for the flocculation of fission yeast. In addition, we identified the regulation of mbx2+ expression by Lkh1 using RT-qPCR. Taken together, we found that Lkh1 induces asexual flocculation by regulating not only the localization of Gas2 but also the transcription of gas2+ through Mbx2.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Galactose/metabolismo , Galactose/farmacologia , Floculação , Proteínas Quinases/genética
9.
Open Biol ; 14(1): 230379, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38166399

RESUMO

Wee1 is a cell cycle regulator that phosphorylates Cdk1/Cdc2 and inhibits G2/M transition. Loss of Wee1 in fission yeast results in an early onset of mitosis. Interestingly, we found that cells lacking Wee1 require the functional spindle checkpoint for their viability. Genetic analysis indicated that the requirement is not attributable to the early onset of mitosis. Live-cell imaging revealed that some kinetochores are not attached or bioriented in the wee1 mutant. Furthermore, Mad2, a component of the spindle checkpoint known to recognize unattached kinetochores, accumulates in the vicinity of the spindle, representing activation of the spindle checkpoint in the mutant. It appears that the wee1 mutant cannot maintain stable kinetochore-microtubule attachment, and relies on the delay imposed by the spindle checkpoint for establishing biorientation of kinetochores. This study revealed a role of Wee1 in ensuring accurate segregation of chromosomes during mitosis, and thus provided a basis for a new principle of cancer treatment with Wee1 inhibitors.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Cinetocoros/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Fuso Acromático/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mitose , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
10.
Plant Physiol Biochem ; 206: 108268, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091933

RESUMO

Cadmium (Cd) is an environmental toxicant that accumulates in grains, which greatly increases the risk of human exposure to Cd via food chain. The exocytosis of Cd is one of the essential detoxification mechanisms in plants. OsEXO70s, which facilitate the fusion of secretory vesicles and target membranes, has undergone significant expansion in rice. Here, we uncovered 40 OsEXO70 genes characterized by genome-wide profiling and focused on the potential functions of OsEXO70s, especially OsEXO70FX1, in Cd stress. Overexpression of OsEXO70FX1 enhanced both diamide and Cd tolerances in Schizosaccharomyces pombe (S. pombe), and in Arabidopsis resulted in 11% more seedlings survival rate and about 70% longer primary roots under Cd treatment compared with WT (empty vector). Meanwhile, Cd treatment upregulated the expression levels of some exocyst subunits in overexpression lines. Trichomes isolated from overexpression lines were observed to accumulate more Cd. Also, reactive oxygen species (ROS) induced by Cd stress reflected less sensitivity of OsEXO70FX1 overexpression lines to Cd stress, which was evidenced in the Cd determination assay. These results provide the fundament to future research on rice EXO70 family and suggest that it may have evolved a specialized role in response to Cd stress.


Assuntos
Arabidopsis , Oryza , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Humanos , Arabidopsis/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Oryza/genética , Oryza/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Raízes de Plantas/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
11.
Nucleic Acids Res ; 52(4): 1688-1701, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38084929

RESUMO

Centromeric chromatin plays a crucial role in kinetochore assembly and chromosome segregation. Centromeres are specified through the loading of the histone H3 variant CENP-A by the conserved chaperone Scm3/HJURP. The N-terminus of Scm3/HJURP interacts with CENP-A, while the C-terminus facilitates centromere localization by interacting with the Mis18 holocomplex via a small domain, called the Mis16-binding domain (Mis16-BD) in fission yeast. Fungal Scm3 proteins contain an additional conserved cysteine-rich domain (CYS) of unknown function. Here, we find that CYS binds zinc in vitro and is essential for the localization and function of fission yeast Scm3. Disrupting CYS by deletion or introduction of point mutations within its zinc-binding motif prevents Scm3 centromere localization and compromises kinetochore integrity. Interestingly, CYS alone can localize to the centromere, albeit weakly, but its targeting is greatly enhanced when combined with Mis16-BD. Expressing a truncated protein containing both Mis16-BD and CYS, but lacking the CENP-A binding domain, causes toxicity and is accompanied by considerable chromosome missegregation and kinetochore loss. These effects can be mitigated by mutating the CYS zinc-binding motif. Collectively, our findings establish the essential role of the cysteine-rich domain in fungal Scm3 proteins and provide valuable insights into the mechanism of Scm3 centromere targeting.


Assuntos
Proteínas de Transporte , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Transporte/genética , Centrômero/genética , Centrômero/metabolismo , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cisteína/metabolismo , Cinetocoros/metabolismo , Chaperonas Moleculares/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Zinco/metabolismo
12.
mBio ; 15(2): e0306223, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38133430

RESUMO

The inositol pyrophosphate signaling molecule 1,5-IP8 is an agonist of RNA 3'-processing and transcription termination in fission yeast that regulates the expression of phosphate acquisition genes pho1, pho84, and tgp1. IP8 is synthesized from 5-IP7 by the Asp1 N-terminal kinase domain and catabolized by the Asp1 C-terminal pyrophosphatase domain. asp1-STF mutations that delete or inactivate the Asp1 pyrophosphatase domain elicit growth defects in yeast extract with supplements (YES) medium ranging from severe sickness to lethality. We now find that the toxicity of asp1-STF mutants is caused by a titratable constituent of yeast extract. Via a genetic screen for spontaneous suppressors, we identified a null mutation of glycerophosphodiester transporter tgp1 that abolishes asp1-STF toxicity in YES medium. This result, and the fact that tgp1 mRNA expression is increased by >40-fold in asp1-STF cells, prompted discovery that: (i) glycerophosphocholine (GPC) recapitulates the toxicity of yeast extract to asp1-STF cells in a Tgp1-dependent manner, and (ii) induced overexpression of tgp1 in asp1+ cells also elicits toxicity dependent on GPC. asp1-STF suppressor screens yielded a suite of single missense mutations in the essential IP6 kinase Kcs1 that generates 5-IP7, the immediate precursor to IP8. Transcription profiling of the kcs1 mutants in an asp1+ background revealed the downregulation of the same phosphate acquisition genes that were upregulated in asp1-STF cells. The suppressor screen also returned single missense mutations in Plc1, the fission yeast phospholipase C enzyme that generates IP3, an upstream precursor for the synthesis of inositol pyrophosphates.IMPORTANCEThe inositol pyrophosphate metabolite 1,5-IP8 governs repression of fission yeast phosphate homeostasis genes pho1, pho84, and tgp1 by lncRNA-mediated transcriptional interference. Asp1 pyrophosphatase mutations that increase IP8 levels elicit precocious lncRNA termination, leading to derepression of the PHO genes. Deletions of the Asp1 pyrophosphatase domain result in growth impairment or lethality via IP8 agonism of transcription termination. It was assumed that IP8 toxicity ensues from dysregulation of essential genes. In this study, a suppressor screen revealed that IP8 toxicosis of Asp1 pyrophosphatase mutants is caused by: (i) a >40-fold increase in the expression of the inessential tgp1 gene encoding a glycerophosphodiester transporter and (ii) the presence of glycerophosphocholine in the growth medium. The suppressor screen yielded missense mutations in two upstream enzymes of inositol polyphosphate metabolism: the phospholipase C enzyme Plc1 that generates IP3 and the essential Kcs1 kinase that converts IP6 to 5-IP7, the immediate precursor of IP8.


Assuntos
Fragmentos de Peptídeos , Fosfotransferases (Aceptor do Grupo Fosfato) , RNA Longo não Codificante , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Tireoglobulina , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Inositol/metabolismo , Difosfatos/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , RNA Longo não Codificante/genética , Proteínas de Membrana Transportadoras/metabolismo , Pirofosfatases/genética , Pirofosfatases/metabolismo , Fosfatos de Inositol/metabolismo
13.
J Biol Chem ; 299(12): 105419, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37923140

RESUMO

The Bol2 homolog Fra2 and monothiol glutaredoxin Grx4 together play essential roles in regulating iron homeostasis in Schizosaccharomyces pombe. In vivo studies indicate that Grx4 and Fra2 act as coinhibitory partners that inactivate the transcriptional repressor Fep1 in response to iron deficiency. In Saccharomyces cerevisiae, Bol2 is known to form a [2Fe-2S]-bridged heterodimer with the monothiol Grxs Grx3 and Grx4, with the cluster ligands provided by conserved residues in Grx3/4 and Bol2 as well as GSH. In this study, we characterized this analogous [2Fe-2S]-bridged Grx4-Fra2 complex in S. pombe by identifying the specific residues in Fra2 that act as ligands for the Fe-S cluster and are required to regulate Fep1 activity. We present spectroscopic and biochemical evidence confirming the formation of a [2Fe-2S]-bridged Grx4-Fra2 heterodimer with His66 and Cys29 from Fra2 serving as Fe-S cluster ligands in S. pombe. In vivo transcription and growth assays confirm that both His66 and Cys29 are required to fully mediate the response of Fep1 to low iron conditions. Furthermore, we analyzed the interaction between Fep1 and Grx4-Fra2 using CD spectroscopy to monitor changes in Fe-S cluster coordination chemistry. These experiments demonstrate unidirectional [2Fe-2S] cluster transfer from Fep1 to Grx4-Fra2 in the presence of GSH, revealing the Fe-S cluster dependent mechanism of Fep1 inactivation mediated by Grx4 and Fra2 in response to iron deficiency.


Assuntos
Antígeno 2 Relacionado a Fos , Fatores de Transcrição GATA , Glutarredoxinas , Homeostase , Proteínas Ferro-Enxofre , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Humanos , Antígeno 2 Relacionado a Fos/genética , Antígeno 2 Relacionado a Fos/metabolismo , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Oxirredutases/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
14.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36990657

RESUMO

Iron is an essential cofactor for eukaryotic cells, as well as a toxic metal under certain conditions. On the other hand, glucose is the preferred energy and carbon source by most organisms and is an important signaling molecule in the regulation of biological processes. In Schizosaccharomyces pombe, the Ght5 hexose transporter, known as a high affinity glucose transporter, is required for cell proliferation in low glucose concentrations. Herein, we aimed to investigate the effects of iron stress on the Ght5 hexose transporter under glucose repression and derepression conditions. The effect of iron stress on the expression profile of the ght5 gene was analyzed by RT-qPCR and western blot. The localization of the Ght5-mNeonGreen fusion protein examined with confocal microscopy. Our results revealed that iron stress had an inhibitory effect on ght5 expression, and it altered Ght5 localization on the cell surface, causing it to accumulate in the cytoplasm.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Ferro/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Glucose/metabolismo , Regulação Fúngica da Expressão Gênica
15.
PLoS Genet ; 19(1): e1010582, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36626368

RESUMO

Oxidative stress is associated with cardiovascular and neurodegenerative diseases, diabetes, cancer, psychiatric disorders and aging. In order to counteract, eliminate and/or adapt to the sources of stress, cells possess elaborate stress-response mechanisms, which also operate at the level of regulating transcription. Interestingly, it is becoming apparent that the metabolic state of the cell and certain metabolites can directly control the epigenetic information and gene expression. In the fission yeast Schizosaccharomyces pombe, the conserved Sty1 stress-activated protein kinase cascade is the main pathway responding to most types of stresses, and regulates the transcription of hundreds of genes via the Atf1 transcription factor. Here we report that fission yeast cells defective in fatty acid synthesis (cbf11, mga2 and ACC/cut6 mutants; FAS inhibition) show increased expression of a subset of stress-response genes. This altered gene expression depends on Sty1-Atf1, the Pap1 transcription factor, and the Gcn5 and Mst1 histone acetyltransferases, is associated with increased acetylation of histone H3 at lysine 9 in the corresponding gene promoters, and results in increased cellular resistance to oxidative stress. We propose that changes in lipid metabolism can regulate the chromatin and transcription of specific stress-response genes, which in turn might help cells to maintain redox homeostasis.


Assuntos
Cromatina , Metabolismo dos Lipídeos , Estresse Oxidativo , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Acetiltransferases/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Cromatina/metabolismo , Expressão Gênica , Regulação Fúngica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Fatores de Transcrição/genética
16.
Cell Cycle ; 22(6): 633-644, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36426865

RESUMO

Cytokinesis is the final stage of cell division cycle when cellular constituents are separated to produce two daughter cells. This process is driven by the formation and constriction of a contractile ring. Progression of these events is controlled by mechanisms and proteins that are evolutionary conserved in eukaryotes from fungi to humans. Genetic and molecular studies in different model organisms identified essential cytokinesis genes, with several conserved proteins, including the anillin/Mid1p proteins, constituting the core cytokinetic machinery. The fission yeast Schizosaccharomyces pombe represents a well-established model organism to study eukaryotic cell cycle regulation. Cytokinesis in fission yeast and mammalian cells depends on the placement, assembly, maturation, and constriction of a medially located actin-myosin contractile ring (ACR). Here, we review aspects of the ACR assembly and cytokinesis process in fission yeast and consider the regulation of such events in mammalian cells. First, we briefly describe the role of anillin during mammalian ACR assembly and cytokinesis. Second, we describe different aspects of the anillin-like protein Mid1p regulation during the S. pombe cell cycle, including its structure, function, and phospho-regulation. Third, we briefly discuss Mid1pindependent ACR assembly in S. pombe. Fourth, we highlight emerging studies demonstrating the roles of anillin in human tumourigenesis introducing anillin as a potential drug target for cancer treatment. Collectively, we provide an overview of the current understanding of medial division and cytokinesis in S. pombe and suggest the implications of these observations in other eukaryotic organisms, including humans.


Assuntos
Neoplasias , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Humanos , Citocinese , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas Contráteis/metabolismo , Actinas/metabolismo
17.
Nat Cell Biol ; 25(1): 68-78, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36536175

RESUMO

Growing microtubule ends organize end-tracking proteins into comets of mixed composition. Here using a reconstituted fission yeast system consisting of end-binding protein Mal3, kinesin Tea2 and cargo Tip1, we found that these proteins can be driven into liquid-phase droplets both in solution and at microtubule ends under crowding conditions. In the absence of crowding agents, cryo-electron tomography revealed that motor-dependent comets consist of disordered networks where multivalent interactions may facilitate non-stoichiometric accumulation of cargo Tip1. We found that two disordered protein regions in Mal3 are required for the formation of droplets and motor-dependent accumulation of Tip1, while autonomous Mal3 comet formation requires only one of them. Using theoretical modelling, we explore possible mechanisms by which motor activity and multivalent interactions may lead to the observed enrichment of Tip1 at microtubule ends. We conclude that microtubule ends may act as platforms where multivalent interactions condense microtubule-associated proteins into large multi-protein complexes.


Assuntos
Microtúbulos , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Dineínas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Miosinas/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
18.
Autophagy ; 19(4): 1311-1331, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36107819

RESUMO

Macroautophagy/autophagy is an essential adaptive physiological response in eukaryotes induced during nutrient starvation, including glucose, the primary immediate carbon and energy source for most cells. Although the molecular mechanisms that induce autophagy during glucose starvation have been extensively explored in the budding yeast Saccharomyces cerevisiae, little is known about how this coping response is regulated in the evolutionary distant fission yeast Schizosaccharomyces pombe. Here, we show that S. pombe autophagy in response to glucose limitation relies on mitochondrial respiration and the electron transport chain (ETC), but, in contrast to S. cerevisiae, the AMP-activated protein kinase (AMPK) and DNA damage response pathway components do not modulate fission yeast autophagic flux under these conditions. In the presence of glucose, the cAMP-protein kinase A (PKA) signaling pathway constitutively represses S. pombe autophagy by downregulating the transcription factor Rst2, which promotes the expression of respiratory genes required for autophagy induction under limited glucose availability. Furthermore, the stress-activated protein kinase (SAPK) signaling pathway, and its central mitogen-activated protein kinase (MAPK) Sty1, positively modulate autophagy upon glucose limitation at the transcriptional level through its downstream effector Atf1 and by direct in vivo phosphorylation of Rst2 at S292. Thus, our data indicate that the signaling pathways that govern autophagy during glucose shortage or starvation have evolved differently in S. pombe and uncover the existence of sophisticated and multifaceted mechanisms that control this self-preservation and survival response.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Glucose/metabolismo , Autofagia/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais/genética , Regulação Fúngica da Expressão Gênica , Fatores de Transcrição/metabolismo
19.
Microbiol Mol Biol Rev ; 86(4): e0013022, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36468849

RESUMO

Most ascomycete fungi, including the fission yeast Schizosaccharomyces pombe, secrete two peptidyl mating pheromones: C-terminally modified and unmodified peptides. S. pombe has two mating types, plus and minus, which secrete two different pheromones, P-factor (unmodified) and M-factor (modified), respectively. These pheromones are specifically recognized by receptors on the cell surface of cells of opposite mating types, which trigger a pheromone response. Recognition between pheromones and their corresponding receptors is important for mate discrimination; therefore, genetic changes in pheromone or receptor genes affect mate recognition and cause reproductive isolation that limits gene flow between populations. Such genetic variation in recognition via the pheromone/receptor system may drive speciation. Our recent studies reported that two pheromone receptors in S. pombe might have different stringencies in pheromone recognition. In this review, we focus on the molecular mechanism of pheromone response and mating behavior, emphasizing pheromone diversification and its impact on reproductive isolation in S. pombe and closely related fission yeast species. We speculate that the "asymmetric" system might allow flexible adaptation to pheromone mutational changes while maintaining stringent recognition of mating partners. The loss of pheromone activity results in the extinction of an organism's lineage. Therefore, genetic changes in pheromones and their receptors may occur gradually and/or coincidently before speciation. Our findings suggest that the M-factor plays an important role in partner discrimination, whereas P-factor communication allows flexible adaptation to create variations in S. pombe. Our inferences provide new insights into the evolutionary mechanisms underlying pheromone diversification.


Assuntos
Ascomicetos , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Feromônios/genética , Feromônios/metabolismo
20.
mBio ; 13(6): e0308722, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36468882

RESUMO

Expression of the fission yeast Schizosaccharomyces pombe phosphate regulon is sensitive to the intracellular level of the inositol pyrophosphate signaling molecule 1,5-IP8. IP8 dynamics are determined by Asp1, a bifunctional enzyme consisting of an N-terminal kinase domain and a C-terminal pyrophosphatase domain that catalyze IP8 synthesis and catabolism, respectively. Here, we report structures of the Asp1 kinase domain, crystallized with two protomers in the asymmetric unit, one of which was complexed with ligands (ADPNP, ADP, or ATP; Mg2+ or Mn2+; IP6, 5-IP7, or 1,5-IP8) and the other which was ligand-free. The ligand-free enzyme adopts an "open" conformation that allows ingress of substrates and egress of products. ADPNP, ADP, and ATP and associated metal ions occupy a deep phospho-donor pocket in the active site. IP6 or 5-IP7 engagement above the nucleotide favors adoption of a "closed" conformation, in which surface protein segments undergo movement and a disordered-to-ordered transition to form an inositol polyphosphate-binding site. In a structure mimetic of the kinase Michaelis complex, the anionic 5-IP7 phosphates are encaged by an ensemble of nine cationic amino acids: Lys43, Arg223, Lys224, Lys260, Arg274, Arg285, Lys290, Arg293, and Lys341. Alanine mutagenesis of amino acids that contact the adenosine nucleoside of the ATP donor underscored the contributions of Asp258 interaction with the ribose 3'-OH and of Glu248 with adenine-N6. Changing Glu248 to Gln elicited a gain of function whereby the kinase became adept at using GTP as phosphate donor. Wild-type Asp1 kinase can utilize N6-benzyl-ATP as phosphate donor. IMPORTANCE The inositol pyrophosphate signaling molecule 1,5-IP8 modulates fission yeast phosphate homeostasis via its action as an agonist of RNA 3'-processing and transcription termination. Cellular IP8 levels are determined by Asp1, a bifunctional enzyme composed of an N-terminal kinase and a C-terminal pyrophosphatase domain. Here, we present a series of crystal structures of the Asp1 kinase domain, in a ligand-free state and in complexes with nucleotides ADPNP, ADP, and ATP, divalent cations magnesium and manganese, and inositol polyphosphates IP6, 5-IP7, and 1,5-IP8. Substrate binding elicits a switch from open to closed conformations, entailing a disordered-to-ordered transition and a rearrangement or movement of two peptide segments that form a binding site for the phospho-acceptor. Our structures, along with structure-guided mutagenesis, fortify understanding of the mechanism and substrate specificity of Asp1 kinase, and they extend and complement structural and functional studies of the orthologous human kinase PPIP5K2.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Humanos , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Difosfatos/metabolismo , Fosfatos de Inositol/metabolismo , Enzimas Multifuncionais/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Pirofosfatases/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA