Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Front Immunol ; 15: 1389551, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966642

RESUMO

Introduction: Pathogenesis of cutaneous leishmaniases involves parasite growth, persistent inflammation, and likely participation of lipoproteins (LP). The cholesteryl ester transfer protein (CETP), involved in LP remodeling, has been shown to participate in the inflammatory response and the evolution of infectious conditions. Methods: We evaluated the impact of the presence of CETP on infection by Leishmania (L.) amazonensis in an experimental model of cutaneous leishmaniasis using C57BL6/J mice transgenic for human CETP (CETP), having as control their littermates that do not express the protein, wild-type (WT) mice. The progression of the lesion after infection in the footpad was monitored for 12 weeks. Two groups of animals were formed to collect the plantar pad in the 4th and 12th week post-infection. Results: The lesion increased from the 3rd week onwards, in both groups, with a gradual decrease from the 10th week onwards in the CETP group compared to the WT group, showing a reduction in parasitism and an improvement in the healing process, a reduction in CD68+ cells, and an increase in CD163+ and CD206, characterizing a population of M2 macrophages. A reduction in ARG1+ cells and an increase in INOS+ cells were observed. During infection, the LP profile showed an increase in triglycerides in the VLDL fraction in the CETP group at 12 weeks. Gene expression revealed a decrease in the CD36 receptor in the CETP group at 12 weeks, correlating with healing and parasite reduction. In vitro, macrophages derived from bone marrow cells from CETP mice showed lower parasite load at 48 h and, a reduction in arginase activity at 4 h accompanied by increased NO production at 4 and 24 h compared to WT macrophages, corroborating the in vivo findings. Discussion: The data indicate that the presence of CETP plays an important role in resolving Leishmania (L.) amazonensis infection, reducing parasitism, and modulating the inflammatory response in controlling infection and tissue repair.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol , Leishmaniose Cutânea , Macrófagos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Animais , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/metabolismo , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Humanos , Progressão da Doença , Modelos Animais de Doenças
2.
JCI Insight ; 9(8)2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646937

RESUMO

Sepsis is a leading cause of mortality worldwide, and pneumonia is the most common cause of sepsis in humans. Low levels of high-density lipoprotein cholesterol (HDL-C) levels are associated with an increased risk of death from sepsis, and increasing levels of HDL-C by inhibition of cholesteryl ester transfer protein (CETP) decreases mortality from intraabdominal polymicrobial sepsis in APOE*3-Leiden.CETP mice. Here, we show that treatment with the CETP inhibitor (CETPi) anacetrapib reduced mortality from Streptococcus pneumoniae-induced sepsis in APOE*3-Leiden.CETP and APOA1.CETP mice. Mechanistically, CETP inhibition reduced the host proinflammatory response via attenuation of proinflammatory cytokine transcription and release. This effect was dependent on the presence of HDL, leading to attenuation of immune-mediated organ damage. In addition, CETP inhibition promoted monocyte activation in the blood prior to the onset of sepsis, resulting in accelerated macrophage recruitment to the lung and liver. In vitro experiments demonstrated that CETP inhibition significantly promoted the activation of proinflammatory signaling in peripheral blood mononuclear cells and THP1 cells in the absence of HDL; this may represent a mechanism responsible for improved bacterial clearance during sepsis. These findings provide evidence that CETP inhibition represents a potential approach to reduce mortality from pneumosepsis.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol , Monócitos , Streptococcus pneumoniae , Animais , Feminino , Humanos , Camundongos , Apolipoproteína E3/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , HDL-Colesterol/sangue , HDL-Colesterol/metabolismo , Modelos Animais de Doenças , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/mortalidade , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/microbiologia , Sepse/imunologia , Sepse/mortalidade , Sepse/microbiologia , Sepse/metabolismo , Streptococcus pneumoniae/imunologia , Células THP-1
3.
Arch Med Res ; 55(2): 102937, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38301446

RESUMO

BACKGROUND: The nasal vaccine HB-ATV-8 has emerged as a promising approach for NAFLD (non-alcoholic fatty liver disease) and atherosclerosis prevention. HB-ATV-8 contains peptide seq-1 derived from the carboxy-end of the Cholesteryl Ester Transfer Protein (CETP), shown to reduce liver fibrosis, inflammation, and atherosclerotic plaque formation in animal models. Beyond the fact that this vaccine induces B-cell lymphocytes to code for antibodies against the seq-1 sequence, inhibiting CETP's cholesterol transfer activity, we have hypothesized that beyond the modulation of CETP activity carried out by neutralizing antibodies, the observed molecular effects may also correspond to the direct action of peptide seq-1 on diverse cellular systems and molecular features involved in the development of liver fibrosis. METHODS: The HepG2 hepatoma-derived cell line was employed to establish an in vitro steatosis model. To obtain a conditioned cell medium to be used with hepatic stellate cell (HSC) cultures, HepG2 cells were exposed to fatty acids or fatty acids plus peptide seq-1, and the culture medium was collected. Gene regulation of COL1A1, ACTA2, TGF-ß, and the expression of proteins COL1A1, MMP-2, and TIMP-2 were studied. AIM: To establish an in vitro steatosis model employing HepG2 cells that mimics molecular processes observed in vivo during the onset of liver fibrosis. To evaluate the effect of peptide Seq-1 on lipid accumulation and pro-fibrotic responses. To study the effect of Seq-1-treated steatotic HepG2 cell supernatants on lipid accumulation, oxidative stress, and pro-fibrotic responses in HSC. RESULTS AND CONCLUSION: Peptide seq-1-treated HepG2 cells show a downregulation of COLIA1, ACTA2, and TGF-ß genes, and a decreased expression of proteins such as COL1A1, MMP-2, and TIMP-2, associated with the remodeling of extracellular matrix components. The same results are observed when HSCs are incubated with peptide Seq-1-treated steatotic HepG2 cell supernatants. The present study consolidates the nasal vaccine HB-ATV-8 as a new prospect in the treatment of NASH directly associated with the development of cardiovascular disease.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Vacinas , Animais , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Inibidor Tecidual de Metaloproteinase-2/farmacologia , Metaloproteinase 2 da Matriz , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Regulação para Baixo , Hepatócitos/metabolismo , Fibrose , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Ácidos Graxos/metabolismo , Lipídeos/farmacologia , Fígado/metabolismo
4.
Biomolecules ; 13(10)2023 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-37892238

RESUMO

CETP activity reduces plasma HDL-cholesterol concentrations, a correlate of an increased risk of atherosclerotic events. However, our recent findings suggest that CETP expression in macrophages promotes an intracellular antioxidant state, reduces free cholesterol accumulation and phagocytosis, and attenuates pro-inflammatory gene expression. To determine whether CETP expression in macrophages affects atherosclerosis development, we transplanted bone marrow from transgenic mice expressing simian CETP or non-expressing littermates into hypercholesterolemic LDL-receptor-deficient mice. The CETP expression did not change the lipid-stained lesion areas but decreased the macrophage content (CD68), neutrophil accumulation (LY6G), and TNF-α aorta content of young male transplanted mice and decreased LY6G, TNF-α, iNOS, and nitrotyrosine (3-NT) in aged female transplanted mice. These findings suggest that CETP expression in bone-marrow-derived cells reduces the inflammatory features of atherosclerosis. These novel mechanistic observations may help to explain the failure of CETP inhibitors in reducing atherosclerotic events in humans.


Assuntos
Aterosclerose , Medula Óssea , Humanos , Camundongos , Animais , Masculino , Feminino , Idoso , Medula Óssea/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Aterosclerose/metabolismo , Colesterol/metabolismo , Camundongos Transgênicos , Camundongos Endogâmicos C57BL
5.
J Clin Lipidol ; 15(5): 752-759, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34535418

RESUMO

BACKGROUND: The role of ANGPTL3 and ANGPTL8 in lipid regulation in patients with very high levels of HDL-cholesterol and triglyceride is unknown. OBJECTIVE: We examined plasma levels of ANGPTL3 and ANGPTL8 in subjects with hyperalphalipoproteinemia (HALP) and in those with severe hypertriglyceridemia (HTG). METHODS: Plasma ANGPTL3 and ANGPTL8 levels were measured by ELISA in 320 subjects, consisting of HALP subjects with HDL-cholesterol ≥100 mg/dl (n=90) and healthy controls (n=90) and subjects with triglyceride ≥886 mg/dl (n=89) and control subjects (n=51). RESULTS: The mean plasma ANGPTL3 level was significantly higher in the HALP group compared to that of the controls (297 ± 112 ng/mL vs. 230 ± 100 ng/mL, p<0.001). Similarly, the mean plasma ANGPTL8 level was also higher in the HALP group (30 ± 11 ng/mL vs. 20 ± 8 ng/mL, p<0.001). Both ANGPTL3 and ANGPTL8 levels positively correlated with HDL-cholesterol levels. In the severe HTG group, plasma ANGPTL3 level was significantly higher than those in the control group (223 ± 105 ng/mL vs. 151 ± 60 ng/mL, p<0.001), but not ANGPTL8 (23 ± 20 ng/mL vs. 31 ± 23 ng/mL in controls, p=0.028). Only ANGPTL3, but not ANGPTL8, levels positively correlated with triglyceride levels. CONCLUSION: Plasma level of ANGPTL3 was increased in both HALP and severe HTG whereas an increase in plasma level of ANGPTL8 was found only in HALP, and not in severe HTG, suggesting that both ANGPTL3 and ANGPTL8 might play distinct roles in lipid regulation on these two extremes of dyslipidemia.


Assuntos
Proteína 3 Semelhante a Angiopoietina/fisiologia , Proteína 8 Semelhante a Angiopoietina/fisiologia , Proteínas de Transferência de Ésteres de Colesterol/deficiência , Hipertrigliceridemia/sangue , Hipertrigliceridemia/genética , Erros Inatos do Metabolismo Lipídico/sangue , Erros Inatos do Metabolismo Lipídico/genética , Hormônios Peptídicos/fisiologia , Adulto , Idoso , Proteína 3 Semelhante a Angiopoietina/sangue , Proteína 8 Semelhante a Angiopoietina/sangue , Povo Asiático , Proteínas de Transferência de Ésteres de Colesterol/sangue , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , HDL-Colesterol/sangue , HDL-Colesterol/metabolismo , Feminino , Humanos , Hipertrigliceridemia/metabolismo , Erros Inatos do Metabolismo Lipídico/metabolismo , Masculino , Pessoa de Meia-Idade , Gravidade do Paciente , Hormônios Peptídicos/sangue , Triglicerídeos/sangue , Triglicerídeos/metabolismo
6.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33805921

RESUMO

Colorectal cancer (CRC) is a highly prevalent malignancy with multifactorial etiology, which includes metabolic alterations as contributors to disease development. Studies have shown that lipid status disorders are involved in colorectal carcinogenesis. In line with this, previous studies have also suggested that the serum high-density lipoprotein cholesterol (HDL-C) level decreases in patients with CRC, but more recently, the focus of investigations has shifted toward the exploration of qualitative properties of HDL in this malignancy. Herein, a comprehensive overview of available evidences regarding the putative role of HDL in CRC will be presented. We will analyze existing findings regarding alterations of HDL-C levels but also HDL particle structure and distribution in CRC. In addition, changes in HDL functionality in this malignancy will be discussed. Moreover, we will focus on the genetic regulation of HDL metabolism, as well as the involvement of HDL in disturbances of cholesterol trafficking in CRC. Finally, possible therapeutic implications related to HDL will be presented. Given the available evidence, future studies are needed to resolve all raised issues concerning the suggested protective role of HDL in CRC, its presumed function as a biomarker, and eventual therapeutic approaches based on HDL.


Assuntos
Neoplasias Colorretais/metabolismo , Lipoproteínas HDL/metabolismo , Animais , Apolipoproteína A-I/metabolismo , Apolipoproteínas M/metabolismo , Arildialquilfosfatase/metabolismo , Biomarcadores/metabolismo , Carcinogênese , Colesterol/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , HDL-Colesterol/metabolismo , Homeostase , Humanos , Camundongos , Polimorfismo de Nucleotídeo Único , Medicina de Precisão , Receptores Depuradores Classe B/metabolismo
8.
Physiol Rep ; 9(4): e14732, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33625789

RESUMO

Elevated triglycerides (TGs) and impaired TG clearance increase the risk of cardiovascular disease in both men and women, but molecular mechanisms remain poorly understood. Cholesteryl ester transfer protein (CETP) is a lipid shuttling protein known for its effects on high-density lipoprotein cholesterol. Although mice lack CETP, transgenic expression of CETP in mice alters TG metabolism in males and females by sex-specific mechanisms. A unifying mechanism explaining how CETP alters TG metabolism in both males and females remains unknown. Since low-density lipoprotein receptor (LDLR) regulates both TG clearance and very low density lipoprotein (VLDL) production, LDLR may be involved in CETP-mediated alterations in TG metabolism in both males and females. We hypothesize that LDLR is required for CETP to alter TG metabolism in both males and females. We used LDLR null mice with and without CETP to demonstrate that LDLR is required for CETP to raise plasma TGs and to impair TG clearance in males. We also demonstrate that LDLR is required for CETP to increase TG production and to increase the expression and activity of VLDL synthesis targets in response to estrogen. Additionally, we show that LDLR is required for CETP to enhance ß-oxidation. These studies support that LDLR is required for CETP to regulate TG metabolism in both males and females.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Fígado/metabolismo , Receptores de LDL/metabolismo , Triglicerídeos/sangue , Animais , Proteínas de Transferência de Ésteres de Colesterol/genética , Feminino , Genótipo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Receptores de LDL/genética , Caracteres Sexuais , Fatores Sexuais
9.
Biomolecules ; 11(1)2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430172

RESUMO

Endothelial dysfunction precedes atherosclerosis and is an independent predictor of cardiovascular events. Cholesterol levels and oxidative stress are key contributors to endothelial damage, whereas high levels of plasma high-density lipoproteins (HDL) could prevent it. Cholesteryl ester transfer protein (CETP) is one of the most potent endogenous negative regulators of HDL-cholesterol. However, whether and to what degree CETP expression impacts endothelial function, and the molecular mechanisms underlying the vascular effects of CETP on endothelial cells, have not been addressed. Acetylcholine-induced endothelium-dependent relaxation of aortic rings was impaired in human CETP-expressing transgenic mice, compared to their non-transgenic littermates. However, endothelial nitric oxide synthase (eNOS) activation was enhanced. The generation of superoxide and hydrogen peroxide was increased in aortas from CETP transgenic mice, while silencing CETP in cultured human aortic endothelial cells effectively decreased oxidative stress promoted by all major sources of ROS: mitochondria and NOX2. The endoplasmic reticulum stress markers, known as GADD153, PERK, and ARF6, and unfolded protein response effectors, were also diminished. Silencing CETP reduced endothelial tumor necrosis factor (TNF) α levels, intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) expression, diminishing monocyte adhesion. These results support the notion that CETP expression negatively impacts endothelial cell function, revealing a new mechanism that might contribute to atherosclerosis.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Estresse Oxidativo , Animais , Caveolinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Proteínas de Transferência de Ésteres de Colesterol/genética , Estresse do Retículo Endoplasmático , Ativação Enzimática , Humanos , Camundongos Transgênicos , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células THP-1 , Vasodilatação
10.
Lifestyle Genom ; 14(1): 1-19, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33296900

RESUMO

BACKGROUND: The phenotypic expression of a high-density lipoprotein (HDL) genetic risk score has been shown to depend upon whether the phenotype (HDL-cholesterol) is high or low relative to its distribution in the population (quantile-dependent expressivity). This may be due to the effects of genetic mutations on HDL-metabolism being concentration dependent. METHOD: The purpose of this article is to assess whether some previously reported HDL gene-lifestyle interactions could potentially be attributable to quantile-dependent expressivity. SUMMARY: Seventy-three published examples of HDL gene-lifestyle interactions were interpreted from the perspective of quantile-dependent expressivity. These included interactive effects of diet, alcohol, physical activity, adiposity, and smoking with genetic variants associated with the ABCA1, ADH3, ANGPTL4, APOA1, APOA4, APOA5, APOC3, APOE, CETP, CLASP1, CYP7A1, GALNT2, LDLR, LHX1, LIPC, LIPG, LPL, MVK-MMAB, PLTP, PON1, PPARα, SIRT1, SNTA1,and UCP1genes. The selected examples showed larger genetic effect sizes for lifestyle conditions associated with higher vis-à-vis lower average HDL-cholesterol concentrations. This suggests these reported interactions could be the result of selecting subjects for conditions that differentiate high from low HDL-cholesterol (e.g., lean vs. overweight, active vs. sedentary, high-fat vs. high-carbohydrate diets, alcohol drinkers vs. abstainers, nonsmokers vs. smokers) producing larger versus smaller genetic effect sizes. Key Message: Quantile-dependent expressivity provides a potential explanation for some reported gene-lifestyle interactions for HDL-cholesterol. Although overall genetic heritability appears to be quantile specific, this may vary by genetic variant and environmental exposure.


Assuntos
HDL-Colesterol/metabolismo , Interação Gene-Ambiente , Estudos de Associação Genética , Consumo de Bebidas Alcoólicas/epidemiologia , Consumo de Bebidas Alcoólicas/genética , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , HDL-Colesterol/sangue , Dieta/estatística & dados numéricos , Estudos de Associação Genética/estatística & dados numéricos , Humanos , Estilo de Vida , Lipase/genética , Lipase/metabolismo , Redes e Vias Metabólicas/genética , Polimorfismo de Nucleotídeo Único
12.
J Lipid Res ; 61(8): 1168-1179, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32591337

RESUMO

Cholesteryl ester transfer protein (CETP) facilitates the net transfer of cholesteryl esters (CEs) and TGs between lipoproteins, impacting the metabolic fate of these lipoproteins. Previous studies have shown that a CETP antibody can alter CETP's preference for CE versus TG as transfer substrate, suggesting that CETP substrate preference can be manipulated in vivo. Hamster and human CETPs have very different preferences for CE and TG. To assess the effect of altering CETP's substrate preference on lipoproteins in vivo, here, we expressed human CETP in hamsters. Chow-fed hamsters received adenoviruses expressing no CETP, hamster CETP, or human CETP. Plasma CETP mass increased 2-fold in both the hamster and human CETP groups. Although the animals expressing human CETP still had low levels of hamster CETP, the CE versus TG preference of their plasma CETP was similar to that of the human ortholog. Hamster CETP overexpression had little impact on lipoproteins. However, expression of human CETP reduced HDL up to 50% and increased VLDL cholesterol 2.5-fold. LDL contained 20% more CE, whereas HDL CE was reduced 40%, and TG increased 6-fold. The HDL3:HDL2 ratio increased from 0.32 to 0.60. Hepatic expression of three cholesterol-related genes (LDLR, SCARB1, and CYP7A1) was reduced up to 40%. However, HDL-associated CE excretion into feces was unchanged. We conclude that expression of human CETP in hamsters humanizes their lipoprotein profile with respect to the relative concentrations of VLDL, LDL, HDL, and the HDL3:HDL2 ratio. Altering the lipid substrate preference of CETP provides a novel approach for modifying plasma lipoproteins.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Lipoproteínas/sangue , Lipoproteínas/química , Animais , Proteínas de Transferência de Ésteres de Colesterol/genética , Cricetinae , Humanos , Fígado/metabolismo
13.
Circ Res ; 127(6): 778-792, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32495699

RESUMO

RATIONALE: The HDL (high-density lipoprotein)-mediated stimulation of cellular cholesterol efflux initiates macrophage-specific reverse cholesterol transport (m-RCT), which ends in the fecal excretion of macrophage-derived unesterified cholesterol (UC). Early studies established that LDL (low-density lipoprotein) particles could act as efficient intermediate acceptors of cellular-derived UC, thereby preventing the saturation of HDL particles and facilitating their cholesterol efflux capacity. However, the capacity of LDL to act as a plasma cholesterol reservoir and its potential impact in supporting the m-RCT pathway in vivo both remain unknown. OBJECTIVE: We investigated LDL contributions to the m-RCT pathway in hypercholesterolemic mice. METHODS AND RESULTS: Macrophage cholesterol efflux induced in vitro by LDL added to the culture media either alone or together with HDL or ex vivo by plasma derived from subjects with familial hypercholesterolemia was assessed. In vivo, m-RCT was evaluated in mouse models of hypercholesterolemia that were naturally deficient in CETP (cholesteryl ester transfer protein) and fed a Western-type diet. LDL induced the efflux of radiolabeled UC from cultured macrophages, and, in the simultaneous presence of HDL, a rapid transfer of the radiolabeled UC from HDL to LDL occurred. However, LDL did not exert a synergistic effect on HDL cholesterol efflux capacity in the familial hypercholesterolemia plasma. The m-RCT rates of the LDLr (LDL receptor)-KO (knockout), LDLr-KO/APOB100, and PCSK9 (proprotein convertase subtilisin/kexin type 9)-overexpressing mice were all significantly reduced relative to the wild-type mice. In contrast, m-RCT remained unchanged in HAPOB100 Tg (human APOB100 transgenic) mice with fully functional LDLr, despite increased levels of plasma APO (apolipoprotein)-B-containing lipoproteins. CONCLUSIONS: Hepatic LDLr plays a critical role in the flow of macrophage-derived UC to feces, while the plasma increase of APOB-containing lipoproteins is unable to stimulate m-RCT. The results indicate that, besides the major HDL-dependent m-RCT pathway via SR-BI (scavenger receptor class B type 1) to the liver, a CETP-independent m-RCT path exists, in which LDL mediates the transfer of cholesterol from macrophages to feces. Graphical Abstract: A graphical abstract is available for this article.


Assuntos
HDL-Colesterol/sangue , LDL-Colesterol/sangue , Hiperlipoproteinemia Tipo II/sangue , Fígado/metabolismo , Macrófagos/metabolismo , Receptores de LDL/metabolismo , Animais , Apolipoproteína B-100/sangue , Apolipoproteína B-100/genética , Transporte Biológico , Linhagem Celular , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Modelos Animais de Doenças , Fezes/química , Humanos , Hiperlipoproteinemia Tipo II/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/deficiência , Receptores de LDL/genética , Receptores Depuradores Classe B/metabolismo
14.
Biomolecules ; 10(5)2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466286

RESUMO

Elevation of nonfasting triglyceride (TG) levels above 1.8 g/L (2 mmol/L) is associated with increased risk of cardiovascular diseases. Exacerbated postprandial hypertriglyceridemia (PP-HTG) and metabolic context both modulate the overall efficacy of the reverse cholesterol transport (RCT) pathway, but the specific contribution of exaggerated PP-HTG on RCT efficacy remains indeterminate. Healthy male volunteers (n = 78) exhibiting no clinical features of metabolic disorders underwent a postprandial exploration following consumption of a typical Western meal providing 1200 kcal. Subjects were stratified according to maximal nonfasting TG levels reached after ingestion of the test meal into subjects with a desirable PP-TG response (GLow, TG < 1.8 g/L, n = 47) and subjects with an undesirable PP-TG response (GHigh, TG > 1.8 g/L, n = 31). The impact of the degree of PP-TG response on major steps of RCT pathway, including cholesterol efflux from human macrophages, cholesteryl ester transfer protein (CETP) activity, and hepatic high-density lipoprotein (HDL)-cholesteryl ester (CE) selective uptake, was evaluated. Cholesterol efflux from human macrophages was not significantly affected by the degree of the PP-TG response. Postprandial increase in CETP-mediated CE transfer from HDL to triglyceride-rich lipoprotein particles, and more specifically to chylomicrons, was enhanced in GHigh vs GLow. The hepatic HDL-CE delivery was reduced in subjects from GHigh in comparison with those from GLow. Undesirable PP-TG response induces an overall reduction in RCT efficacy that contributes to the onset elevation of both fasting and nonfasting TG levels and to the development of cardiometabolic diseases.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Colesterol/metabolismo , Hipertrigliceridemia/metabolismo , Período Pós-Prandial , Triglicerídeos/metabolismo , Adulto , Ésteres do Colesterol/metabolismo , Quilomícrons/metabolismo , Humanos , Lipoproteínas HDL/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Triglicerídeos/sangue
15.
Int J Mol Sci ; 21(10)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456228

RESUMO

Psoriasis is a systemic, immune-metabolic disease with strong genetic predispositions and autoimmune pathogenic traits. During psoriasis progression, a wide spectrum of comorbidities comes into play with the leading role of the cardio-metabolic syndrome (CMS) that occurs with the frequency of 30-50% amongst the psoriatic patients. Both conditions-psoriasis and CMS-have numerous common pathways, mainly related to proinflammatory pathways and cytokine profiles. Surprisingly, despite the years of research, the exact pathways linking the occurrence of CMS in the psoriasis population are still not fully understood. Recently published papers, both clinical and based on the basic science, shed new light into this relationship providing an insight into novel key-players proteins with plausible effects on above-mentioned interplay. Taking into account recent advances in this important medical matter, this review aims to discuss comprehensively the role of four proteins: proprotein convertase subtilisin/kexin type-9 (PSCK9), angiopoietin-like protein 8 (ANGPLT8), sortilin (SORT1), and cholesteryl ester transfer proteins (CEPT) as plausible links between psoriasis and CMS.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Semelhantes a Angiopoietina/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Síndrome Metabólica/metabolismo , Hormônios Peptídicos/metabolismo , Pró-Proteína Convertase 9/metabolismo , Psoríase/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteína 8 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/genética , Animais , Proteínas de Transferência de Ésteres de Colesterol/genética , Humanos , Síndrome Metabólica/complicações , Síndrome Metabólica/epidemiologia , Hormônios Peptídicos/genética , Pró-Proteína Convertase 9/genética , Psoríase/complicações
16.
Nutrients ; 12(3)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32110925

RESUMO

Our previous study demonstrated that a 5% ethanol extract of unripe Rubus coreanus (5-uRCK) has hypo-cholesterolemic and anti-obesity activity. However, the molecular mechanisms of its effects are poorly characterized. We hypothesized that 5-uRCK and one of its major bioactive compounds, ellagic acid, decrease cellular and plasma cholesterol levels. Thus, we investigated the hypocholesterolemic activity and mechanism of 5-uRCK in both hepatocytes and a high-cholesterol diet (HCD)-induced rat model. Cholesterol in the liver and serum was significantly reduced by 5-uRCK and ellagic acid. The hepatic activities of HMG-CoA and CETP were reduced, and the hepatic activity of LCAT was increased by both 5-uRCK extract and ellagic acid, which also caused histological improvements. The MDA content in the aorta and serum was significantly decreased after oral administration of 5-uRCK or ellagic acid. Further immunoblotting analysis showed that AMPK phosphorylation in the liver was induced by 5-uRCK and ellagic acid, which activated AMPK, inhibiting the activity of HMGCR by inhibitory phosphorylation. In contrast, 5-uRCK and ellagic acid suppressed the nuclear translocation and activation of SREBP-2, which is a key transcription factor in cholesterol biosynthesis. In conclusion, our results suggest that 5-uRCK and its bioactive compound, ellagic acid, are useful alternative therapeutic agents to regulate blood cholesterol.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Colesterol/metabolismo , Ácido Elágico/farmacologia , Hidroximetilglutaril-CoA Redutases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Extratos Vegetais/farmacologia , Rubus/química , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Animais , Antioxidantes/metabolismo , Peso Corporal/efeitos dos fármacos , Colesterol/sangue , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Dieta Hiperlipídica , Ácido Elágico/uso terapêutico , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Hipercolesterolemia/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Tamanho do Órgão/efeitos dos fármacos , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
17.
J Pineal Res ; 68(1): e12614, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31599473

RESUMO

Disruption of circadian rhythm by means of shift work has been associated with cardiovascular disease in humans. However, causality and underlying mechanisms have not yet been established. In this study, we exposed hyperlipidemic APOE*3-Leiden.CETP mice to either regular light-dark cycles, weekly 6 hours phase advances or delays, or weekly alternating light-dark cycles (12 hours shifts), as a well-established model for shift work. We found that mice exposed to 15 weeks of alternating light-dark cycles displayed a striking increase in atherosclerosis, with an approximately twofold increase in lesion size and severity, while mice exposed to phase advances and delays showed a milder circadian disruption and no significant effect on atherosclerosis development. We observed a higher lesion macrophage content in mice exposed to alternating light-dark cycles without obvious changes in plasma lipids, suggesting involvement of the immune system. Moreover, while no changes in the number or activation status of circulating monocytes and other immune cells were observed, we identified increased markers for inflammation, oxidative stress, and chemoattraction in the vessel wall. Altogether, this is the first study to show that circadian disruption by shifting light-dark cycles directly aggravates atherosclerosis development.


Assuntos
Aterosclerose , Ritmo Circadiano/fisiologia , Fotoperíodo , Animais , Aorta/patologia , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Citocinas/metabolismo , Dieta Ocidental , Feminino , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos
18.
Biochem J ; 476(23): 3565-3581, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31746967

RESUMO

Glycero-lysophospholipids, such as lysophosphatidic acids and lysophosphatidylserine, are gathering attention, since specific receptors have been identified. Most of these compounds have been proposed to be bound to albumin, while their associations with lipoproteins have not been fully elucidated. Therefore, in this study, we aimed to investigate the contents of glycero-lysophospholipids (lysophosphatidic acids, lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylglycerol, lysophosphatidylinositol, and lysophosphatidylserine) on lipoproteins and the modulation of their metabolism by lipoprotein metabolism. We observed that moderate amounts of glycero-lysophospholipids, with the exception of lysophosphatidylserine, were distributed on the LDL and HDL fractions, and glycero-lysophospholipids that had bound to albumin were observed in lipoprotein fractions when they were co-incubated. The overexpression of cholesteryl ester transfer protein decreased the plasma levels of lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylglycerol, and lysophosphatidylinositol and it increased their contents in apoB-containing lipoproteins, while it decreased their contents in HDL and lipoprotein-depleted fractions in mice. The overexpression of the LDL receptor (LDLr) decreased the plasma levels of lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylglycerol, and lysophosphatidylinositol and decreased the contents of these compounds in the LDL, HDL, and lipoprotein-depleted fractions, while the knockdown of the LDLr increased them. These results suggest the potential importance of glycero-lysophospholipids in the pleiotropic effects of lipoproteins as well as the importance of lipoprotein metabolism in the regulation of glycero-lysophospholipids.


Assuntos
Dislipidemias/sangue , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Lisofosfolipídeos/sangue , Animais , Apolipoproteína B-100/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Vetores Genéticos , Voluntários Saudáveis , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de LDL/genética , Receptores de LDL/metabolismo , Albumina Sérica/metabolismo
19.
Cardiovasc Ther ; 2019: 8496409, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31772618

RESUMO

BACKGROUND: Cuban sugarcane wax acids (SCWA) and policosanol (PCO) are mixtures of higher aliphatic acids and alcohols, respectively, purified from sugarcane wax with different chief components. Although it has been known that they have antioxidant and anti-inflammatory activities, physiological properties on molecular mechanism of SCWA have been less studied than PCO. METHODS: In this study, we compared antiatherogenic activities of SCWA and PCO via encapsulation with reconstituted high-density lipoproteins (rHDL). RESULTS: After reconstitution, SCWA-rHDL showed smaller particle size than PCO-rHDL with increase of content. PCO-rHDL or SCWA-rHDL showed distinct inhibition of glycation with similar extent in the presence of fructose. PCO-rHDL or SCWA-rHDL showed strong antioxidant activity against cupric ion-mediated oxidation of low-density lipoproteins (LDL), and inhibition of oxLDL uptake into macrophages. Although PCO-rHDL showed 1.2-fold stronger inhibition against cholesteryl ester transfer protein (CETP) activity than SCWA-rHDL, SCWA-rHDL enhanced 15% more brain cell (BV-2) growth and 23% more regeneration of tail fin in zebrafish. CONCLUSION: PCO and SCWA both enhance the beneficial functions of HDL to maximize its antioxidant, antiglycation, and antiatherosclerotic activities and the inhibition of CETP. These enhancements of HDL functionality by PCO and SCWA could exert antiaging and rejuvenation activity.


Assuntos
Ácidos/farmacologia , Anticolesterolemiantes/farmacologia , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Álcoois Graxos/farmacologia , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Saccharum/química , Ceras/química , Ácidos/isolamento & purificação , Nadadeiras de Animais/efeitos dos fármacos , Nadadeiras de Animais/crescimento & desenvolvimento , Animais , Anticolesterolemiantes/isolamento & purificação , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Álcoois Graxos/isolamento & purificação , Humanos , Macrófagos/metabolismo , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Oxirredução , Extratos Vegetais/isolamento & purificação , Regeneração , Células THP-1 , Adulto Jovem , Peixe-Zebra/crescimento & desenvolvimento
20.
PLoS One ; 14(8): e0221477, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31461490

RESUMO

OBJECTIVE: Previous studies indicate a role for Oncostatin M (OSM) in atherosclerosis and other chronic inflammatory diseases for which inhibitory antibodies are in development. However, to date no intervention studies with OSM have been performed, and its relation to coronary heart disease (CHD) has not been studied. APPROACH AND RESULTS: Gene expression analysis on human normal arteries (n = 10) and late stage/advanced carotid atherosclerotic arteries (n = 127) and in situ hybridization on early human plaques (n = 9) showed that OSM, and its receptors, OSM receptor (OSMR) and Leukemia Inhibitory Factor Receptor (LIFR) are expressed in normal arteries and atherosclerotic plaques. Chronic OSM administration in APOE*3Leiden.CETP mice (n = 15/group) increased plasma E-selectin levels and monocyte adhesion to the activated endothelium independently of cholesterol but reduced the amount of inflammatory Ly-6CHigh monocytes and atherosclerotic lesion size and severity. Using aptamer-based proteomics profiling assays high circulating OSM levels were shown to correlate with post incident CHD survival probability in the AGES-Reykjavik study (n = 5457). CONCLUSIONS: Chronic OSM administration in APOE*3Leiden.CETP mice reduced atherosclerosis development. In line, higher serum OSM levels were correlated with improved post incident CHD survival probability in patients, suggesting a protective cardiovascular effect.


Assuntos
Apolipoproteínas E/metabolismo , Aterosclerose/patologia , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Oncostatina M/metabolismo , Animais , Aterosclerose/sangue , Aterosclerose/genética , Biomarcadores/metabolismo , Doença das Coronárias/sangue , Doença das Coronárias/genética , Doença das Coronárias/mortalidade , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Humanos , Inflamação/patologia , Interleucina-6/metabolismo , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Camundongos Transgênicos , Monócitos/patologia , Oncostatina M/sangue , Oncostatina M/genética , Subunidade beta de Receptor de Oncostatina M/genética , Subunidade beta de Receptor de Oncostatina M/metabolismo , Fenótipo , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Probabilidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sobrevida , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA