Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 790
Filtrar
1.
Int J Med Sci ; 21(8): 1559-1574, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903921

RESUMO

Background: PtdIns (3,4,5) P3-dependent Rac exchanger 1 (PREX1), also known as PREX1, a member of the Rac guanine nucleotide exchange factors (Rac-GEF) family. Studies have suggested that PREX1 plays a role in mediating oncogenic pathway activation and controlling various biological mechanisms in different types of cancer, including liver hepatocellular carcinoma (LIHC). However, the function of PREX1 in the pathogenesis of LIHC and its potential role on immunological regulation is not clearly elucidated. Methods: The expression level and the clinical role of PREX1 in LIHC was analyzed based on database from the Cancer Genome Atlas (TCGA), TNM plotter and University of Alabama Cancer Database (UALCAN). We investigated the relationship between PREX1 and immunity in LIHC by TISIDB, CIBERSORT and single cell analysis. Immunotherapy responses were assessed by the immunophenoscores (IPS). Moreover, biological functional assays were performed to further investigate the roles of PREX1 in liver cancer cell lines. Results: Higher expression of PREX1 in LIHC tissues than in normal liver tissues was found based on public datasets. Further analysis revealed that PREX1 was associated with worse clinical characteristics and dismal prognosis. Pathway enrichment analysis indicated that PREX1 participated in immune-related pathways. Through CIBERSORT and single cell analysis, we found a remarkable correlation between the expression of PREX1 and various immune cells, especially macrophages. In addition, high PREX1 expression was found to be associated with a stronger response to immunotherapy. Furthermore, in vitro assays indicated that depletion of PREX1 can suppress invasion and proliferation of LIHC cells. Conclusion: Elevated expression of PREX1 indicates poor prognosis, influences immune modulation and predicts sensitivity of immunosuppression therapy in LIHC. Our results suggested that PREX1 may be a prognostic biomarker and therapeutic target, offering new treatment options for LIHC.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Análise de Célula Única , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Prognóstico , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Linhagem Celular Tumoral , Fatores de Troca do Nucleotídeo Guanina/genética , Masculino , Transcriptoma/imunologia , Transcriptoma/genética , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Feminino
2.
Cell Calcium ; 121: 102905, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788257

RESUMO

TMEM16 proteins, also known as anoctamins, are a family of ten membrane proteins with various tissue expression and subcellular localization. TMEM16A (anoctamin 1) is a plasma membrane protein that acts as a calcium-activated chloride channel. It is expressed in many types of epithelial cells, smooth muscle cells and some neurons. In airway epithelial cells, TMEM16A expression is particularly enhanced by inflammatory stimuli that also promote goblet cell metaplasia and mucus hypersecretion. Therefore, pharmacological modulation of TMEM16A could be beneficial to improve mucociliary clearance in chronic obstructive respiratory diseases. However, the correct approach to modulate TMEM16A activity (activation or inhibition) is still debated. Pharmacological inhibitors of TMEM16A could also be useful as anti-hypertensive agents given the TMEM16A role in smooth muscle contraction. In contrast to TMEM16A, TMEM16F (anoctamin 6) behaves as a calcium-activated phospholipid scramblase, responsible for the externalization of phosphatidylserine on cell surface. Inhibitors of TMEM16F could be useful as anti-coagulants and anti-viral agents. The role of other anoctamins as therapeutic targets is still unclear since their physiological role is still to be defined.


Assuntos
Anoctamina-1 , Humanos , Animais , Anoctamina-1/metabolismo , Anoctamina-1/antagonistas & inibidores , Anoctaminas/metabolismo , Canais de Cloreto/metabolismo , Canais de Cloreto/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/antagonistas & inibidores
3.
Int J Biol Macromol ; 267(Pt 2): 131240, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583827

RESUMO

Lipids are intimately related to the unique flavor and nutritional values of goat milk. MicroRNAs (miRNA) participate in the regulation of various biological functions, including the synthesis and degradation of lipids. Several studies have shown that miR-103 is involved in the regulation of lipid metabolism, however, the molecular mechanism by which miR-103 regulates lipid metabolism in goat mammary gland is poorly understood. In this study, miR-103 was knocked out in goat mammary epithelial cells (GMECs) by CRISPR/Cas9, and the accumulation of lipid droplets, triglycerides, and cholesterol in the cells was suppressed subsequently. Overexpression or knockdown of miR-103-5p and miR-103-3p in GMECs revealed that it was miR-103-5p that promoted lipid accumulation but not miR-103-3p. In addition, Pantothenate Kinase 3 (PANK3), the host gene of miR-103, and Phospholipid Scramblase 4 (PLSCR4) were identified as the target genes of miR-103-5p by dual fluorescein and miRNA pulldown. Furthermore, we identified that cellular lipid levels were negatively regulated by PANK3 and PLSCR4. Lastly, in miR-103 knockout GMECs, the knockdown of PANK and PLSCR4 rescued the lipid accumulation. These findings suggest that miR-103-5p promotes lipid accumulation by targeting PLSCR4 and the host gene PANK3 in GMECs, providing new insights for the regulation of goat milk lipids via miRNAs.


Assuntos
Células Epiteliais , Cabras , Metabolismo dos Lipídeos , Glândulas Mamárias Animais , MicroRNAs , Fosfotransferases (Aceptor do Grupo Álcool) , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Cabras/genética , Metabolismo dos Lipídeos/genética , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/citologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Feminino , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/deficiência , Regulação para Cima/genética , Gotículas Lipídicas/metabolismo , Regulação da Expressão Gênica , Triglicerídeos/metabolismo
4.
Arch Biochem Biophys ; 756: 110002, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636689

RESUMO

BACKGROUND: Phospholipid scramblase 1 (PLSCR1) is a calcium-dependent endofacial plasma-membrane protein that plays an essential role in multiple human cancers. However, little is known about its role in glioma. This study aimed to investigate PLSCR1 function in glioma, and elucidate its underlying molecular mechanisms. METHODS: PLSCR1 expression in human glioma cell lines (U87MG, U251, LN229, A172 and T98G) and human astrocytes was detected by western blot and qRT-PCR. PLSCR1 was silenced using si-PLSCR1-1 and si-PLSCR1-2 in LN229 and U251 cells. PLSCR1 was overexpressed using the pcDNA-PLSCR1 plasmid in T98G cells. Colony formation, 5-ethynyl-2'-deoxyuridine, flow cytometry and transwell assays were employed for measuring cell proliferation, apoptosis and mobility after PLSCR1 knockdown or overexpression. PLSCR1 function in glycolysis in glioma cells was determined through measuring the extracellular acidification rate, oxygen consumption rate, glucose consumption and lactate production. Besides, immunohistochemistry, western blot and qRT-PCR were utilized to assess mRNA and protein expression. Besides, the effect of PLSCR1 silencing on subcutaneous tumor was also monitored. RESULTS: PLSCR1 expression was upregulated in glioma. The downregulation of PLSCR1 repressed the proliferation, mobility, epithelial-to-mesenchymal transition (EMT) and glycolysis; however, it facilitated apoptosis in glioma cells. Whereas, PLSCR1 upregulation had the opposite effect. Moreover, PLSCR1 promoted the activation of the IL-6/JAK/STAT3 pathway in glioma cells. Besides, IL-6 treatment significantly reversed the function of PLSCR1 silencing on cell proliferation, mobility, EMT, apoptosis and glycolysis. In a nude mouse tumor model, silencing PLSCR1 suppressed tumor growth via inactivating IL-6/JAK/STAT3 signaling. CONCLUSION: Our results indicated that PLSCR1 could facilitate proliferation, mobility, EMT and glycolysis, but repress apoptosis through activating IL-6/JAK/STAT3 signaling in glioma. Therefore, PLSCR1 may function as a potential therapeutic target for glioma.


Assuntos
Proliferação de Células , Glioma , Interleucina-6 , Proteínas de Transferência de Fosfolipídeos , Fator de Transcrição STAT3 , Transdução de Sinais , Humanos , Glioma/metabolismo , Glioma/patologia , Glioma/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Linhagem Celular Tumoral , Animais , Interleucina-6/metabolismo , Camundongos , Camundongos Nus , Janus Quinases/metabolismo , Apoptose , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Glicólise , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos BALB C , Movimento Celular
5.
Dis Model Mech ; 17(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38436085

RESUMO

P4-ATPases flip lipids from the exoplasmic to cytoplasmic leaflet of cell membranes, a property crucial for many biological processes. Mutations in P4-ATPases are associated with severe inherited and complex human disorders. We determined the expression, localization and ATPase activity of four variants of ATP8A2, the P4-ATPase associated with the neurodevelopmental disorder known as cerebellar ataxia, impaired intellectual development and disequilibrium syndrome 4 (CAMRQ4). Two variants, G447R and A772P, harboring mutations in catalytic domains, expressed at low levels and mislocalized in cells. In contrast, the E459Q variant in a flexible loop displayed wild-type expression levels, Golgi-endosome localization and ATPase activity. The R1147W variant expressed at 50% of wild-type levels but showed normal localization and activity. These results indicate that the G447R and A772P mutations cause CAMRQ4 through protein misfolding. The E459Q mutation is unlikely to be causative, whereas the R1147W may display a milder disease phenotype. Using various programs that predict protein stability, we show that there is a good correlation between the experimental expression of the variants and in silico stability assessments, suggesting that such analysis is useful in identifying protein misfolding disease-associated variants.


Assuntos
Adenosina Trifosfatases , Simulação por Computador , Doenças Genéticas Inatas , Mutação , Proteínas de Transferência de Fosfolipídeos , Humanos , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Ataxia Cerebelar/genética , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/enzimologia , Complexo de Golgi/metabolismo , Células HEK293 , Deficiência Intelectual/genética , Mutação/genética , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Estabilidade Proteica , Transporte Proteico
6.
J Cardiovasc Pharmacol ; 83(3): 276-288, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38194604

RESUMO

ABSTRACT: Atherosclerotic plaque accounts for major adverse cardiovascular events because of its vulnerability. The classically activated macrophage (M1) and alternatively activated macrophage (M2) are implicated in the progression and regression of plaque, respectively. However, the therapeutic targets related to M2 macrophages still remain largely elusive. In this study, cell-type identification by estimating relative subsets of RNA transcripts and weighted gene coexpression network analysis algorithms were used to establish a weighted gene coexpression network for identifying M2 macrophage-related hub genes using GSE43292 data set. The results showed that genes were classified into 7 modules, with the blue module (Cor = 0.67, P = 3e-05) being the one that was most related to M2 macrophage infiltration in advanced plaques, and then 99 hub genes were identified from blue module. Meanwhile, 1289 differentially expressed genes were produced in GSE43292 data set. Subsequently, the intersection genes of hub genes and differentially expressed genes, including AKTIP , ASPN , FAM26E , RAB23 , PLS3 , and PLSCR4 , were obtained by Venn diagrams and named as key genes. Further validation using data sets GSE100927 and GSE41571 showed that 6 key genes all downregulated in advanced and vulnerable plaques compared with early and stable plaque samples (|Log2 (fold change)| > 0.5, P < 0.05 or 0.001), respectively. Receiver operator characteristic curve analysis indicated that the 6 key genes might have potential diagnostic value. The validation of key genes in the model in vitro and in vivo also demonstrated decreased mRNA expressions of AKTIP , ASPN , FAM26E , RAB23 , PLS3 , and PLSCR4 ( P < 0.05 or 0.001). Collectively, we identified AKTIP, ASPN, FAM26E, RAB23, PLS3, and PLSCR4 as M2 macrophage-related key genes during atherosclerotic progression, proposing potential intervention targets for advanced atherosclerotic plaques.


Assuntos
Placa Aterosclerótica , Humanos , Redes Reguladoras de Genes , Macrófagos , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Proteínas rab de Ligação ao GTP , Proteínas de Transferência de Fosfolipídeos
7.
Pflugers Arch ; 476(2): 211-227, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37979051

RESUMO

Inflammatory airway diseases like cystic fibrosis, asthma and COVID-19 are characterized by high levels of pulmonary cytokines. Two well-established antiparasitic drugs, niclosamide and ivermectin, are intensively discussed for the treatment of viral inflammatory airway infections. Here, we examined these repurposed drugs with respect to their anti-inflammatory effects in airways in vivo and in vitro. Niclosamide reduced mucus content, eosinophilic infiltration and cell death in asthmatic mouse lungs in vivo and inhibited release of interleukins in the two differentiated airway epithelial cell lines CFBE and BCi-NS1.1 in vitro. Cytokine release was also inhibited by the knockdown of the Ca2+-activated Cl- channel anoctamin 1 (ANO1, TMEM16A) and the phospholipid scramblase anoctamin 6 (ANO6, TMEM16F), which have previously been shown to affect intracellular Ca2+ levels near the plasma membrane and to facilitate exocytosis. At concentrations around 200 nM, niclosamide inhibited inflammation, lowered intracellular Ca2+, acidified cytosolic pH and blocked activation of ANO1 and ANO6. It is suggested that niclosamide brings about its anti-inflammatory effects at least in part by inhibiting ANO1 and ANO6, and by lowering intracellular Ca2+ levels. In contrast to niclosamide, 1 µM ivermectin did not exert any of the effects described for niclosamide. The present data suggest niclosamide as an effective anti-inflammatory treatment in CF, asthma, and COVID-19, in addition to its previously reported antiviral effects. It has an advantageous concentration-response relationship and is known to be well tolerated.


Assuntos
Asma , COVID-19 , Camundongos , Animais , Anoctamina-1/metabolismo , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Niclosamida/farmacologia , Niclosamida/uso terapêutico , Anoctaminas/metabolismo , Pulmão/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Cálcio/metabolismo , Inflamação/tratamento farmacológico , Anti-Inflamatórios , Canais de Cloreto/metabolismo
8.
Cytotherapy ; 26(2): 145-156, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38099895

RESUMO

BACKGROUND AIMS: Whole tumor cell lysates (TCLs) obtained from cancer cells previously killed by treatments able to promote immunogenic cell death (ICD) can be efficiently used as a source of tumor-associated antigens for the development of highly efficient dendritic cell (DC)-based vaccines. Herein, the potential role of the interferon (IFN)-inducible protein phospholipid scramblase 1 (PLSCR1) in influencing immunogenic features of dying cancer cells and in enhancing DC-based vaccine efficiency was investigated. METHODS: PLSCR1 expression was evaluated in different mantle-cell lymphoma (MCL) cell lines following ICD induction by 9-cis-retinoic acid (RA)/IFN-α combination, and commercial kinase inhibitor was used to identify the signaling pathway involved in its upregulation. A Mino cell line ectopically expressing PLSCR1 was generated to investigate the potential involvement of this protein in modulating ICD features. Whole TCLs obtained from Mino overexpressing PLSCR1 were used for DC loading, and loaded DCs were employed for generation of tumor antigen-specific cytotoxic T lymphocytes. RESULTS: The ICD inducer RA/IFN-α combination promoted PLSCR1 expression through STAT1 activation. PLSCR1 upregulation favored pro-apoptotic effects of RA/IFN-α treatment and enhanced the exposure of calreticulin on cell surface. Moreover, DCs loaded with TCLs obtained from Mino ectopically expressing PLSCR1 elicited in vitro greater T-cell-mediated antitumor responses compared with DCs loaded with TCLs derived from Mino infected with empty vector or the parental cell line. Conversely, PLSCR1 knock-down inhibited the stimulating activity of DCs loaded with RA/IFN-α-treated TCLs to elicit cyclin D1 peptide-specific cytotoxic T lymphocytes. CONCLUSIONS: Our results indicate that PLSCR1 improved ICD-associated calreticulin exposure induced by RA/IFN-α and was clearly involved in DC-based vaccine efficiency as well, suggesting a potential contribution in the control of pathways associated to DC activation, possibly including those involved in antigen uptake and concomitant antitumor immune response activation.


Assuntos
Antineoplásicos , Vacinas , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Calreticulina/metabolismo , Morte Celular Imunogênica , Antineoplásicos/metabolismo , Antígenos de Neoplasias , Imunidade , Células Dendríticas , Vacinas/metabolismo
9.
Signal Transduct Target Ther ; 8(1): 428, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37963877

RESUMO

The identification of effective drug targets and the development of bioactive molecules are areas of high need in cancer therapy. The phosphatidylinositol transfer protein alpha/beta isoform (PITPα/ß) has been reported to play an essential role in integrating phosphoinositide trafficking and lipid metabolism in diverse cellular processes but remains unexplored as a potential target for cancer treatment. Herein, data analysis of clinical cancer samples revealed that PITPα/ß expression is closely correlated with the poor prognosis. Target identification by chemical proteomic methods revealed that microcolin H, a naturally occurring marine lipopeptide, directly binds PITPα/ß and displays antiproliferative activity on different types of tumour cell lines. Furthermore, we identified that microcolin H treatment increased the conversion of LC3I to LC3II, accompanied by a reduction of the level of p62 in cancer cells, leading to autophagic cell death. Moreover, microcolin H showed preeminent antitumour efficacy in nude mouse subcutaneous tumour models with low toxicity. Our discoveries revealed that by targeting PITPα/ß, microcolin H induced autophagic cell death in tumours with efficient anti-proliferating activity, which sheds light on PITPα/ß as a promising therapeutic target for cancer treatment.


Assuntos
Proteínas de Transferência de Fosfolipídeos , Proteômica , Camundongos , Animais , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/metabolismo , Linhagem Celular Tumoral , Autofagia/genética
10.
Sci Rep ; 13(1): 19740, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957190

RESUMO

Yes-associated protein (YAP) is a transcriptional coactivator that is essential for the malignancy of various cancers. We have previously shown that YAP activity is positively regulated by phosphatidylserine (PS) in recycling endosomes (REs). However, the mechanism by which YAP is activated by PS in REs remains unknown. In the present study, we examined a group of protein phosphatases (11 phosphatases) that we had identified previously as PS-proximity protein candidates. Knockdown experiments of these phosphatases suggested that PPP1R12A, a regulatory subunit of the myosin phosphatase complex, was essential for YAP-dependent proliferation of triple-negative breast cancer MDA-MB-231 cells. Knockdown of PPP1R12A increased the level of phosphorylated YAP, reduced that of YAP in the nucleus, and suppressed the transcription of CTGF (a YAP-regulated gene), reinforcing the role of PPP1R12A in YAP activation. ATP8A1 is a PS-flippase that concentrates PS in the cytosolic leaflet of the RE membrane and positively regulates YAP signalling. In subcellular fractionation experiments using cell lysates, PPP1R12A in control cells was recovered exclusively in the microsomal fraction. In contrast, a fraction of PPP1R12A in ATP8A1-depleted cells was recovered in the cytosolic fraction. Cohort data available from the Cancer Genome Atlas showed that high expression of PPP1R12A, PP1B encoding the catalytic subunit of the myosin phosphatase complex, or ATP8A1 correlated with poor prognosis in breast cancer patients. These results suggest that the "ATP8A1-PS-YAP phosphatase" axis in REs facilitates YAP activation and thus cell proliferation.


Assuntos
Monoéster Fosfórico Hidrolases , Transdução de Sinais , Humanos , Monoéster Fosfórico Hidrolases/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/genética , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Endossomos/metabolismo , Proliferação de Células , Adenosina Trifosfatases/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo
11.
Nat Commun ; 14(1): 6763, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990006

RESUMO

Choline is an essential nutrient, and its deficiency causes steatohepatitis. Dietary phosphatidylcholine (PC) is digested into lysoPC (LPC), glycerophosphocholine, and choline in the intestinal lumen and is the primary source of systemic choline. However, the major PC metabolites absorbed in the intestinal tract remain unidentified. ATP8B1 is a P4-ATPase phospholipid flippase expressed in the apical membrane of the epithelium. Here, we use intestinal epithelial cell (IEC)-specific Atp8b1-knockout (Atp8b1IEC-KO) mice. These mice progress to steatohepatitis by 4 weeks. Metabolomic analysis and cell-based assays show that loss of Atp8b1 in IEC causes LPC malabsorption and thereby hepatic choline deficiency. Feeding choline-supplemented diets to lactating mice achieves complete recovery from steatohepatitis in Atp8b1IEC-KO mice. Analysis of samples from pediatric patients with ATP8B1 deficiency suggests its translational potential. This study indicates that Atp8b1 regulates hepatic choline levels through intestinal LPC absorption, encouraging the evaluation of choline supplementation therapy for steatohepatitis caused by ATP8B1 dysfunction.


Assuntos
Deficiência de Colina , Fígado Gorduroso , Gastroenteropatias , Enteropatias , Feminino , Humanos , Camundongos , Animais , Criança , Deficiência de Colina/complicações , Lactação , Fígado Gorduroso/metabolismo , Colina , Fosfatidilcolinas/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo
12.
Nat Commun ; 14(1): 7492, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980352

RESUMO

Asymmetric distribution of phospholipids in eukaryotic membranes is essential for cell integrity, signaling pathways, and vesicular trafficking. P4-ATPases, also known as flippases, participate in creating and maintaining this asymmetry through active transport of phospholipids from the exoplasmic to the cytosolic leaflet. Here, we present a total of nine cryo-electron microscopy structures of the human flippase ATP8B1-CDC50A complex at 2.4 to 3.1 Å overall resolution, along with functional and computational studies, addressing the autophosphorylation steps from ATP, substrate recognition and occlusion, as well as a phosphoinositide binding site. We find that the P4-ATPase transport site is occupied by water upon phosphorylation from ATP. Additionally, we identify two different autoinhibited states, a closed and an outward-open conformation. Furthermore, we identify and characterize the PI(3,4,5)P3 binding site of ATP8B1 in an electropositive pocket between transmembrane segments 5, 7, 8, and 10. Our study also highlights the structural basis of a broad lipid specificity of ATP8B1 and adds phosphatidylinositol as a transport substrate for ATP8B1. We report a critical role of the sn-2 ester bond of glycerophospholipids in substrate recognition by ATP8B1 through conserved S403. These findings provide fundamental insights into ATP8B1 catalytic cycle and regulation, and substrate recognition in P4-ATPases.


Assuntos
Adenosina Trifosfatases , Proteínas de Transferência de Fosfolipídeos , Humanos , Adenosina Trifosfatases/metabolismo , Especificidade por Substrato , Microscopia Crioeletrônica , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/metabolismo , Trifosfato de Adenosina/metabolismo , Membrana Celular/metabolismo
13.
Anim Genet ; 54(6): 808-812, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37792466

RESUMO

Wagyu is recognized for producing marbled beef with high nutritional value and flavor. Reportedly, Wagyu has been widely used to improve the meat quality of local breeds around the world. However, studies on the genetic mechanism of meat quality in Wagyu at the whole-genome level are rarely reported. Here, whole-genome sequencing data of 11 Wagyu and 115 other individuals were used to explore the genomic variations and genes under selection pressure in Wagyu. A total of 31 349 non-synonymous variants and 53 102 synonymous variants were identified in Wagyu. The population structure analysis showed that Wagyu had the closest genetic relationship with Mishima-Ushi cattle and was apparently separated from other cattle breeds. Then, composite likelihood ratio (CLR), integrated haplotype score, fixation index and cross-population composite likelihood ratio (XP-CLR) tests were performed to identify the candidate genes under positive selection in Wagyu. In total, 770 regions containing 312 genes were identified by at least three methods. Among them, 97 regions containing 27 genes were detected by all four methods. We specifically illustrate a list of interesting genes, including LRP2BP, GAA, CACNG6, CXADR, GPCPD1, KLF2, KLF13, SOX5, MYBPC1, SLC25A10, ATP8A1 and MYH15, which are associated with lipid metabolism, fat deposition, muscle development, bone development, feed intake and growth traits in Wagyu. This is the first study to explore the genomic variations and selection signatures of Wagyu at the whole-genome level. These results will provide significant help to beef cattle improvement and breeding.


Assuntos
Cruzamento , Genoma , Humanos , Animais , Bovinos/genética , Carne , Fenótipo , Genômica/métodos , Seleção Genética , Polimorfismo de Nucleotídeo Único , Fosfolipases , Adenosina Trifosfatases , Proteínas de Transferência de Fosfolipídeos
14.
Biochem Soc Trans ; 51(5): 1857-1869, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37767549

RESUMO

Glycerophospholipids, sphingolipids and cholesterol assemble into lipid bilayers that form the scaffold of cellular membranes, in which proteins are embedded. Membrane composition and membrane protein profiles differ between plasma and intracellular membranes and between the two leaflets of a membrane. Lipid distributions between two leaflets are mediated by lipid translocases, including flippases and scramblases. Flippases use ATP to catalyze the inward movement of specific lipids between leaflets. In contrast, bidirectional flip-flop movements of lipids across the membrane are mediated by scramblases in an ATP-independent manner. Scramblases have been implicated in disrupting the lipid asymmetry of the plasma membrane, protein glycosylation, autophagosome biogenesis, lipoprotein secretion, lipid droplet formation and communications between organelles. Although scramblases in plasma membranes were identified over 10 years ago, most progress about scramblases localized in intracellular membranes has been made in the last few years. Herein, we review the role of scramblases in regulating lipid distributions in cellular membranes, focusing primarily on intracellular membrane-localized scramblases.


Assuntos
Membranas Intracelulares , Bicamadas Lipídicas , Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Trifosfato de Adenosina/metabolismo , Fosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo
15.
PLoS Comput Biol ; 19(6): e1011196, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37384797

RESUMO

Intestinal epithelial cells play important roles in the absorption of nutrients, secretion of electrolytes and food digestion. The function of these cells is strongly influenced by purinergic signalling activated by extracellular ATP (eATP) and other nucleotides. The activity of several ecto-enzymes determines the dynamic regulation of eATP. In pathological contexts, eATP may act as a danger signal controlling a variety of purinergic responses aimed at defending the organism from pathogens present in the intestinal lumen. In this study, we characterized the dynamics of eATP on polarized and non-polarized Caco-2 cells. eATP was quantified by luminometry using the luciferin-luciferase reaction. Results show that non-polarized Caco-2 cells triggered a strong but transient release of intracellular ATP after hypotonic stimuli, leading to low micromolar eATP accumulation. Subsequent eATP hydrolysis mainly determined eATP decay, though this effect could be counterbalanced by eATP synthesis by ecto-kinases kinetically characterized in this study. In polarized Caco-2 cells, eATP showed a faster turnover at the apical vs the basolateral side. To quantify the extent to which different processes contribute to eATP regulation, we created a data-driven mathematical model of the metabolism of extracellular nucleotides. Model simulations showed that eATP recycling by ecto-AK is more efficient a low micromolar eADP concentrations and is favored by the low eADPase activity of Caco-2 cells. Simulations also indicated that a transient eATP increase could be observed upon the addition of non-adenine nucleotides due the high ecto-NDPK activity in these cells. Model parameters showed that ecto-kinases are asymmetrically distributed upon polarization, with the apical side having activity levels generally greater in comparison with the basolateral side or the non-polarized cells. Finally, experiments using human intestinal epithelial cells confirmed the presence of functional ecto-kinases promoting eATP synthesis. The adaptive value of eATP regulation and purinergic signalling in the intestine is discussed.


Assuntos
Trifosfato de Adenosina , Células Epiteliais , Humanos , Trifosfato de Adenosina/metabolismo , Células CACO-2 , Células Epiteliais/metabolismo , Proteínas de Transferência de Fosfolipídeos
16.
Cell Oncol (Dordr) ; 46(4): 1069-1083, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36930333

RESUMO

PURPOSE: The eukaryotic cell plasma membrane contains several asymmetrically distributed phospholipids, which is maintained by the P4-ATPase flippase complex. Herein, we demonstrated the biological effects and mechanisms of asymmetrical loss in hematopoietic stem cells (HSCs). METHODS: An Atp8a1 knockout mouse model was employed, from which the HSC (long-term HSCs and short-term HSCs) population was analyzed to assess their abundance and function. Additionally, competitive bone marrow transplantation and 5-FU stress assays were performed. RNA sequencing was performed on Hematopoietic Stem and Progenitor Cells, and DNA damage was assayed using immunofluorescence staining and comet electrophoresis. The protein abundance for members of key signaling pathways was confirmed using western blotting. RESULTS: Atp8a1 deletion resulted in slight hyperleukocytosis, associated with the high proliferation of HSCs and BCR/ABL1 transformed leukemia stem cells (LSCs). Atp8a1 deletion increased the repopulation capability of HSCs with a competitive advantage in reconstitution assay. HSCs without Atp8a1 were more sensitive to 5-FU-induced apoptosis. Moreover, Atp8a1 deletion prevented HSC DNA damage and facilitated DNA repair processes. Genes involved in PI3K-AKT-mTORC1, DNA repair, and AP-1 complex signaling were enriched and elevated in HSCs with Atp8a1 deletion. Furthermore, Atp8a1 deletion caused decreased PTEN protein levels, resulting in the activation of PI3K-AKT-mTORC1 signaling, further increasing the activity of JNK/AP-1 signaling and YAP1 phosphorylation. CONCLUSION: We identified the role of Atp8a1 on hematopoiesis and HSCs. Atp8a1 deletion resulted in the loss of phosphatidylserine asymmetry and intracellular signal transduction chaos.


Assuntos
PTEN Fosfo-Hidrolase , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Transcrição AP-1/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fluoruracila , Adenosina Trifosfatases/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo
17.
Blood Adv ; 7(16): 4233-4246, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-36930803

RESUMO

Platelets use signal transduction pathways facilitated by class I phosphatidylinositol transfer proteins (PITPs). The 2 mammalian class I PITPs, PITPα and PITPß, are single PITP domain soluble proteins that are encoded by different genes and share 77% sequence identity, although their individual roles in mammalian biology remain uncharacterized. These proteins are believed to shuttle phosphatidylinositol and phosphatidylcholine between separate intracellular membrane compartments, thereby regulating phosphoinositide synthesis and second messenger formation. Previously, we observed that platelet-specific deletion of PITPα, the predominantly expressed murine PITP isoform, had no effect on hemostasis but impaired tumor metastasis formation and disrupted phosphoinositide signaling. Here, we found that mice lacking the less expressed PITPß in their platelets exhibited a similar phenotype. However, in contrast to PITPα-null platelet lysates, which have impaired lipid transfer activity, PITPß-null platelet lysates have essentially normal lipid transfer activity, although both isoforms contribute to phosphoinositide synthesis in vitro. Moreover, we found that platelet-specific deletion of both PITPs led to ex vivo platelet aggregation/secretion and spreading defects, impaired tail bleeding, and profound tumor dissemination. Our study also demonstrated that PITP isoforms are required to maintain endogenous phosphoinositide PtdInsP2 levels and agonist-stimulated second messenger formation. The data shown here demonstrate that the 2 isoforms are functionally overlapping and that a single isoform is able to maintain the homeostasis of platelets. However, both class I PITP isoforms contribute to phosphoinositide signaling in platelets through distinct biochemical mechanisms or different subcellular domains.


Assuntos
Plaquetas , Proteínas de Transferência de Fosfolipídeos , Animais , Camundongos , Tempo de Sangramento , Plaquetas/metabolismo , Deleção de Genes , Homeostase/genética , Camundongos Endogâmicos C57BL , Neoplasias/genética , Fosfatidilinositóis/biossíntese , Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais/genética , Trombose/genética
18.
J Cell Physiol ; 238(4): 761-775, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36790936

RESUMO

The naked mole-rat (NMR, Heterocephalus glaber) is of significant interest to biogerontological research, rarely developing age-associated diseases, such as cancer. The transmembrane glycoprotein CD44 is upregulated in certain cancers and CD44 cleavage by a disintegrin and metalloproteinase 10 (ADAM10) regulates cellular migration. Here we provide evidence that mature ADAM10 is expressed in NMR primary skin fibroblasts (NPSF), and that ionomycin increases cell surface ADAM10 localization. However, we observed an absence of ADAM10 mediated CD44 cleavage, as well as shedding of exogenous and overexpressed betacellulin in NPSF, whereas in mouse primary skin fibroblasts ionomycin induced ADAM10-dependent cleavage of both CD44 and betacellulin. Overexpressing a hyperactive form of the Ca2+ -dependent phospholipid scramblase ANO6 in NPSF increased phosphatidylserine (PS) externalization, which rescued the ADAM10 sheddase activity and promoted cell migration in NPSF in an ADAM10-dependent manner. These findings suggest that dysregulation of ADAM10 shedding activity is due to a deficient PS externalization in NMR.


Assuntos
Proteína ADAM10 , Fibroblastos , Fosfatidilserinas , Animais , Camundongos , Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Betacelulina/metabolismo , Fibroblastos/metabolismo , Ionomicina/farmacologia , Proteínas de Membrana/metabolismo , Ratos-Toupeira , Proteínas de Transferência de Fosfolipídeos
19.
Int J Gynecol Pathol ; 42(2): 136-142, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35283446

RESUMO

Saccharomyces cerevisiae -like 1 ( SEC14L1 ) is a member of the SEC14 family and is involved in liposoluble vitamin transfer, and in a large cohort of breast cancer cases, was one of the genes most significantly associated with lymphovascular invasion (LVI), and had a significant relationship with human epidermal growth factor receptor 2 status, survival, and histologic grade. In this study, 111 separate gynecologic tumors were studied for SEC14L1 protein expression, including: uterine adenosarcoma, ovarian clear cell carcinoma, endometrial stromal sarcoma, endometrioid carcinoma of the uterus, high-grade serous carcinoma, ovarian endometrioid carcinoma, uterine leiomyosarcoma, low-grade serous carcinoma, uterine carcinosarcoma, and uterine serous carcinoma (USC). Overall, LVI was noted in 31/111 (28%) cases, highest in uterine carcinosarcoma (5/11; 45%), high-grade serous carcinoma (9/21; 43%), and ovarian clear cell carcinoma (4/10; 40%). SEC14L1 was positive in 25/111 (23%) cases; the highest percentage and only statistically significant finding by tumor type was USC at 9/12 (75%) cases positive. No relation between LVI or survival and SEC14L1 expression was noted. The relation between USC, a tumor known to show human epidermal growth factor receptor 2 overexpression and SEC14L1 is a novel finding, the significance of which warrants further study.


Assuntos
Carcinoma Endometrioide , Carcinossarcoma , Cistadenocarcinoma Seroso , Neoplasias do Endométrio , Neoplasias dos Genitais Femininos , Proteínas de Saccharomyces cerevisiae , Neoplasias Uterinas , Feminino , Humanos , Carcinoma Endometrioide/patologia , Saccharomyces cerevisiae/metabolismo , Neoplasias do Endométrio/patologia , Neoplasias Uterinas/patologia , Cistadenocarcinoma Seroso/patologia , Carcinossarcoma/patologia , Proteínas de Transporte , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transferência de Fosfolipídeos
20.
FEBS Lett ; 597(4): 495-503, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35945663

RESUMO

ATP8A2 is a mammalian P4-ATPase (flippase) that translocates the negatively charged lipid substrate phosphatidylserine from the exoplasmic leaflet to the cytoplasmic leaflet of cellular membranes. Using an electrophysiological method based on solid supported membranes, we investigated the electrogenicity of specific reaction steps of ATP8A2 and explored a potential phospholipid translocation pathway involving residues with positively charged side chains. Changes to the current signals caused by mutations show that the main electrogenic event occurs in connection with the release of the bound phosphatidylserine to the cytoplasmic leaflet and support the hypothesis that the phospholipid interacts with specific lysine and arginine residues near the cytoplasmic border of the lipid bilayer during the translocation and reorientation required for insertion into the cytoplasmic leaflet.


Assuntos
Adenosina Trifosfatases , Fosfatidilserinas , Animais , Fosfatidilserinas/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Transferência de Fosfolipídeos/química , Transporte Biológico , Fosfolipídeos/metabolismo , Membrana Celular/metabolismo , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA