Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.014
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
BMC Pulm Med ; 24(1): 223, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714933

RESUMO

BACKGROUND: Pulmonary fibromatosis (PF) is a specific variant of fibromatosis, which is rarely reported occurring in the lung. PF with HIPK2-YAP1 fusion was a novel entity. CASE PRESENTATION: In this report, a 66-year-old male with PF had been smoking over 40 years. Multiple cords and small nodules in both lungs had been detected in a health examination two years earlier at our hospital. But approximately twofold enlarged in the lingual segment of the upper lobe in the left lung were disclosed in this year. Immunohistochemical analysis demonstrated that the vimentin and ß-Catenin were positive in the largest nodule. After underwent a DNA/RNA panel next-generation sequencing (NGS), missense mutations and HIPK2-YAP1 fusion were found in this sample. Ultimately, the case diagnosis as PF with HIPK2-YAP1 fusion after multidisciplinary treatment. Currently, the patient is doing well and recurrence-free at 14 months post-surgery. CONCLUSIONS: It's difficult for patients with complex morphology to make accurate diagnosis solely based on morphology and immunohistochemistry. But molecular detection is an effective method for further determining pathological subtypes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte , Neoplasias Pulmonares , Proteínas Serina-Treonina Quinases , Fatores de Transcrição , Proteínas de Sinalização YAP , Humanos , Masculino , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Idoso , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/diagnóstico , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Mutação de Sentido Incorreto
2.
J Genet ; 1032024.
Artigo em Inglês | MEDLINE | ID: mdl-38736250

RESUMO

In acute lymphoblastic leukaemia (ALL), elevated foetal haemoglobin (HbF) levels have been associated with the prognosis of patients. Genetic variants in HbF regulatory genes: BAF chromatin remodelling complex subunit (BCL11A), HBS1L-MYB transcriptional GTPase intergenic region (HBS1L-MYB), Krüppel-like factor 1 (KLF1), haemoglobin gamma subunit 2 (HBG2), haemoglobin gamma subunit 1 (HBG1), and haemoglobin subunit beta pseudogene 1 (HBBP1) are often associatedwith elevatedHbF concentration. This study investigated the association of genetic variants in HbF regulatory genes with HbF concentration, unfavourable prognosis, and outcome in children with ALL.We quantified HbF concentration and genotyped 17 genetic variants in 48 patients with ALL and 64 children without ALL as a reference group. HbF concentrationwas higher in patients than in the reference group (4.4%vs 1.4%), and 75%(n = 36) of thepatientshadHbF>2.5%.Unfavourable prognosis ALL was established in 68.8% (n = 33) of the patients. Variant HBG2 rs7482144 was associated with high HbF concentration (P = 0.015); while HBS1L-MYB rs9399137 (P = 0.001), HBG2 rs7482144 (P = 0.001) and the ß-globin genes HBG2, HBG1, and HBPP1 haplotypeTGC(P = 0.017) with unfavourable prognosisALL.Additionally, variantBCL11A rs4671393 showed a protective role (P = 0.0001). In conclusion, variants HBG2 rs7482144, HBS1L-MYB rs9399137 and BCL11A rs4671393 may play a significant role in ALL.


Assuntos
Hemoglobina Fetal , Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Repressoras , Humanos , Hemoglobina Fetal/genética , Feminino , Masculino , Criança , Prognóstico , Proteínas Repressoras/genética , Pré-Escolar , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Lactente , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas de Transporte/genética , Adolescente , Genótipo , gama-Globinas/genética , Proteínas de Ligação ao GTP
3.
Mol Cancer ; 23(1): 94, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720298

RESUMO

BACKGROUND: The hypoxic tumor microenvironment is a key factor that promotes metabolic reprogramming and vascular mimicry (VM) in ovarian cancer (OC) patients. ESM1, a secreted protein, plays an important role in promoting proliferation and angiogenesis in OC. However, the role of ESM1 in metabolic reprogramming and VM in the hypoxic microenvironment in OC patients has not been determined. METHODS: Liquid chromatography coupled with tandem MS was used to analyze CAOV3 and OV90 cells. Interactions between ESM1, PKM2, UBA2, and SUMO1 were detected by GST pull-down, Co-IP, and molecular docking. The effects of the ESM1-PKM2 axis on cell glucose metabolism were analyzed based on an ECAR experiment. The biological effects of the signaling axis on OC cells were detected by tubule formation, transwell assay, RT‒PCR, Western blot, immunofluorescence, and in vivo xenograft tumor experiments. RESULTS: Our findings demonstrated that hypoxia induces the upregulation of ESM1 expression through the transcription of HIF-1α. ESM1 serves as a crucial mediator of the interaction between PKM2 and UBA2, facilitating the SUMOylation of PKM2 and the subsequent formation of PKM2 dimers. This process promotes the Warburg effect and facilitates the nuclear translocation of PKM2, ultimately leading to the phosphorylation of STAT3. These molecular events contribute to the promotion of ovarian cancer glycolysis and vasculogenic mimicry. Furthermore, our study revealed that Shikonin effectively inhibits the molecular interaction between ESM1 and PKM2, consequently preventing the formation of PKM2 dimers and thereby inhibiting ovarian cancer glycolysis, fatty acid synthesis and vasculogenic mimicry. CONCLUSION: Our findings demonstrated that hypoxia increases ESM1 expression through the transcriptional regulation of HIF-1α to induce dimerization via PKM2 SUMOylation, which promotes the OC Warburg effect and VM.


Assuntos
Proteínas de Transporte , Ácidos Graxos , Proteínas de Membrana , Proteínas de Neoplasias , Neoplasias Ovarianas , Proteínas de Ligação a Hormônio da Tireoide , Hormônios Tireóideos , Microambiente Tumoral , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Animais , Hormônios Tireóideos/metabolismo , Camundongos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Linhagem Celular Tumoral , Ácidos Graxos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Efeito Warburg em Oncologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Regulação Neoplásica da Expressão Gênica , Neovascularização Patológica/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células , Proteoglicanas
4.
Metallomics ; 16(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38692844

RESUMO

Eukaryotic DNA codes not only for proteins but contains a wealth of information required for accurate splicing of messenger RNA precursors and inclusion of constitutively or alternatively spliced exons in mature transcripts. This "auxiliary" splicing code has been characterized as exonic splicing enhancers and silencers (ESE and ESS). The exact interplay between protein and splicing codes is, however, poorly understood. Here, we show that exons encoding copper-coordinating amino acids in human cuproproteins lack ESEs and/or have an excess of ESSs, yet RNA sequencing and expressed sequence tags data show that they are more efficiently included in mature transcripts by the splicing machinery than average exons. Their largely constitutive inclusion in messenger RNA is facilitated by stronger splice sites, including polypyrimidine tracts, consistent with an important role of the surrounding intron architecture in ensuring high expression of metal-binding residues during evolution. ESE/ESS profiles of codons and entire exons that code for copper-coordinating residues were very similar to those encoding residues that coordinate zinc but markedly different from those that coordinate calcium. Together, these results reveal how the traditional and auxiliary splicing motifs responded to constraints of metal coordination in proteins.


Assuntos
Cobre , Éxons , Splicing de RNA , Humanos , Éxons/genética , Cobre/metabolismo , Processamento Alternativo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos Facilitadores Genéticos/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo
5.
Immunohorizons ; 8(5): 363-370, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38775688

RESUMO

Although the pathogenesis of choroidal neovascularization (CNV) is largely unknown in age-related macular degeneration (AMD), inflammasomes may contribute to CNV development and progression. To understand the role NLRP3 inflammasomes in CNV, we used Ccr2RFPCx3cr1GFP dual-reporter mice and immunostaining techniques to confirm localization of NLRP3 inflammasomes in the laser-induced CNV (LCNV) lesions. Confocal microscopy was used to image and quantify LCNV volumes. MCC950 was used as NLRP3 inhibitor. ELISA and quantitative RT-PCR were used to confirm the activation of NLRP3 by monitoring the expression of IL-1ß protein and mRNA in choroidal tissues from LCNV mice. In addition, NLRP3 (-/-) LCNV mice were used to investigate whether NLRP3 inflammasomes contribute to the development of LCNV lesions. We observed that red fluorescent protein (RFP)-positive monocyte-derived macrophages and GFP-positive microglia-derived macrophages, in addition to other cell types, were localized in LCNV lesions at day 7 post-laser injury. In addition, NLRP3 inflammasomes are associated with LCNV lesions. Inhibition of NLRP3 inflammasomes, using MCC950, caused an increased Ccr2RFP-positive macrophages, Cx3cr1GFP-positive microglia, and other cells, resulting in an increase in total lesion size. NLRP3 (-/-) LCNV mice showed significantly increased lesion size compared with age-matched controls. Inhibition of NLRP3 resulted in decreased IL-1ß mRNA and protein expression in the choroidal tissues, suggesting that increased lesion size may not be directly related to IL-1ß.


Assuntos
Neovascularização de Coroide , Indenos , Inflamassomos , Interleucina-1beta , Microglia , Monócitos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Camundongos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Microglia/metabolismo , Monócitos/metabolismo , Camundongos Knockout , Sulfonas/farmacologia , Camundongos Endogâmicos C57BL , Furanos/farmacologia , Receptores CCR2/metabolismo , Receptores CCR2/genética , Macrófagos/metabolismo , Macrófagos/imunologia , Sulfonamidas/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Corioide/metabolismo , Corioide/patologia , Modelos Animais de Doenças , Lasers/efeitos adversos , Degeneração Macular/patologia , Degeneração Macular/metabolismo , Degeneração Macular/genética
6.
Anticancer Res ; 44(5): 1895-1903, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677730

RESUMO

BACKGROUND/AIM: The present study investigated the anticancer effects of intraperitoneally administered D-allose in in vivo models of head and neck cancer cell lines. MATERIALS AND METHODS: To assess the direct effects of D-allose, its dynamics in blood and tumor tissues were examined. RESULTS: D-allose was detected in blood and tumor tissues 10 min after its intraperitoneal administration and then gradually decreased. In vivo experiments revealed that radiation plus D-allose was more effective than either treatment alone. Thioredoxin-interacting protein (TXNIP) mRNA over-expression was detected after the addition of D-allose in in vitro and in vivo experiments. D-allose inhibited cell growth, which was associated with decreases in glycolysis and intracellular ATP levels and the prolonged activation of AMPK. The phosphorylation of p38-MAPK was also observed early after the administration of D-allose and was followed by the activation of AMPK and up-regulated expression of TXNIP in both in vitro and in vivo experiments. CONCLUSION: Systemically administered D-allose appears to exert antitumor effects. Further studies are needed to clarify the appropriate dosage and timing of the administration of D-allose and its combination with other metabolic agents.


Assuntos
Glucose , Neoplasias de Cabeça e Pescoço , Animais , Humanos , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/genética , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Clin Exp Pharmacol Physiol ; 51(6): e13864, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679464

RESUMO

Human papillomavirus (HPV) infection has been reported to be associated with N6-methyladenosine (m6A) modification in cancers. However, the underlying mechanism by which m6A methylation participates in HPV-related cervical squamous cell carcinoma (CSCC) remains largely unclear. In this study, we observed that m6A regulators methyltransferase like protein (METTL14) and insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) were upregulated in HPV-positive CSCC tissues and cell lines, and their high expression predicted poor prognosis for HPV-infected CSCC patients. Cellular functional experiments verified that HPV16 oncogenes E6/E7 upregulated the expression of METTL14 and IGF2BP3 to promote cell proliferation and epithelial mesenchymal transition of CSCC cells. Next, we found that E6/E7 stabilized fascin actin-bundling protein 1 (FSCN1) mRNA and elevated FSCN1 expression in CSCC cells through upregulating METTL14/IGF2BP3-mediated m6A modification, and FSCN1 expression was also validated to be positively associated with worse outcomes of HPV-positive CSCC patients. Finally, HPV16-positive CSCC cell lines SiHa and CaSki were transfected with knockdown vector for E6/E7 or METTL14/IGF2BP3 and overexpressing vector for FSCN1, and functional verification experiments were performed through using MTT assay, flow cytometry, wound healing assay and tumour formation assay. Results indicated that knockdown of E6/E7 or METTL14/IGF2BP3 suppressed cell proliferation, migration and tumorigenesis, and accelerated cell apoptosis of HPV-positive CSCC cells. Their tumour-suppressive effects were abolished through overexpressing FSCN1. Overall, HPV E6/E7 advanced CSCC development through upregulating METTL14/IGF2BP3-mediated FSCN1 m6A modification.


Assuntos
Carcinoma de Células Escamosas , Papillomavirus Humano 16 , Metiltransferases , Proteínas dos Microfilamentos , Infecções por Papillomavirus , Proteínas de Ligação a RNA , Neoplasias do Colo do Útero , Feminino , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Carcinoma de Células Escamosas/virologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Metilação , Metiltransferases/metabolismo , Metiltransferases/genética , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/patologia , Proteínas Repressoras , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo
8.
Cell Signal ; 119: 111182, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38640983

RESUMO

Cancer-associated Fibroblasts (CAFs) exert a tumor-promoting effect in various cancers, including breast cancer. CAFs secrete exosomes containing miRNA and proteins, influencing the tumor microenvironment. In this study, we identified CAF-derived exosomes that transport functional miR-92a from CAFs to tumor cells, thereby intensifying the aggressiveness of breast cancer. CAFs downregulate the expression of G3BP2 in breast cancer cells, and a significant elevation in miR-92a levels in CAF-derived exosomes was observed. Both in vitro and in vivo experiments demonstrate that miR-92a enhances breast cancer cell migration and invasion by directly targeting G3BP2, functioning as a tumor-promoting miRNA. We validated that the RNA-binding proteins SNRPA facilitate the transfer of CAF-derived exosomal miR-92a to breast cancer cells. The reduction of G3BP2 protein by CAF-derived exosomes releases TWIST1 into the nucleus, promoting epithelial-mesenchymal transition (EMT) and further exacerbating breast cancer progression. Moreover, CAF-derived exosomal miR-92a induces tumor invasion and metastasis in mice. Overall, our study reveals that CAF-derived exosomal miR-92a serves as a promoter in the migration and invasion of breast cancer cells by reducing G3BP2 and may represent a potential novel tumor marker for breast cancer.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Movimento Celular , Transição Epitelial-Mesenquimal , Exossomos , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Invasividade Neoplásica , MicroRNAs/metabolismo , MicroRNAs/genética , Humanos , Exossomos/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Feminino , Animais , Camundongos , Linhagem Celular Tumoral , Camundongos Nus , Camundongos Endogâmicos BALB C , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Metástase Neoplásica , Proteína 1 Relacionada a Twist/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteínas de Ligação a RNA/metabolismo
9.
Int Immunopharmacol ; 133: 112001, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38608443

RESUMO

Acute kidney injury (AKI) is a critical complication known for their extremely high mortality rate and lack of effective clinical therapy. Disorders in mitochondrial dynamics possess a pivotal role in the occurrence and progression of contrast-induced nephropathy (CIN) by activating NLRP3 inflammasome. The activation of dynamin-related protein-1 (Drp1) can trigger mitochondrial dynamic disorders by regulating excessive mitochondrial fission. However, the precise role of Drp1 during CIN has not been clarified. In vivo experiments revealed that inhibiting Drp1 through Mdivi-1 (one selective inhibitor of Drp1) can significantly decrease the expression of p-Drp1 (Ser616), mitochondrial p-Drp1 (Ser616), mitochondrial Bax, mitochondrial reactive oxygen species (mROS), NLRP3, caspase-1, ASC, TNF-α, IL-1ß, interleukin (IL)-18, IL-6, creatinine (Cr), malondialdehyde (MDA), blood urea nitrogen (BUN), and KIM-1. Moreover, Mdivi-1 reduced kidney pathological injury and downregulated the interaction between NLRP3 and thioredoxin-interacting protein (TXNIP), which was accompanied by decreased interactions between TRX and TXNIP. This resulted in increasing superoxide dismutase (SOD) and CAT activity, TRX expression, up-regulating mitochondrial membrane potential, and augmenting ATP contents and p-Drp1 (Ser616) levels in the cytoplasm. However, it did not bring impact on the expression of p-Drp1 (Ser637) and TXNIP. Activating Drp-1though Acetaldehyde abrogated the effects of Mdivi-1. In addition, the results of in vitro studies employing siRNA-Drp1 and plasmid-Drp1 intervention in HK-2 cells treated with iohexol were consistent with the in vivo experiments. Our findings revealed inhibiting Drp1 phosphorylation at Ser616 could ameliorate iohexol -induced acute kidney injury though alleviating the activation of the TXNIP-NLRP3 inflammasome pathway.


Assuntos
Injúria Renal Aguda , Proteínas de Transporte , Meios de Contraste , Dinaminas , Inflamassomos , Dinâmica Mitocondrial , Proteína 3 que Contém Domínio de Pirina da Família NLR , Quinazolinonas , Espécies Reativas de Oxigênio , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Dinaminas/metabolismo , Animais , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/tratamento farmacológico , Dinâmica Mitocondrial/efeitos dos fármacos , Inflamassomos/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Masculino , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico , Camundongos , Meios de Contraste/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Transdução de Sinais/efeitos dos fármacos , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Linhagem Celular
10.
Free Radic Biol Med ; 219: 1-16, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38614227

RESUMO

Bupivacaine (BUP) is an anesthetic commonly used in clinical practice that when used for spinal anesthesia, might exert neurotoxic effects. Thioredoxin-interacting protein (TXNIP) is a member of the α-arrestin protein superfamily that binds covalently to thioredoxin (TRX) to inhibit its function, leading to increased oxidative stress and activation of apoptosis. The role of TXNIP in BUP-induced oxidative stress and apoptosis remains to be elucidated. In this context, the present study aimed to explore the effects of TXNIP knockdown on BUP-induced oxidative stress and apoptosis in the spinal cord of rats and in PC12 cells through the transfection of adeno-associated virus-TXNIP short hairpin RNA (AAV-TXNIP shRNA) and siRNA-TXNIP, respectively. In vivo, a rat model of spinal neurotoxicity was established by intrathecally injecting rats with BUP. The BUP + TXNIP shRNA and the BUP + Control shRNA groups of rats were injected with an AAV carrying the TXNIP shRNA and the Control shRNA, respectively, into the subarachnoid space four weeks prior to BUP treatment. The Basso, Beattie & Bresnahan (BBB) locomotor rating score, % MPE of TFL, H&E staining, and Nissl staining analyses were conducted. In vitro, 0.8 mM BUP was determined by CCK-8 assay to establish a cytotoxicity model in PC12 cells. Transfection with siRNA-TXNIP was carried out to suppress TXNIP expression prior to exposing PC12 cells to BUP. The results revealed that BUP effectively induced neurological behavioral dysfunction and neuronal damage and death in the spinal cord of the rats. Similarly, BUP triggered cytotoxicity and apoptosis in PC12 cells. In addition, treated with BUP both in vitro and in vivo exhibited upregulated TXNIP expression and increased oxidative stress and apoptosis. Interestingly, TXNIP knockdown in the spinal cord of rats through transfection of AAV-TXNIP shRNA exerted a protective effect against BUP-induced spinal neurotoxicity by ameliorating behavioral and histological outcomes and promoting the survival of spinal cord neurons. Similarly, transfection with siRNA-TXNIP mitigated BUP-induced cytotoxicity in PC12 cells. In addition, TXNIP knockdown mitigated the upregulation of ROS, MDA, Bax, and cleaved caspase-3 and restored the downregulation of GSH, SOD, CAT, GPX4, and Bcl2 induced upon BUP exposure. These findings suggested that TXNIP knockdown protected against BUP-induced spinal neurotoxicity by suppressing oxidative stress and apoptosis. In summary, TXNIP could be a central signaling hub that positively regulates oxidative stress and apoptosis during neuronal damage, which renders TXNIP a promising target for treatment strategies against BUP-induced spinal neurotoxicity.


Assuntos
Apoptose , Bupivacaína , Proteínas de Transporte , Técnicas de Silenciamento de Genes , Estresse Oxidativo , RNA Interferente Pequeno , Medula Espinal , Animais , Ratos , Estresse Oxidativo/efeitos dos fármacos , Bupivacaína/toxicidade , Bupivacaína/efeitos adversos , Células PC12 , Apoptose/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia , Medula Espinal/efeitos dos fármacos , RNA Interferente Pequeno/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Masculino , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Injeções Espinhais , Ratos Sprague-Dawley , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/etiologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/metabolismo
11.
HLA ; 103(4): e15457, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575368

RESUMO

NKG2D is a natural killer cell activating receptor recognising ligands on infected or tumorigenic cells, leading to their cytolysis. There are eight known genes encoding NKG2D ligands: MICA, MICB and ULBP1-6. MICA and MICB are highly polymorphic and well characterised, whilst ULBP ligands are less polymorphic and the functional implication of their diversity is not well understood. Using International HLA and Immunogenetics Workshop (IHIW) cell line DNA, we previously characterised alleles of the RAET1E gene (encoding ULBP4 proteins), including the 5' UTR promoter region and exons 1-3. We found 11 promoter haplotypes associating with alleles based on exons 1-3, revealing 19 alleles overall. The current study extends this analysis using 87 individual DNA samples from IHIW cell lines or cord blood to include RAET1E exon 4 and the 3' UTR, as polymorphism in these regions have not been previously investigated. We found two novel exon 4 polymorphisms encoding amino acid substitutions altering the transmembrane domain. An amino acid substitution at residue 233 was unique to the RAET1E*008 allele whereas the substitution at residue 237 was shared between groups of alleles. Additionally, four haplotypes were found based on 3' UTR sequences, which were unique to certain alleles or shared with allele groups based on exons 1-4 polymorphisms. Furthermore, putative microRNAs were identified that may interact with these polymorphic sites, repressing transcription and potentially affecting expression levels.


Assuntos
DNA , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Humanos , Regiões 3' não Traduzidas , Alelos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Éxons/genética , Antígenos de Histocompatibilidade Classe I/genética , Proteínas de Transporte/genética , Proteínas de Membrana/metabolismo
12.
Cell Death Dis ; 15(4): 294, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664379

RESUMO

Although many important advances have been made in the treatment of nasopharyngeal carcinoma (NPC) in recent years, local recurrence and distant metastasis remain the main factors affecting NPC prognosis. Biomarkers for predicting the prognosis of NPC need to be urgently identified. Here, we used whole-exon sequencing (WES) to determine whether PICK1 mutations are associated with the prognosis of NPC. Functionally, PICK1 inhibits the proliferation and metastasis of NPC cells both in vivo and in vitro. Mechanistically, PICK1 inhibited the expression of proteins related to the Wnt/ß-catenin signaling pathway. PICK1 restrained the nuclear accumulation of ß-catenin and accelerated the degradation of ß-catenin through the ubiquitin-proteasome pathway. The reduced PICK1 levels were significantly associated with poor patient prognosis. Hence, our study findings reveal the mechanism by which PICK1 inactivates the Wnt/ß-catenin signaling pathway, thereby inhibiting the progression of NPC. They support PICK1 as a potential tumor suppressor and prognostic marker for NPC.


Assuntos
Biomarcadores Tumorais , Proteínas de Transporte , Proliferação de Células , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Proteínas Nucleares , Via de Sinalização Wnt , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/metabolismo , Prognóstico , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/metabolismo , Animais , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , beta Catenina/metabolismo , Camundongos Nus , Masculino , Feminino , Camundongos , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Mutação/genética
13.
Biochem Biophys Res Commun ; 709: 149820, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38547605

RESUMO

While the relationship between single receptor lymphocytes and cancer has been deeply researched, the origin and biological roles of dual receptor lymphocytes in tumor microenvironment (TME) remain largely unknown. And since nasopharyngeal carcinoma (NPC) is a type of cancer closely associated with immune infiltration, studying the TME of NPC holds particular significance. Utilizing single-cell RNA sequencing combined with T cell receptor (TCR) and B cell receptor (BCR) sequencing (scRNA + TCR + BCR-seq), we analyzed data from 7 patients with NPC and 3 patients with nasopharyngeal lymphatic hyperplasia (NLH). In our research, it was firstly found that the presence of dual receptor lymphocytes in both the TME of NPC and the inflammatory environment of NLH. We also confirmed their clonal expansion, suggesting their potential involvement in the immune response. Subsequently, we further discovered the lineage and the pairing characteristics. It was found that the dual receptor lymphocytes in NPC and NLH mainly originate from memory cells, and the predominant pairing type for dual TCR was ß+α1+α2 and dual BCR was heavy+κ+λ. By further analyzing their gene expression, we compared the function of dual receptor cells with single receptor cells in the context of both NPC and NLH. This groundbreaking research has enhanced our comprehension of the features of dual-receptor cells and has contributed to a better understanding of the TME in NPC. By comparing with NLH, it illuminates part of the alterations in the process of malignant transformation in NPC. These findings present the potential to acquire improved diagnostic markers and treatment modalities.


Assuntos
Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/genética , Hiperplasia/patologia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos B , Receptores de Antígenos de Linfócitos B/genética , Proteínas de Transporte/genética , Microambiente Tumoral/genética , Expressão Gênica , Análise de Célula Única
14.
J Biol Chem ; 300(4): 107139, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447792

RESUMO

Androgen receptor (AR) is one of the key targets for the treatment of castration-resistant prostate cancer (CRPC). Current endocrine therapy can greatly improve patients with CRPC. However, with the change of pathogenic mechanism, acquired resistance often leads to the failure of treatment. Studies have shown that tanshinone IIA (TS-IIA) and its derivatives have significant antitumor activity, and have certain AR-targeting effects, but the mechanism is unknown. In this study, the TS-IIA analog TB3 was found to significantly inhibit the growth of CRPC in vitro and in vivo. Molecular docking, cellular thermal shift assay, and cycloheximide experiments confirmed that AR was the target of TB3 and promoted the degradation of AR. Furthermore, TB3 can significantly inhibit glycolysis metabolism by targeting the AR/PKM2 axis. The addition of pyruvic acid could significantly alleviate the inhibitory effect of TB3 on CRPC cells. Besides, the knockdown of AR or PKM2 also could reverse the effect of TB3 on CRPC cells. Taken together, our study suggests that TS-IIA derivative TB3 inhibits glycolysis to prevent the CRPC process by targeting the AR/PKM2 axis.


Assuntos
Abietanos , Glicólise , Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Proteínas de Ligação a Hormônio da Tireoide , Animais , Humanos , Masculino , Camundongos , Abietanos/farmacologia , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Nus , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Hormônios Tireóideos/metabolismo
15.
Apoptosis ; 29(5-6): 882-897, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38491252

RESUMO

Bone marrow mesenchymal stem cell (BMSC) transplantation is a promising regenerative therapy; however, the survival rate of BMSCs after transplantation is low. Oxidative stress is one of the main reasons for the high apoptosis rate of BMSCs after transplantation, so there is an urgent need to explore the mechanism of oxidative stress-induced apoptosis of BMSCs. Our previous transcriptome sequencing results suggested that the expression of P53-induced nuclear protein 1 (TP53INP1) and the tumor suppressor P53 (P53) was significantly upregulated during the process of oxidative stress-induced apoptosis of BMSCs. The present study further revealed the role and mechanism of TP53INP1 and P53 in oxidative stress-induced apoptosis in BMSCs. Overexpression of TP53INP1 induced apoptosis of BMSCs, knockdown of TP53INP1 alleviated oxidative stress apoptosis of BMSCs. Under oxidative stress conditions, P53 is regulated by TP53INP1, while P53 can positively regulate the expression of TP53INP1, so the two form a positive feedback loop. To clarify the mechanism of feedback loop formation. We found that TP53INP1 inhibited the ubiquitination and degradation of P53 by increasing the phosphorylation level of P53, leading to the accumulation of P53 protein. P53 can act on the promoter of the TP53INP1 gene and increase the expression of TP53INP1 through transcriptional activation. This is the first report on a positive feedback loop formed by TP53INP1 and P53 under oxidative stress. The present study clarified the formation mechanism of the positive feedback loop. The TP53INP1-P53 positive feedback loop may serve as a potential target for inhibiting oxidative stress-induced apoptosis in BMSCs.


Assuntos
Apoptose , Células-Tronco Mesenquimais , Estresse Oxidativo , Proteína Supressora de Tumor p53 , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Apoptose/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Humanos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Ubiquitinação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Fosforilação , Células Cultivadas , Retroalimentação Fisiológica , Camundongos
16.
Gene ; 910: 148321, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38428621

RESUMO

Infection with human papillomavirus (HPV) is a major risk factor for head and neck squamous cell carcinoma (HNSCC). The objective of this study is to investigate the gene expression profiles and signaling pathways that are specific to HPV-positive HNSCC (HPV+ HNSCC). Moreover, a competing endogenous RNA (ceRNA) network analysis was utilized to identify the core gene of HPV+ HNSCC and potential targeted therapeutic drugs. Transcriptome sequencing analysis identified 3,253 coding RNAs and 3,903 non-coding RNAs (ncRNAs) that exhibited preferentially expressed in HPV+ HNSCC. Four key signaling pathways were selected through pathway enrichment analysis. By combining ceRNA network and protein-protein interaction (PPI) network topology analysis, RNA Polymerase II Associated Protein 2 (RPAP2), which also exhibited high expression in HPV+ HNSCC based on the TCGA database, was identified as the hub gene. Gene set enrichment analysis (GSEA) results revealed RPAP2's involvement in various signaling pathways, encompassing basal transcription factors, ubiquitin-mediated proteolysis, adherens junction, other glycan degradation, ATP-binding cassette (ABC) transporters, and oglycan biosynthesis. Five potential small molecule targeted drugs (enzastaurin, brequinar, talinolol, phenylbutazone, and afuresertib) were identified using the cMAP database, with enzastaurin showing the highest affinity for RPAP2. Cellular functional experiments confirmed the inhibitory effect of enzastaurin on cell viability of HPV+ HNSCC and RPAP2 expression levels. Additionally, enzastaurin treatment suppressed the expression levels of the top-ranked long non-coding RNA (lncRNA), circular RNA (circRNA), and microRNA (miRNA) in the ceRNA network. This study based on the ceRNA network provides valuable insights into the molecular mechanisms and potential therapeutic strategies for HPV+ HNSCC, and provide theoretical basis for the exploration of HPV+ HNSCC biomarkers and the development of targeted drugs.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , MicroRNAs , Infecções por Papillomavirus , RNA Longo não Codificante , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Transcriptoma/genética , RNA Endógeno Competitivo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Infecções por Papillomavirus/tratamento farmacológico , Infecções por Papillomavirus/genética , Perfilação da Expressão Gênica , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , Proteínas de Transporte/genética
17.
Redox Biol ; 71: 103103, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471282

RESUMO

Although some cohort studies have indicated a close association between diabetes and HCC, the underlying mechanism about the contribution of diabetes to HCC progression remains largely unknown. In the study, we applied a novel HCC model in SD rat with diabetes and a series of high glucose-stimulated cell experiments to explore the effect of a high glucose environment on HCC metastasis and its relevant mechanism. Our results uncovered a novel regulatory mechanism by which nuclear translocation of metabolic enzyme PKM2 mediated high glucose-promoted HCC metastasis. Specifically, high glucose-increased PKM2 nuclear translocation downregulates chemerin expression through the redox protein TRX1, and then strengthens immunosuppressive environment to promote HCC metastasis. To the best of our knowledge, this is the first report to elucidate the great contribution of a high glucose environment to HCC metastasis from a new perspective of enhancing the immunosuppressive microenvironment. Simultaneously, this work also highlights a previously unidentified non-metabolic role of PKM2 and opens a novel avenue for cross research and intervention for individuals with HCC and comorbid diabetes.


Assuntos
Carcinoma Hepatocelular , Diabetes Mellitus , Neoplasias Hepáticas , Animais , Humanos , Ratos , Carcinoma Hepatocelular/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Glucose , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ratos Sprague-Dawley , Proteínas de Ligação a Hormônio da Tireoide , Microambiente Tumoral
18.
JCI Insight ; 9(8)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512421

RESUMO

HIPK2 is a multifunctional kinase that acts as a key pathogenic mediator of chronic kidney disease and fibrosis. It acts as a central effector of multiple signaling pathways implicated in kidney injury, such as TGF-ß/Smad3-mediated extracellular matrix accumulation, NF-κB-mediated inflammation, and p53-mediated apoptosis. Thus, a better understanding of the specific HIPK2 regions necessary for distinct downstream pathway activation is critical for optimal drug development for CKD. Our study now shows that caspase-6-mediated removal of the C-terminal region of HIPK2 (HIPK2-CT) lead to hyperactive p65 NF-κB transcriptional response in kidney cells. In contrast, the expression of cleaved HIPK2-CT fragment could restrain the NF-κB transcriptional activity by cytoplasmic sequestration of p65 and the attenuation of IκBα degradation. Therefore, we examined whether HIPK2-CT expression can be exploited to restrain renal inflammation in vivo. The induction of HIPK2-CT overexpression in kidney tubular cells attenuated p65 nuclear translocation, expression of inflammatory cytokines, and macrophage infiltration in the kidneys of mice with unilateral ureteral obstruction and LPS-induced acute kidney injury. Collectively, our findings indicate that the HIPK2-CT is involved in the regulation of nuclear NF-κB transcriptional activity and that HIPK2-CT or its analogs could be further exploited as potential antiinflammatory agents to treat kidney disease.


Assuntos
NF-kappa B , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Animais , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , NF-kappa B/metabolismo , Humanos , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Inflamação/metabolismo , Inflamação/patologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/genética , Masculino , Camundongos Endogâmicos C57BL , Rim/patologia , Rim/metabolismo , Modelos Animais de Doenças , Fator de Transcrição RelA/metabolismo
19.
FEBS Open Bio ; 14(5): 843-854, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514913

RESUMO

Glioblastoma (GBM) is a primary tumor in the central nervous system with poor prognosis. It exhibits elevated glucose uptake and lactate production. This metabolic state of aerobic glycolysis is known as the Warburg effect. N6-isopentenyladenosine (iPA), a natural cytokine modified with an isopentenyl moiety derived from the mevalonate pathway, has well-established anti-tumor activity. It inhibits cell proliferation in glioma cells, inducing cell death by apoptosis and/or necroptosis. In the present study, we found that iPA inhibits aerobic glycolysis in unmodified U87MG cells and in the same cell line engineered to over-express wild-type epidermal growth factor receptor (EGFR) or EGFR variant III (vIII), as well as in a primary GBM4 patient-derived cell line. The detection of glycolysis showed that iPA treatment suppressed ATP and lactate production. We also evaluated the response of iPA treatment in normal human astrocyte primary cells, healthy counterpart cells of the brain. Aerobic glycolysis in treated normal human astrocyte cells did not show significant changes compared to GBM cells. To determine the mechanism of iPA action on aerobic glycolysis, we investigated the expression of certain enzymes involved in this metabolic pathway. We observed that iPA reduced the expression of pyruvate kinase M2 (PKM2), which plays a key role in the regulation of aerobic glycolysis, promoting tumor cell proliferation. The reduction of PKM2 expression is a result of the inhibition of the inhibitor of nuclear factor kappa-B kinase subunit, beta/nuclear factor-kappa B pathway upon iPA treatment. In conclusion, these experimental results show that iPA may inhibit aerobic glycolysis of GBM in stabilized cell lines and primary GBM cells by targeting the expression and activity of PKM2.


Assuntos
Proteínas de Transporte , Proliferação de Células , Glioblastoma , Glicólise , Isopenteniladenosina , Proteínas de Membrana , Proteínas de Ligação a Hormônio da Tireoide , Hormônios Tireóideos , Humanos , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Hormônios Tireóideos/metabolismo , Glicólise/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Isopenteniladenosina/farmacologia , Isopenteniladenosina/metabolismo , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos
20.
ACS Synth Biol ; 13(2): 669-682, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38317378

RESUMO

Protein degron tags have proven to be uniquely useful for the characterization of gene function. Degrons can mediate quick depletion, usually within minutes, of a protein of interest, allowing researchers to characterize cellular responses to the loss of function. To develop a general-purpose degron tool in Escherichia coli, we sought to build upon a previously characterized system of SspB-dependent inducible protein degradation. For this, we created a family of expression vectors containing a destabilized allele of SspB, capable of a rapid and nearly perfect "off-to-on" induction response. Using this system, we demonstrated excellent control over several DNA metabolism enzymes. However, other substrates did not respond to degron tagging in such an ideal manner, indicating the apparent limitations of SspB-dependent systems. Several degron-tagged proteins were degraded too slowly to be completely depleted during active growth, whereas others appeared to be completely refractory to degron-promoted degradation. Thus, only a minority of our, admittedly biased, selection of degron substrates proved to be amenable to efficient SspB-catalyzed degradation. We also uncovered an apparent stalling and/or disengagement of ClpXP from a degron-tagged allele of beta-galactosidase (beta-gal). While a degron-containing fusion peptide attached to the carboxy-terminus of beta-gal was degraded quantitatively, no reductions in beta-gal activity or concentration were detected, demonstrating an apparently novel mechanism of protease resistance. We conclude that substrate-dependent effects of the SspB system present a continued challenge to the widespread adoption of this degron system. For substrates that prove to be degradable, we provide a series of titratable SspB-expression vehicles.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte/genética , Proteólise , Degrons , Adenosina Trifosfatases/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA