Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
1.
Curr Biol ; 34(7): 1479-1491.e6, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38490203

RESUMO

NRT1.1, a nitrate transceptor, plays an important role in nitrate binding, sensing, and nitrate-dependent lateral root (LR) morphology. However, little is known about NRT1.1-mediated nitrate signaling transduction through plasma membrane (PM)-localized proteins. Through in-depth phosphoproteome profiling using membranes of Arabidopsis roots, we identified receptor kinase QSK1 and plasma membrane H+-ATPase AHA2 as potential downstream components of NRT1.1 signaling in a mild low-nitrate (LN)-dependent manner. QSK1, as a functional kinase and molecular link, physically interacts with NRT1.1 and AHA2 at LN and specifically phosphorylates AHA2 at S899. Importantly, we found that LN, not high nitrate (HN), induces formation of the NRT1.1-QSK1-AHA2 complex in order to repress the proton efflux into the apoplast by increased phosphorylation of AHA2 at S899. Loss of either NRT1.1 or QSK1 thus results in a higher T947/S899 phosphorylation ratio on AHA2, leading to enhanced pump activity and longer LRs under LN. Our results uncover a regulatory mechanism in which NRT1.1, under LN conditions, promotes coreceptor QSK1 phosphorylation and enhances the NRT1.1-QSK1 complex formation to transduce LN sensing to the PM H+-ATPase AHA2, controlling the phosphorylation ratio of activating and inhibitory phosphorylation sites on AHA2. This then results in altered proton pump activity, apoplast acidification, and regulation of NRT1.1-mediated LR growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Nitratos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo
2.
BMC Genomics ; 24(1): 633, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872493

RESUMO

Nitrate is a primary nitrogen source for plant growth, and previous studies have indicated a correlation between nitrogen and browning. Nitrate transporters (NRTs) are crucial in nitrate allocation. Here, we utilized a genome-wide approach to identify and analyze the expression pattern of 74 potential GbNRTs under nitrate treatments during calluses browning in Ginkgo, including 68 NITRATE TRANSPORTER 1 (NRT1)/PEPTIDE TRANSPORTER (PTR) (NPF), 4 NRT2 and 2 NRT3. Conserved domains, motifs, phylogeny, and cis-acting elements (CREs) were analyzed to demonstrate the evolutionary conservation and functional diversity of GbNRTs. Our analysis showed that the NPF family was divided into eight branches, with the GbNPF2 and GbNPF6 subfamilies split into three groups. Each GbNRT contained 108-214 CREs of 19-36 types, especially with binding sites of auxin and transcription factors v-myb avian myeloblastosis viral oncogene homolog (MYB) and basic helix-loop-helix (bHLH). The E1X1X2E2R motif had significant variations in GbNPFs, indicating changes in the potential dynamic proton transporting ability. The expression profiles of GbNRTs indicated that they may function in regulating nitrate uptake and modulating the signaling of auxin and polyphenols biosynthesis, thereby affecting browning in Ginkgo callus induction. These findings provide a better understanding of the role of NRTs during NO3- uptake and utilization in vitro culture, which is crucial to prevent browning and develop an efficient regeneration and suspension production system in Ginkgo.


Assuntos
Nitratos , Proteínas de Plantas , Nitratos/farmacologia , Nitratos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ginkgo biloba/genética , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/química , Proteínas de Transporte de Ânions/metabolismo , Transportadores de Nitrato , Nitrogênio/metabolismo , Ácidos Indolacéticos , Regulação da Expressão Gênica de Plantas , Filogenia
3.
Bone ; 175: 116838, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37454964

RESUMO

Diastrophic dysplasia (DTD) is a recessive chondrodysplasia caused by pathogenic variants in the SLC26A2 gene encoding for a cell membrane sulfate/chloride antiporter crucial for sulfate uptake and glycosaminoglycan (GAG) sulfation. Research on a DTD animal model has suggested possible pharmacological treatment approaches. In view of future clinical trials, the identification of non-invasive biomarkers is crucial to assess the efficacy of treatments. Urinary GAG composition has been analyzed in several metabolic disorders including mucopolysaccharidoses. Moreover, the N-terminal fragment of collagen X, known as collagen X marker (CXM), is considered a real-time marker of endochondral ossification and growth velocity and was studied in individuals with achondroplasia and osteogenesis imperfecta. In this work, urinary GAG sulfation and blood CXM levels were investigated as potential biomarkers for individuals affected by DTD. Chondroitin sulfate disaccharide analysis was performed on GAGs isolated from urine by HPLC after GAG digestion with chondroitinase ABC and ACII, while CXM was assessed in dried blood spots. Results from DTD patients were compared with an age-matched control population. Undersulfation of urinary GAGs was observed in DTD patients with some relationship to the clinical severity and underlying SLC26A2 variants. Lower than normal CXM levels were observed in most patients, even if the marker did not show a clear pattern in our small patient cohort because CXM values are highly dependent on age, gender and growth velocity. In summary, both non-invasive biomarkers are promising assays targeting various aspects of the disorder including overall metabolism of sulfated GAGs and endochondral ossification.


Assuntos
Acondroplasia , Proteínas de Transporte de Ânions , Animais , Proteínas de Transporte de Ânions/genética , Transportadores de Sulfato , Glicosaminoglicanos , Biomarcadores , Colágeno/metabolismo , Sulfatos/metabolismo
4.
Genes (Basel) ; 14(2)2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36833236

RESUMO

Autosomal recessive congenital hereditary endothelial dystrophy (CHED2) may be misdiagnosed as primary congenital glaucoma (PCG) due to similar clinical phenotypes during early infancy. In this study, we identified a family with CHED2, which was previously misdiagnosed as having PCG, and followed up for 9 years. Linkage analysis was first completed in eight PCG-affected families, followed by whole-exome sequencing (WES) in family PKGM3. The following in silico tools were used to predict the pathogenic effects of identified variants: I-Mutant 2.0, SIFT, Polyphen-2, PROVEAN, mutation taster and PhD-SNP. After detecting an SLC4A11 variant in one family, detailed ophthalmic examinations were performed again to confirm the diagnosis. Six out of eight families had CYP1B1 gene variants responsible for PCG. However, in family PKGM3, no variants in the known PCG genes were identified. WES identified a homozygous missense variant c.2024A>C, p.(Glu675Ala) in SLC4A11. Based on the WES findings, the affected individuals underwent detailed ophthalmic examinations and were re-diagnosed with CHED2 leading to secondary glaucoma. Our results expand the genetic spectrum of CHED2. This is the first report from Pakistan of a Glu675Ala variant with CHED2 leading to secondary glaucoma. The p.Glu675Ala variant is likely a founder mutation in the Pakistani population. Our findings suggest that genome-wide neonatal screening is worthwhile to avoid the misdiagnosis of phenotypically similar diseases such as CHED2 and PCG.


Assuntos
Distrofias Hereditárias da Córnea , Glaucoma , Humanos , Sequenciamento do Exoma , Distrofias Hereditárias da Córnea/genética , Mutação , Mutação de Sentido Incorreto , Glaucoma/congênito , Antiporters/genética , Proteínas de Transporte de Ânions/genética
5.
Biol Trace Elem Res ; 201(4): 1689-1694, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35614326

RESUMO

The sphingosine-1-phosphate (S1P) transporter spinster homolog 2 (SPNS2) promotes tumor progression by modulating tumor immunity and enhancing tumor cells migration and invasion. Previously we found that iron deficiency in hepatocellular carcinoma upregulated SPNS2 expression to increase tumor metastasis. The present study aimed to identify the underlying mechanism of SPNS2 upregulation. Since the mRNA of SPNS2 was significantly increased, we used a transcription factor activity microarray to find the transcription factor responsible for this. The results showed that iron deprivation in hepatoma cells increased the transcriptional activities of 14 transcription factors while only 2 were decreased. Among these, 3 transcription factors, HIF1α, SP1, and YY1, were predicted to bind with the transcription promoter region of SPNS2. But only HIF1α and SP1 transcriptional activities on SPNS2 were increased by iron deficiency, and the increase of SP1 transcriptional activity was stronger than HIF1α. The protein level of HIF1α was increased by iron deficiency, while SP1 was not changed at the protein level but the phosphorylation level was increased. The inhibitor of HIF1α, PX478, and the inhibitor of SP1, Mithramycin A, reversed the increased mRNA and protein expressions of SPNS2 by iron deficiency, with a more significant effect by Mithramycin A. These results provided a comprehensive view of changes in transcriptional activities by iron deficiency and identified that SP1 was the main regulator of iron deficiency-inducing SPNS2 expression in hepatoma cells.


Assuntos
Carcinoma Hepatocelular , Deficiências de Ferro , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Fosforilação , Neoplasias Hepáticas/genética , Fatores de Transcrição/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo
6.
Fungal Genet Biol ; 163: 103745, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36240974

RESUMO

Molybdenum (Mo) is an essential element for animals, plants, and fungi. To achieve biological activity in eukaryotes, Mo must be complexed into the molybdenum cofactor (Moco). Cells are known to take up Mo in the form of the oxyanion molybdate. However, molybdate transporters are scarcely characterized in the fungal kingdom. In plants and algae, molybdate is imported into the cell via two families of molybdate transporters (MOT), MOT1 and MOT2. For the filamentous fungus Neurospora crassa, a sequence homologous to the MOT1 family was previously annotated. Here we report a characterization of this molybdate-related transporter, encoded by the ncmot-1 gene. We found that the deletion of ncmot-1 leads to an accumulation of total Mo within the mycelium and a roughly 51 % higher tolerance against high molybdate levels when grown on ammonium medium. The localization of a GFP tagged NcMOT-1 was identified among the vacuolar membrane. Thereby, we propose NcMOT-1 as an exporter, transporting molybdate out of the vacuole into the cytoplasm. Lastly, the heterologous expression of NcMOT-1 in Saccharomyces cerevisiae verifies the functionality of this protein as a MOT. Our results open the way towards understanding molybdate transport as part of Mo homeostasis and Moco-biosynthesis in fungi.


Assuntos
Adenosina Trifosfatases , Proteínas Fúngicas , Neurospora crassa , Fatores Associados à Proteína de Ligação a TATA , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Ânions/genética , Molibdênio/metabolismo , Neurospora crassa/genética , Neurospora crassa/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Vacúolos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
7.
Plant J ; 112(2): 549-564, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36062335

RESUMO

Iron deficiency is a major constraint for plant growth in calcareous soils. The interplay between NO3 - and Fe nutrition affects plant performance under Fe-deficient conditions. However, how NO3 - negatively regulates Fe nutrition at the molecular level in plants remains elusive. Here, we showed that the key nitrate transporter NRT1.1 in Arabidopsis plants, especially in the shoots, was markedly downregulated at post-translational levels by Fe deficiency. However, loss of NRT1.1 function alleviated Fe deficiency chlorosis, suggesting that downregulation of NRT1.1 by Fe deficiency favors plant tolerance to Fe deficiency. Further analysis showed that although disruption of NRT1.1 did not alter Fe levels in both the shoots and roots, it improved the reutilization of apoplastic Fe in shoots but not in roots. In addition, disruption of NRT1.1 prevented Fe deficiency-induced apoplastic alkalization in shoots by inhibiting apoplastic H+ depletion via NO3 - uptake. In vitro analysis showed that reduced pH facilitates release of cell wall-bound Fe. Thus, foliar spray with an acidic buffer promoted the reutilization of Fe in the leaf apoplast to enhance plant tolerance to Fe deficiency, while the opposite was true for the foliar spray with a neutral buffer. Thus, downregulation of the shoot-part function of NRT1.1 prevents apoplastic alkalization to ensure the reutilization of apoplastic Fe under Fe-deficient conditions. Our findings may provide a basis for elucidating the link between N and Fe nutrition in plants and insight to scrutinize the relevance of shoot-expressed NRT1.1 to the plant response to stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ferro/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Solo , Regulação da Expressão Gênica de Plantas , Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Transporte de Ânions/genética
8.
Genes (Basel) ; 13(9)2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36140680

RESUMO

Multiple epiphyseal dysplasias (MED) are a clinically and genetically heterogeneous group of skeletal dysplasias with a predominant lesion in the epiphyses of tubular bones. Variants in the SLC26A2 gene cause their autosomal recessive form (rMED or MED type 4). The accumulation of data regarding the genotype−phenotype correlation can help in the diagnosis and proper management of these patients. The aim of this study was to survey the clinical and genetic characteristics of 55 patients with MED type 4 caused by variants in the SLC26A2 gene. Diagnosis confirmation was carried out by radiography and custom panel sequencing consisting of 166 genes responsible for the development of hereditary skeletal pathology. This was followed by the validation of the identified variants using automated Sanger sequencing (for six patients) and the direct automatic Sanger sequencing of the coding sequence and the adjacent intron regions of the SLC26A2 gene for 49 patients. Based on the clinical and genetic analysis of our sample of patients, two main MED type 4 phenotypes with early and late clinical manifestations were identified. An early and more severe form of the disease was observed in patients with the c.835C > T variant (p.Arg279Trp), and the late and milder form of the disease was observed in patients with the c.1957T > A variant (p.Cys653Ser) in the homozygous or compound heterozygous state with c.26 + 2T > C. It was also shown that only three pathogenic variants were found in 95.3% of the alleles of Russian patients with MED type 4: c.1957T > A (p.Cys653Ser), c.835C > T (p.Arg279Trp), and c.26 + 2T > C; thus, it can be assumed that the primary analysis of these variants will contribute to the optimal molecular genetic diagnostics of MED type 4.


Assuntos
Osteocondrodisplasias , Proteínas de Transporte de Ânions/genética , Humanos , Mutação , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Patela/anormalidades , Transportadores de Sulfato/genética
9.
Eur J Med Genet ; 65(10): 104595, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36007841

RESUMO

BACKGROUND: Pathogenic variants in the transmembrane sulfate transporter protein SLC26A2 are associated with different phenotypes of inherited chondrodysplasias. As limited data is published from India, in this study we sought to elucidate the molecular basis of inherited chondrodysplasias in an Indian cohort. METHODS: Molecular screening of 32 fetuses with antenatally diagnosed lethal skeletal dysplasia was performed by next generation sequencing and Sanger sequencing. The genotype-protein phenotype characterization was done using computational biology techniques like homology modelling, stability and pathogenicity predictions. RESULTS: We identified five rare autosomal recessive SLC26A2 [NM_000112.4] variants, including three homozygous c.796dupA(p.Thr266Asnfs*12), c.1724delA(p.Lys575Serfs*10), and c.1375_1377dup(p.Val459dup) and two heterozygous variants (c.532C > T(p.Arg178*)) and (c.1382C > T(p.Ala461Val)) in compound heterozygous form in a total of four foetuses. Genotype-protein phenotype annotations highlighted that the clinically severe achondrogenesis 1B causative c.796dupA(p.Thr266Asnfs*12) and c.1724delA(p.Lys575Serfs*10)variants impact SLC26A2 protein structure by deletion of the protein core and transmembrane STAS domains, respectively. In clinically moderate atelosteogenesis type 2 phenotype, the c.1382C > T(p.Ala461Val) variant is predicted to distort alpha helix conformation and alter the bonding properties and free energy dynamics of transmembrane domains and the c.532C > T(p.Arg178*) variant results in loss of both core transmembrane and STAS domains of the SLC26A2 protein. The c.1375_1377dup(p.Val459dup) variant identified in clinically milder atelosteogenesis type II-diastrophic dysplasia spectrum lethal phenotype is predicted to decrease the Qualitative Model Energy Analysis (QMean), which affects major geometrical aspects of the SLC26A2 protein structure. CONCLUSION: We expand the spectrum of SLC26A2 related lethal chondrodysplasia and report three novel variants correlating clinical severity and protein phenotype within the lethal spectrum of this rare dysplasia. We demonstrate the relevance of structural characterization to aid novel variant reclassification to provide better prenatal management and reproductive options to families with lethal antenatal skeletal disorder.


Assuntos
Biologia Computacional , Osteocondrodisplasias , Proteínas de Transporte de Ânions/genética , Feminino , Genótipo , Humanos , Mutação , Osteocondrodisplasias/patologia , Fenótipo , Gravidez , Transportadores de Sulfato/genética
10.
Ophthalmic Genet ; 43(4): 538-542, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35291925

RESUMO

BACKGROUND: In this case report, we have described congenital inherited endothelial dystrophy (CHED) caused by two heterozygous missense mutations in two patients. METHODS: A Chinese family affected by CHED was recruited to identify potential genetic mutations. The proband developed bilateral corneal opacity after birth, and was diagnosed with CHED based on the clinical manifestations. Her younger sister had the same symptoms. Blood samples were collected from four members of the family, including the two sisters and their parents, and full exon sequencing (WES) was used to identify potential genetic mutations in the proband. To verify the identified mutations, Sanger sequencing was performed on samples from other family members. RESULTS: Two heterozygous missense variants were found in SLC4A11, a variant NM_032034.4; c.1237 G > A (p.G413R, rs1286683365) in exon 10 and a variant NM_032034.4, c. 698 G > T (p.R233L) in exon 6, and the latter was reported for the first time in this disease. Bioinformatics tools, such as SIFT and PolyPhen, showed that changes in these two amino acids probably affected protein function. CONCLUSIONS: This study reported the typical clinical symptoms of CHED caused by two heterozygous missense variants (c.1237 G > A and c. 698 G > T) in the SLC4A11 gene in a Chinese family.


Assuntos
Proteínas de Transporte de Ânions , Distrofias Hereditárias da Córnea , Proteínas de Transporte de Ânions/genética , Antiporters/genética , China , Distrofias Hereditárias da Córnea/diagnóstico , Distrofias Hereditárias da Córnea/genética , Feminino , Humanos , Mutação
11.
Cells ; 11(2)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-35053313

RESUMO

Solute-linked cotransporter, SLC4A11, a member of the bicarbonate transporter family, is an electrogenic H+ transporter activated by NH3 and alkaline pH. Although SLC4A11 does not transport bicarbonate, it shares many properties with other members of the SLC4 family. SLC4A11 mutations can lead to corneal endothelial dystrophy and hearing deficits that are recapitulated in SLC4A11 knock-out mice. SLC4A11, at the inner mitochondrial membrane, facilitates glutamine catabolism and suppresses the production of mitochondrial superoxide by providing ammonia-sensitive H+ uncoupling that reduces glutamine-driven mitochondrial membrane potential hyperpolarization. Mitochondrial oxidative stress in SLC4A11 KO also triggers dysfunctional autophagy and lysosomes, as well as ER stress. SLC4A11 expression is induced by oxidative stress through the transcription factor NRF2, the master regulator of antioxidant genes. Outside of the corneal endothelium, SLC4A11's function has been demonstrated in cochlear fibrocytes, salivary glands, and kidneys, but is largely unexplored overall. Increased SLC4A11 expression is a component of some "glutamine-addicted" cancers, and is possibly linked to cells and tissues that rely on glutamine catabolism.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Prótons , Animais , Proteínas de Transporte de Ânions/genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Estresse Oxidativo/genética
12.
Mol Ther ; 30(2): 703-713, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34547466

RESUMO

Iron dyshomeostasis is associated with hepatocellular carcinoma (HCC) development. However, the role of iron in HCC metastasis is unknown. This study aimed to elucidate the underlying mechanisms of iron's enhancement activity on HCC metastasis. In addition to the HCC cell lines and clinical samples in vitro, iron-deficient (ID) mouse models were generated using iron-free diet and transferrin receptor protein knockout, followed by administration of HCC tumors through either orthotopic or ectopic route. Clinical metastatic HCC samples showed significant ID status, accompanied by overexpression of sphingosine-1-phosphate transporter spinster homolog 2 (SPNS2). Mechanistically, ID increased SPNS2 expression, leading to HCC metastasis in both cell cultures and mouse models. ID not only altered the anti-tumor immunity, which was indicated by phenotypes of lymphatic subsets in the liver and lung of tumor-bearing mice, but also promoted HCC metastasis in a cancer cell autonomous manner through the SPNS2. Since germline knockout of globe SPNS2 showed significantly reduced HCC metastasis, we further developed hepatic-targeting recombinant adeno-associated virus vectors to knockdown SPNS2 expression and to inhibit iron-regulated HCC metastasis. Our observation indicates the role of iron in HCC pulmonary metastasis and suggests SPNS2 as a potential therapeutic target for the prevention of HCC pulmonary metastasis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Movimento Celular , Ferro/metabolismo , Neoplasias Hepáticas/genética , Lisofosfolipídeos , Camundongos , Metástase Neoplásica , Esfingosina/análogos & derivados
13.
Exp Eye Res ; 214: 108884, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871568

RESUMO

Slc4a11 KO mice show significant corneal edema, altered endothelial morphology, and mitochondrial ROS at an early age without a decrease in endothelial cell density. We examined the differential gene expression profile between wild type (WT) and KO with the goal of finding pathways related to corneal endothelial metabolic, pump and barrier function that can explain the corneal edema. Freshly dissected Corneal Endothelium-Descemet's Membrane (CEDM) and cultured Mouse Corneal Endothelial Cells (MCEC) were obtained from WT and Slc4a11 KO mice. RNA sequencing Ingenuity Pathway Analysis (IPA) predicted activation, inhibition or differential regulation of several pathways. QPCR and Western analysis validated downregulation of Glycolytic enzymes, Mitochondrial complex components and Ion transporters. Functional testing revealed decreases in endothelial lactate production, Extracellular Acidification Rate (ECAR), glutaminolysis, and Oxygen Consumption Rate (OCR) of KO CEDM in the presence of Glutamine (Gln) that was not compensated by fatty acid oxidation. Stromal lactate was significantly elevated in KO along with decreased expression of MCT1 and MCT4 lactate transporters in endothelial cells. ATP levels were 2x higher in KO CEDM, concomitant with a 3-fold decrease in Na-K-ATPase activity and reduced basolateral membrane localization. Genes for cholesterol biosynthesis, glutathione metabolism and tight and adherens junctions were elevated. Alteration of tight junction structure and cortical cytoskeleton is evident in KO corneal endothelium with a significant increase in trans-endothelial fluorescein permeability. We conclude that Slc4a11 KO induces a coordinated decrease in glycolysis, glutaminolysis, lactate transport and Na-K-ATPase activity. These changes together with an altered barrier function cause an accumulation of stromal lactate in Slc4a11 KO mice leading to chronic corneal edema.


Assuntos
Proteínas de Transporte de Ânions/genética , Edema da Córnea/genética , Endotélio Corneano/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Simportadores/genética , Simportadores/metabolismo , Animais , Western Blotting , Edema da Córnea/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Glutamina/metabolismo , Glicólise , Camundongos , Camundongos Knockout , Estresse Oxidativo , Consumo de Oxigênio/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA
14.
Sci Rep ; 11(1): 20885, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686736

RESUMO

SLC4A11 is a H+/NH3/water transport protein, of corneal endothelial cells. SLC4A11 mutations cause congenital hereditary endothelial dystrophy and some cases of Fuchs endothelial corneal dystrophy. To probe SLC4A11's roles, we compared gene expression in RNA from corneas of 17-week-old slc4a11-/- (n = 3) and slc4a11+/+ mice (n = 3) and subjected to RNA sequencing. mRNA levels for a subset of genes were also assessed by quantitative real-time reverse transcription PCR (qRT RT-PCR). Cornea expressed 13,173 genes, which were rank-ordered for their abundance. In slc4a11-/- corneas, 100 genes had significantly altered expression. Abundant slc14a1 expression, encoding the urea transporter UT-A, suggests a significant role in the cornea. The set of genes with altered expression was subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, revealing that alterations clustered into extracellular region, cytoskeleton, cell adhesion and plasma membrane functions. Gene expression changes further clustered into classes (with decreasing numbers of genes): cell fate and development, extracellular matrix and cell adhesion, cytoskeleton, ion homeostasis and energy metabolism. Together these gene changes confirm earlier suggestions of a role of SLC4A11 in ion homeostasis, energy metabolism, cell adhesion, and reveal an unrecognized SLC4A11 role in cytoskeletal organization.


Assuntos
Proteínas de Transporte de Ânions/genética , Córnea/fisiologia , Expressão Gênica/genética , Simportadores/genética , Animais , Adesão Celular/genética , Membrana Celular/genética , Células Endoteliais/fisiologia , Endotélio Corneano/fisiologia , Células Epiteliais/fisiologia , Matriz Extracelular/genética , Regulação da Expressão Gênica/genética , Transporte de Íons/genética , Masculino , Camundongos , Mutação/genética
15.
Mol Biol Rep ; 48(11): 7467-7476, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34637099

RESUMO

BACKGROUND: Autosomal recessive corneal hereditary endothelial dystrophy (CHED) is a rare congenital disorder of cornea. Mutations in SLC4A11 gene are associated with CHED phenotype. CHED is also an early feature of Harboyan syndrome. The aim of the present study was to identify genetic mutations in the SLC4A11 gene in CHED cases belonging to inbred Pakistani families. Furthermore, all homozygous mutation carriers were investigated for hearing deficit. METHODS AND RESULTS: This study included consanguineous CHED families presented at Al-Shifa Trust Eye Hospital, Rawalpindi, Pakistan from June 2018 to September 2018. DNA was extracted from blood samples. Direct sequencing of SLC4A11 gene was performed. All identified variants were evaluated by in silico programs i.e., SIFT, PolyPhen-2, and MutationTaster. Pathogenicity of the two identified splice site variants was analyzed by Human Splicing Finder and MaxEnt Scan. Screening of five CHED families revealed a total of three previously un reported (p.Arg128Gly, c.2241-2A > T and c.1898-2A > C in family CHED19, CHED22 and CHED26 respectively) and two already reported homozygous disease causing variants (p.Arg869Cys and p.Val824Met in family CHED24 and CHED25 respectively) as predicted by mutation taster. All of these variants segregated with disease phenotype and were not detected in controls. CONCLUSION: Affected individuals of the five CHED families screened in this study had the disease due to SLC4A11 mutations and progressing to Harboyan syndrome. Identification of previously unreported mutations aid to heterogeneity of SLC4A11 and CHED pathogenesis as well as helped to provide genetic counseling to affected families.


Assuntos
Proteínas de Transporte de Ânions/genética , Antiporters/genética , Distrofias Hereditárias da Córnea/genética , Perda Auditiva Neurossensorial/genética , Mutação de Sentido Incorreto , Adolescente , Substituição de Aminoácidos , Criança , Feminino , Humanos , Masculino
16.
Plant Cell Environ ; 44(12): 3576-3588, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34505300

RESUMO

Nitrogen-potassium synergistic and antagonistic interactions are the typical case of nutrient interactions. However, the underlying mechanism for the integration of the external N form into K+ homeostasis remains unclear. Here, we show that opposite effects of NO3- and NH4+ on root-shoot K+ translocation were due to differential regulation of an ethylene signalling pathway targeting the NRT1.5 transporter. NH4+ upregulated the transcriptional activity of EIN3, but repressed the expression of NRT1.5. However, the addition of NO3- strongly suppressed the activity of EIN3, whereas its addition upregulated the expression of AtNRT1.5 and shoot K+ concentration. The 35S:EIN3/ein3eil1 plants, nrt1.5 mutants and nrt1.5/skor double mutants displayed a low K+ chlorosis phenotype, especially under NH4+ conditions with low K+ supply. Ion content analyses indicate that root-to-shoot K+ translocation was significantly reduced in these mutants. A Y1H assay, an EMSA and a transient expression assay confirmed that AtEIN3 protein could directly bind to the promoter of NRT1.5 to repress its expression. Furthermore, grafted plants with the roots of 35S:EIN3 and ein3eil1/nrt1.5 mutants displayed marked leaf chlorosis with a low K+ concentration. Collectively, our findings reveal that the interaction between N form and K+ was achieved by modulating root-derived ethylene signals to regulate root-to-shoot K+ translocation via NRT1.5.


Assuntos
Proteínas de Transporte de Ânions/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Etilenos/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Potássio/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo
17.
BMC Genomics ; 22(1): 564, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294052

RESUMO

BACKGROUND: Prestin (SLC26A5) is responsible for acute sensitivity and frequency selectivity in the vertebrate auditory system. Limited knowledge of prestin is from experiments using site-directed mutagenesis or domain-swapping techniques after the amino acid residues were identified by comparing the sequence of prestin to those of its paralogs and orthologs. Frog prestin is the only representative in amphibian lineage and the studies of it were quite rare with only one species identified. RESULTS: Here we report a new coding sequence of SLC26A5 for a frog species, Rana catesbeiana (the American bullfrog). In our study, the SLC26A5 gene of Rana has been mapped, sequenced and cloned successively using RNA-Seq. We measured the nonlinear capacitance (NLC) of prestin both in the hair cells of Rana's inner ear and HEK293T cells transfected with this new coding gene. HEK293T cells expressing Rana prestin showed electrophysiological features similar to that of hair cells from its inner ear. Comparative studies of zebrafish, chick, Rana and an ancient frog species showed that chick and zebrafish prestin lacked NLC. Ancient frog's prestin was functionally different from Rana. CONCLUSIONS: We mapped and sequenced the SLC26A5 of the Rana catesbeiana from its inner ear cDNA using RNA-Seq. The Rana SLC26A5 cDNA was 2292 bp long, encoding a polypeptide of 763 amino acid residues, with 40% identity to mammals. This new coding gene could encode a functionally active protein conferring NLC to both frog HCs and the mammalian cell line. While comparing to its orthologs, the amphibian prestin has been evolutionarily changing its function and becomes more advanced than avian and teleost prestin.


Assuntos
Proteínas de Transporte de Ânions , Peixe-Zebra , Anfíbios/genética , Animais , Proteínas de Transporte de Ânions/genética , Células HEK293 , Humanos , RNA-Seq , Peixe-Zebra/genética
18.
Invest Ophthalmol Vis Sci ; 62(7): 28, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34190974

RESUMO

Purpose: The conventional Slc4a11 knockout (KO) shows significant corneal edema at eye opening, a fact that complicates the study of the initial events leading to edema. An inducible KO would provide opportunities to examine early events following loss of Slc4a11 activity. Methods: Slc4a11 Flox (SF) mice were crossed with mice expressing the estrogen receptor Cre Recombinase fusion protein and fed tamoxifen (Tm) for two weeks. Corneal thickness (CT) was measured by OCT. At eight weeks endpoint, oxidative damage, tight junction integrity, stromal lactate concentration, endothelial permeability, differentially expressed transporters, and junction proteins were determined. Separately, a keratocyte only inducible Slc4a11 KO was also examined. Results: At four weeks post-Tm induction Slc4a11 transcript levels were 2% of control. Corneal thickness increased gradually and was 50% greater than Wild Type (WT) after eight weeks with significantly altered endothelial morphology, increased nitrotyrosine staining, significantly higher stromal lactate, decreased expression of lactate transporters and Na-K ATPase activity, higher ATP, altered expression of tight and adherens junctions, and increased fluorescein permeability. No significant differences in CT were found between WT and keratocyte only Slc4a11 KO. Conclusions: The Slc4a11 inducible KO shows development of a similar phenotype as the conventional KO, thereby validating the model and providing a tool for further use in examining the sequence of cellular events by use of noninvasive in vivo physiological probes.


Assuntos
Proteínas de Transporte de Ânions/genética , Edema da Córnea , Modelos Animais de Doenças , Camundongos Knockout , Simportadores/genética , Animais , Proteínas de Transporte de Ânions/metabolismo , Edema da Córnea/genética , Edema da Córnea/metabolismo , Edema da Córnea/fisiopatologia , Endotélio Corneano/fisiologia , Camundongos , Camundongos Knockout/genética , Camundongos Knockout/metabolismo , Estresse Oxidativo
19.
BMC Plant Biol ; 21(1): 299, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187357

RESUMO

BACKGROUND: Cigar wrapper leaves are the most important raw material of cigars. Studying the genomic information of cigar tobacco is conducive to improving cigar quality from the perspective of genetic breeding. However, no reference genome or full-length transcripts at the genome-wide scale have been reported for cigar tobacco. In particular, anion channels/transporters are of high interest for their potential application in regulating the chloride content of cigar tobacco growing on coastal lands, which usually results in relatively high Cl- accumulation, which is unfavorable. Here, the PacBio platform and NGS technology were combined to generate a full-length transcriptome of cigar tobacco used for cigar wrappers. RESULTS: High-quality RNA isolated from the roots, leaves and stems of cigar tobacco were subjected to both the PacBio platform and NGS. From PacBio, a total of 11,652,432 subreads (19-Gb) were generated, with an average read length of 1,608 bp. After corrections were performed in conjunction with the NGS reads, we ultimately identified 1,695,064 open reading frames including 21,486 full-length ORFs and 7,342 genes encoding transcription factors from 55 TF families, together with 2,230 genes encoding long non-coding RNAs. Members of gene families related to anion channels/transporters, including members of the SLAC and CLC families, were identified and characterized. CONCLUSIONS: The full-length transcriptome of cigar tobacco was obtained, annotated, and analyzed, providing a valuable genetic resource for future studies in cigar tobacco.


Assuntos
Proteínas de Transporte de Ânions/genética , Genoma de Planta/genética , Canais Iônicos/genética , Nicotiana/genética , Proteínas de Plantas/genética , Produtos do Tabaco , Transcriptoma/genética , Proteínas de Transporte de Ânions/metabolismo , Canais Iônicos/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , RNA Longo não Codificante/genética , RNA de Plantas/genética , Nicotiana/metabolismo , Fatores de Transcrição/genética
20.
BMC Plant Biol ; 21(1): 300, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187360

RESUMO

BACKGROUND: A major limiting factor for plant growth is the aluminum (Al) toxicity in acidic soils, especially in tropical regions. The exclusion of Al from the root apex through root exudation of organic acids such as malate and citrate is one of the most ubiquitous tolerance mechanisms in the plant kingdom. Two families of anion channels that confer Al tolerance are well described in the literature, ALMT and MATE family. RESULTS: In this study, sugarcane plants constitutively overexpressing the Sorghum bicolor MATE gene (SbMATE) showed improved tolerance to Al when compared to non-transgenic (NT) plants, characterized by sustained root growth and exclusion of aluminum from the root apex based on the result obtained with hematoxylin staining. In addition, genome-wide analysis of the recently released sugarcane genome identified 11 ALMT genes and molecular studies showed potential new targets for aluminum tolerance. CONCLUSIONS: Our results indicate that the transgenic plants overexpressing the Sorghum bicolor MATE has an improved tolerance to Al. The expression profile of ALMT genes revels potential candidate genes to be used has an alternative for agricultural expansion in Brazil and other areas with aluminum toxicity in poor and acid soils.


Assuntos
Alumínio/metabolismo , Proteínas de Transporte de Ânions/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , Saccharum/genética , Alumínio/toxicidade , Proteínas de Transporte de Ânions/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Estudo de Associação Genômica Ampla , Filogenia , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Saccharum/metabolismo , Sorghum/genética , Sorghum/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA