Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.272
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Yakugaku Zasshi ; 144(6): 659-674, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38825475

RESUMO

Serum urate levels are determined by the balance between uric acid production and uric acid excretion capacity from the kidneys and intestinal tract. Dysuricemia, including hyperuricemia and hypouricemia, develops when the balance shifts towards an increase or a decrease in the uric acid pool. Hyperuricemia is mostly a multifactorial genetic disorder involving several disease susceptibility genes and environmental factors. Hypouricemia, on the other hand, is caused by genetic abnormalities. The main genes involved in dysuricemia are xanthine oxidoreductase, an enzyme that produces uric acid, and the urate transporters urate transporter 1/solute carrier family 22 member 12 (URAT1/SLC22A12), glucose transporter 9/solute carrier family 2 member 9 (GLUT9/SLC2A9) and ATP binding cassette subfamily G member 2 (ABCG2). Deficiency of xanthine oxidoreductase results in xanthinuria, a rare disease with marked hypouricemia. Xanthinuria can be due to a single deficiency of xanthine oxidoreductase or in combination with aldehyde oxidase deficiency as well. The latter is caused by a deficiency in molybdenum cofactor sulfurase, which is responsible for adding sulphur atoms to the molybdenum cofactor required for xanthine oxidoreductase and aldehyde oxidase to exert their action. URAT1/SLC22A12 and GLUT9/SLC2A9 are involved in urate reabsorption and their deficiency leads to renal hypouricemia, a condition that is common in Japanese due to URAT1/SLC22A12 deficiency. On the other hand, ABCG2 is involved in the secretion of urate, and many Japanese have single nucleotide polymorphisms that result in its reduced function, leading to hyperuricemia. In particular, severe dysfunction of ABCG2 leads to hyperuricemia with reduced extrarenal excretion.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteínas Facilitadoras de Transporte de Glucose , Hiperuricemia , Proteínas de Neoplasias , Transportadores de Ânions Orgânicos , Ácido Úrico , Xantina Desidrogenase , Humanos , Hiperuricemia/etiologia , Hiperuricemia/metabolismo , Hiperuricemia/genética , Ácido Úrico/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Xantina Desidrogenase/metabolismo , Xantina Desidrogenase/genética , Xantina Desidrogenase/deficiência , Animais , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Erros Inatos do Transporte Tubular Renal/genética , Erros Inatos do Transporte Tubular Renal/etiologia , Erros Inatos do Transporte Tubular Renal/metabolismo , Cálculos Urinários/etiologia , Cálculos Urinários/metabolismo , Cálculos Urinários/genética , Erros Inatos do Metabolismo
2.
Cells ; 13(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38920639

RESUMO

The polarised expression of specific transporters in proximal tubular epithelial cells is important for the renal clearance of many endogenous and exogenous compounds. Thus, ideally, the in vitro tools utilised for predictions would have a similar expression of apical and basolateral xenobiotic transporters as in vivo. Here, we assessed the functionality of organic cation and anion transporters in proximal tubular-like cells (PTL) differentiated from human induced pluripotent stem cells (iPSC), primary human proximal tubular epithelial cells (PTEC), and telomerase-immortalised human renal proximal tubular epithelial cells (RPTEC/TERT1). Organic cation and anion transport were studied using the fluorescent substrates 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP) and 6-carboxyfluorescein (6-CF), respectively. The level and rate of intracellular ASP accumulation in PTL following basolateral application were slightly lower but within a 3-fold range compared to primary PTEC and RPTEC/TERT1 cells. The basolateral uptake of ASP and its subsequent apical efflux could be inhibited by basolateral exposure to quinidine in all models. Of the three models, only PTL showed a modest preferential basolateral-to-apical 6-CF transfer. These results show that organic cation transport could be demonstrated in all three models, but more research is needed to improve and optimise organic anion transporter expression and functionality.


Assuntos
Células Epiteliais , Túbulos Renais Proximais , Humanos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/citologia , Células Epiteliais/metabolismo , Modelos Biológicos , Compostos de Piridínio/metabolismo , Ânions/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Transporte Biológico , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Linhagem Celular , Cátions/metabolismo , Fluoresceínas/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética
3.
Biochem Biophys Res Commun ; 726: 150269, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-38909533

RESUMO

Mitochondrial dysfunction is implicated in a wide range of human disorders including many neurodegenerative and cardiovascular diseases, metabolic diseases, cancers, and respiratory disorders. Studies have suggested the potential of l-ergothioneine (ET), a unique dietary thione, to prevent mitochondrial damage and improve disease outcome. Despite this, no studies have definitively demonstrated uptake of ET into mitochondria. Moreover, the expression of the known ET transporter, OCTN1, on the mitochondria remains controversial. In this study, we utilise mass spectrometry to demonstrate direct ET uptake in isolated mitochondria as well as its presence in mitochondria isolated from ET-treated cells and animals. Mitochondria isolated from OCTN1 knockout mice tissues, have impaired but still detectable ET uptake, raising the possibility of alternative transporter(s) which may facilitate ET uptake into the mitochondria. Our data confirm that ET can enter mitochondria, providing a basis for further work on ET in the prevention of mitochondrial dysfunction in human disease.


Assuntos
Ergotioneína , Camundongos Knockout , Mitocôndrias , Ergotioneína/metabolismo , Ergotioneína/farmacologia , Animais , Mitocôndrias/metabolismo , Humanos , Camundongos , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Simportadores/metabolismo , Simportadores/genética
4.
Stroke ; 55(6): 1650-1659, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38738428

RESUMO

BACKGROUND: Beyond neuronal injury, cell death pathways may also contribute to vascular injury after stroke. We examined protein networks linked to major cell death pathways and identified SLC22A17 (solute carrier family 22 member 17) as a novel mediator that regulates endothelial tight junctions after ischemia and inflammatory stress. METHODS: Protein-protein interactions and brain enrichment analyses were performed using STRING, Cytoscape, and a human tissue-specific expression RNA-seq database. In vivo experiments were performed using mouse models of transient focal cerebral ischemia. Human stroke brain tissues were used to detect SLC22A17 by immunostaining. In vitro experiments were performed using human brain endothelial cultures subjected to inflammatory stress. Immunostaining and Western blot were used to assess responses in SLC22A17 and endothelial tight junctional proteins. Water content, dextran permeability, and electrical resistance assays were used to assess edema and blood-brain barrier (BBB) integrity. Gain and loss-of-function studies were performed using lentiviral overexpression of SLC22A17 or short interfering RNA against SLC22A17, respectively. RESULTS: Protein-protein interaction analysis showed that core proteins from apoptosis, necroptosis, ferroptosis, and autophagy cell death pathways were closely linked. Among the 20 proteins identified in the network, the iron-handling solute carrier SLC22A17 emerged as the mediator enriched in the brain. After cerebral ischemia in vivo, endothelial expression of SLC22A17 increases in both human and mouse brains along with BBB leakage. In human brain endothelial cultures, short interfering RNA against SLC22A17 prevents TNF-α (tumor necrosis factor alpha)-induced ferroptosis and downregulation in tight junction proteins and disruption in transcellular permeability. Notably, SLC22A17 could repress the transcription of tight junctional genes. Finally, short interfering RNA against SLC22A17 ameliorates BBB leakage in a mouse model of focal cerebral ischemia. CONCLUSIONS: Using a combination of cell culture, human stroke samples, and mouse models, our data suggest that SLC22A17 may play a role in the control of BBB function after cerebral ischemia. These findings may offer a novel mechanism and target for ameliorating BBB injury and edema after stroke.


Assuntos
Barreira Hematoencefálica , Isquemia Encefálica , Junções Íntimas , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Isquemia Encefálica/genética , Morte Celular , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Junções Íntimas/metabolismo
6.
Nat Commun ; 15(1): 4380, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782905

RESUMO

SLC22A10 is an orphan transporter with unknown substrates and function. The goal of this study is to elucidate its substrate specificity and functional characteristics. In contrast to orthologs from great apes, human SLC22A10, tagged with green fluorescent protein, is not expressed on the plasma membrane. Cells expressing great ape SLC22A10 orthologs exhibit significant accumulation of estradiol-17ß-glucuronide, unlike those expressing human SLC22A10. Sequence alignments reveal a proline at position 220 in humans, which is a leucine in great apes. Replacing proline with leucine in SLC22A10-P220L restores plasma membrane localization and uptake function. Neanderthal and Denisovan genomes show proline at position 220, akin to modern humans, indicating functional loss during hominin evolution. Human SLC22A10 is a unitary pseudogene due to a fixed missense mutation, P220, while in great apes, its orthologs transport sex steroid conjugates. Characterizing SLC22A10 across species sheds light on its biological role, influencing organism development and steroid homeostasis.


Assuntos
Primatas , Animais , Humanos , Sequência de Aminoácidos , Estradiol/metabolismo , Células HEK293 , Hominidae/genética , Hominidae/metabolismo , Mutação de Sentido Incorreto , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Primatas/genética , Pseudogenes , Especificidade por Substrato
7.
Eur J Med Chem ; 271: 116407, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38663283

RESUMO

Xanthine oxidoreductase (XOR) and uric acid transporter 1 (URAT1) are two most widely studied targets involved in production and reabsorption of uric acid, respectively. Marketed drugs almost target XOR or URAT1, but sometimes, single agents might not achieve aim of lowering uric acid to ideal value in clinic. Thus, therapeutic strategies of combining XOR inhibitors with uricosuric drugs were proposed and implemented. Based on our initial work of virtual screening, A and B were potential hits for dual-targeted inhibitors on XOR/URAT1. By docking A/B with XOR/URAT1 respectively, compounds I1-7 were designed to get different degree of inhibition effect on XOR and URAT1, and I7 showed the best inhibitory effect on XOR (IC50 = 0.037 ± 0.001 µM) and URAT1 (IC50 = 546.70 ± 32.60 µM). Further docking research on I7 with XOR/URAT1 led to the design of compounds II with the significantly improved inhibitory activity on XOR and URAT1, such as II11 and II15. Especially, for II15, the IC50 of XOR is 0.006 ± 0.000 µM, superior to that of febuxostat (IC50 = 0.008 ± 0.000 µM), IC50 of URAT1 is 12.90 ± 2.30 µM, superior to that of benzbromarone (IC50 = 27.04 ± 2.55 µM). In acute hyperuricemia mouse model, II15 showed significant uric acid lowering effect. The results suggest that II15 had good inhibitory effect on XOR/URAT1, with the possibility for further investigation in in-vivo models of hyperuricemia.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos , Transportadores de Ânions Orgânicos , Proteínas de Transporte de Cátions Orgânicos , Piridinas , Animais , Piridinas/farmacologia , Piridinas/química , Piridinas/síntese química , Camundongos , Humanos , Relação Estrutura-Atividade , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Estrutura Molecular , Simulação de Acoplamento Molecular , Xantina Desidrogenase/antagonistas & inibidores , Xantina Desidrogenase/metabolismo , Relação Dose-Resposta a Droga , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Masculino , Ácido Úrico/metabolismo
8.
Bioorg Chem ; 147: 107381, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38669781

RESUMO

The development of XOD/URAT1 dual target inhibitors has emerged as a promising therapeutic strategy for the management of hyperuricemia. Here, through virtual screening, we have identified digallic acid as a novel dual target inhibitor of XOD/URAT1 and subsequently evaluated its pharmacological properties, pharmacokinetics, and toxicities. Digallic acid inhibited URAT1 with an IC50 of 5.34 ± 0.65 µM, which is less potent than benzbromarone (2.01 ± 0.36 µM) but more potent than lesinurad (10.36 ± 1.23 µM). Docking and mutation analysis indicated that residues S35, F241 and R477 of URAT1 confer a high affinity for digallic acid. Digallic acid inhibited XOD with an IC50 of 1.04 ± 0.23 µM. Its metabolic product, gallic acid, inhibited XOD with an IC50 of 0.91 ± 0.14 µM. Enzyme kinetic studies indicated that both digallic acid and gallic acid act as mixed-type XOD inhibitors. It shares the same binding mode as digallic acid, and residues E802, R880, F914, T1010, N768 and F1009 contribute to their high affinity. The anion group (carboxyl) of digallic acid contribute significantly to its inhibition activity on both XOD and URAT1 as indicated by docking analysis. Remarkably, at a dosage of 10 mg/kg in vivo, digallic acid exhibited a stronger urate-lowering and uricosuric effect compared to the positive drug benzbromarone and lesinurad. Pharmacokinetic study indicated that digallic acid can be hydrolyzed into gallic acid in vivo and has a t1/2 of 0.77 ± 0.10 h. Further toxicity evaluation indicated that digallic acid exhibited no obvious renal toxicity, as reflected by CCK-8, biochemical analysis (CR and BUN) and HE examination. The findings of our study can provide valuable insights for the development of XOD/URAT1 dual target inhibitors, and digallic acid deserves further investigation as a potential anti-hyperuricemic drug.


Assuntos
Relação Dose-Resposta a Droga , Inibidores Enzimáticos , Hiperuricemia , Transportadores de Ânions Orgânicos , Proteínas de Transporte de Cátions Orgânicos , Hiperuricemia/tratamento farmacológico , Humanos , Animais , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Relação Estrutura-Atividade , Estrutura Molecular , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacocinética , Urato Oxidase/química , Descoberta de Drogas , Simulação de Acoplamento Molecular , Camundongos , Masculino , Ácido Gálico/química , Ácido Gálico/farmacologia , Ácido Gálico/análogos & derivados , Ratos Sprague-Dawley
9.
Biochem Biophys Res Commun ; 712-713: 149922, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38626531

RESUMO

We previously reported that solute carrier family 22 member 18 (Slc22a18) regulates lipid accumulation in 3T3-L1 adipocytes. Here, we provide additional evidence derived from experiments with adenoviral vector expression and genetic manipulation of mice. In primary cultured rat hepatocytes, adenoviral overexpression of mouse Slc22a18 increased triglyceride accumulation and triglyceride synthetic activity, which was decreased in an adenoviral knockdown experiment. Adenoviral overexpression of mouse Slc22a18 in vivo caused massive fatty liver in mice, even under normal dietary conditions. Conversely, adenoviral knockdown of mouse Slc22a18 reduced hepatic lipid accumulation induced by a high-glucose and high-sucrose diet. We created Slc22a18 knockout mice, which grew normally and showed no obvious spontaneous phenotypes. However, compared with control littermates, the knockout mice exhibited decreased hepatic triglyceride content under refeeding conditions, significantly reduced epididymal fat mass, and tended to have lower liver weight in conjunction with leptin deficiency. Finally, we created transgenic mice overexpressing rat Slc22a18 in an adipose-specific manner, which had increased body weight and epididymal fat mass primarily because of increased adipocyte cell volume. In these transgenic mice, a positive correlation was observed between adiposity and the expression levels of the rat Slc22a18 transgene. Taken together, these results indicate that Slc22a18 has positive effects on lipid accumulation in vivo.


Assuntos
Proteínas de Transporte de Cátions Orgânicos , Animais , Camundongos , Ratos , Masculino , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Camundongos Knockout , Hepatócitos/metabolismo , Triglicerídeos/metabolismo , Camundongos Transgênicos , Metabolismo dos Lipídeos/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Adiposidade/genética , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Células Cultivadas , Ratos Sprague-Dawley
10.
J Pharmacol Exp Ther ; 390(1): 99-107, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38670801

RESUMO

Dotinurad was developed as a uricosuric agent, inhibiting urate (UA) reabsorption through the UA transporter URAT1 in the kidneys. Due to its high selectivity for URAT1 among renal UA transporters, we investigated the mechanism underlying this selectivity by identifying dotinurad binding sites specific to URAT1. Dotinurad was docked to URAT1 using AutoDock4, utilizing the AlphaFold2-predicted structure. The inhibitory effects of dotinurad on wild-type and mutated URAT1 at the predicted binding sites were assessed through URAT1-mediated [14C]UA uptake in Xenopus oocytes. Nine amino acid residues in URAT1 were identified as dotinurad-binding sites. Sequence alignment with UA-transporting organic anion transporters (OATs) revealed that H142 and R487 were unique to URAT1 among renal UA-transporting OATs. For H142, IC50 values of dotinurad increased to 62, 55, and 76 nM for mutated URAT1 (H142A, H142E, and H142R, respectively) compared with 19 nM for the wild type, indicating that H142 contributes to URAT1-selective interaction with dotinurad. H142 was predicted to interact with the phenyl-hydroxyl group of dotinurad. The IC50 of the hydroxyl group methylated dotinurad (F13141) was 165 µM, 8420-fold higher than dotinurad, suggesting the interaction of H142 and the phenyl-hydroxyl group by forming a hydrogen bond. Regarding R487, URAT1-R487A exhibited a loss of activity. Interestingly, the URAT1-H142A/R487A double mutant restored UA transport activity, with the IC50 value of dotinurad for the mutant (388 nM) significantly higher than that for H142A (73.5 nM). These results demonstrate that H142 and R487 of URAT1 determine its selectivity for dotinurad, a uniqueness observed only in URAT1 among UA-transporting OATs. SIGNIFICANCE STATEMENT: Dotinurad selectively inhibits the urate reabsorption transporter URAT1 in renal urate-transporting organic ion transporters (OATs). This study demonstrates that dotinurad interacts with H142 and R487 of URAT1, located in the extracellular domain and unique among OATs when aligning amino acid sequences. Mutations in these residues reduce affinity of dotinurad for URAT1, confirming their role in conferring selective inhibition. Additionally, the interaction between dotinurad and URAT1 involving H142 is found to mediate hydrogen bonding.


Assuntos
Transportadores de Ânions Orgânicos , Ácido Úrico , Uricosúricos , Animais , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/genética , Ácido Úrico/metabolismo , Ácido Úrico/farmacologia , Sítios de Ligação , Humanos , Uricosúricos/farmacologia , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Xenopus laevis , Rim/metabolismo , Rim/efeitos dos fármacos , Oócitos/metabolismo , Oócitos/efeitos dos fármacos , Benzotiazóis/farmacologia , Simulação de Acoplamento Molecular
11.
Biomolecules ; 14(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38672410

RESUMO

Inflammation is a physiological condition characterized by a complex interplay between different cells handled by metabolites and specific inflammatory-related molecules. In some pathological situations, inflammation persists underlying and worsening the pathological state. Over the years, two membrane transporters namely OCTN1 (SLC22A4) and OCTN2 (SLC22A5) have been shown to play specific roles in inflammation. These transporters form the OCTN subfamily within the larger SLC22 family. The link between these proteins and inflammation has been proposed based on their link to some chronic inflammatory diseases such as asthma, Crohn's disease (CD), and rheumatoid arthritis (RA). Moreover, the two transporters show the ability to mediate the transport of several compounds including carnitine, carnitine derivatives, acetylcholine, ergothioneine, and gut microbiota by-products, which have been specifically associated with inflammation for their anti- or proinflammatory action. Therefore, the absorption and distribution of these molecules rely on the presence of OCTN1 and OCTN2, whose expression is modulated by inflammatory cytokines and transcription factors typically activated by inflammation. In the present review, we wish to provide a state of the art on OCTN1 and OCTN2 transport function and regulation in relationships with inflammation and inflammatory diseases focusing on the metabolic signature collected in different body districts and gene polymorphisms related to inflammatory diseases.


Assuntos
Inflamação , Proteínas de Transporte de Cátions Orgânicos , Membro 5 da Família 22 de Carreadores de Soluto , Simportadores , Humanos , Inflamação/metabolismo , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo , Membro 5 da Família 22 de Carreadores de Soluto/genética , Animais , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Ergotioneína/metabolismo , Doença de Crohn/metabolismo , Doença de Crohn/genética , Doença de Crohn/patologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/genética , Microbioma Gastrointestinal , Carnitina/metabolismo , Asma/metabolismo , Asma/genética , Acetilcolina/metabolismo
12.
J Med Chem ; 67(6): 5032-5052, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38482820

RESUMO

Gout and hyperuricemia are metabolic diseases characterized with high serum uric acid (SUA) levels that significantly impact human health. Lesinurad, a uricosuric agent, is limited to concurrent use with xanthine oxidase inhibitors (XOIs) in clinical practice due to its restricted efficacy and potential nephrotoxicity. Herein, extensive structural modifications of lesinurad were conducted through scaffold hopping and substituent modification strategies, affording 54 novel derivatives containing pyrimidine-fused cyclic structures. Notably, the thienopyrimidine compound 29 demonstrated a remarkable 2-fold increase in SUA-lowering in vivo activity compared to lesinurad, while exhibiting potent inhibitory activity against the urate transporter 1 (URAT1, IC50 = 2.01 µM) and glucose transporter 9 (GLUT9, IC50 = 18.21 µM). Furthermore, it possessed a lower effective dosage of 0.5 mg/kg, favorable safety profile without any apparent acute toxicity at doses of 1000 mg/kg, and improved pharmacokinetic properties. Overall, we have discovered an efficacious URAT1/GLUT9 dual inhibitor for inhibiting urate reabsorption with favorable pharmacokinetic profiles.


Assuntos
Gota , Hiperuricemia , Transportadores de Ânions Orgânicos , Tioglicolatos , Triazóis , Humanos , Ácido Úrico/uso terapêutico , Gota/tratamento farmacológico , Hiperuricemia/tratamento farmacológico , Uricosúricos/uso terapêutico , Pirimidinas/toxicidade , Pirimidinas/uso terapêutico , Proteínas Facilitadoras de Transporte de Glucose , Proteínas de Transporte de Cátions Orgânicos
13.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474165

RESUMO

Cisplatin (CDDP) stands out as an effective chemotherapeutic agent; however, its application is linked to the development of significant adverse effects, notably nephro- and ototoxicity. The human organic cation transporter 2 (hOCT2), found in abundance in the basolateral membrane domain of renal proximal tubules and the Corti organ, plays a crucial role in the initiation of nephro- and ototoxicity associated with CDDP by facilitating its uptake in kidney and ear cells. Given its limited presence in cancer cells, hOCT2 emerges as a potential druggable target for mitigating unwanted toxicities associated with CDDP. Potential strategies for mitigating CDDP toxicities include competing with the uptake of CDDP by hOCT2 or inhibiting hOCT2 activity through rapid regulation mediated by specific signaling pathways. This study investigated the interaction between the already approved cationic drugs disopyramide, imipramine, and orphenadrine with hOCT2 that is stably expressed in human embryonic kidney cells. Regarding disopyramide, its influence on CDDP cellular transport by hOCT2 was further characterized through inductively coupled plasma isotope dilution mass spectrometry. Additionally, its potential protective effects against cellular toxicity induced by CDDP were assessed using a cytotoxicity test. Given that hOCT2 is typically expressed in the basolateral membrane of polarized cells, with specific regulatory mechanisms, this work studied the regulation of hOCT2 that is stably expressed in Madin-Darby Canine Kidney (MDCK) cells. These cells were cultured in a matrix to induce the formation of cysts, exposing hOCT2 in the basolateral plasma membrane domain, which was freely accessible to experimental solutions. The study specifically tested the regulation of ASP+ uptake by hOCT2 in MDCK cysts through the inhibition of casein kinase II (CKII), calmodulin, or p56lck tyrosine kinase. Furthermore, the impact of this manipulation on the cellular toxicity induced by CDDP was examined using a cytotoxicity test. All three drugs-disopyramide, imipramine, and orphenadrine-demonstrated inhibition of ASP+ uptake, with IC50 values in the micromolar (µM) range. Notably, disopyramide produced a significant reduction in the CDDP cellular toxicity and platinum cellular accumulation when co-incubated with CDDP. The activity of hOCT2 in MDCK cysts experienced a significant down-regulation under inhibition of CKII, calmodulin, or p56lck tyrosine kinase. Interestingly, only the inhibition of p56lck tyrosine kinase demonstrated the capability to protect the cells against CDDP toxicity. In conclusion, certain interventions targeting hOCT2 have demonstrated the ability to reduce CDDP cytotoxicity, at least in vitro. Further investigations in in vivo systems are warranted to ascertain their potential applicability as co-treatments for mitigating undesired toxicities associated with CDDP in patients.


Assuntos
Cistos , Ototoxicidade , Humanos , Animais , Cães , Transportador 2 de Cátion Orgânico , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Cisplatino/metabolismo , Disopiramida , Calmodulina/metabolismo , Imipramina , Orfenadrina , Células Madin Darby de Rim Canino , Proteínas Tirosina Quinases/metabolismo
14.
Toxicology ; 503: 153757, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364893

RESUMO

Doxorubicin (DOX) is a widely used antitumor agent; however, its clinical application is limited by dose-related organ damage. Because organic cation/carnitine transporters (OCTN1 and OCTN2), which are critical for DOX uptake, are highly expressed in hepatocytes, we aimed to elucidate the role of these transporters in hepatic DOX uptake. The results indicated that inhibitors and RNA interference both significantly reduced DOX accumulation in HepG2 and HepaRG cells, suggesting that OCTN1/2 contribute substantially to DOX uptake by hepatocytes. To determine whether metformin (MET, an inhibitor of OCTN1 and OCTN2) ameliorates DOX-induced hepatotoxicity, we conducted in vitro and in vivo studies. MET (1-100 µM) inhibited DOX (500 nM) accumulation and cytotoxicity in vitro in a concentration-dependent manner. Furthermore, intravenous MET administration at 250 or 500 mg/kg or by gavage at 50, 100, or 200 mg/kg reduced DOX (8 mg/kg) accumulation in a dose-dependent manner in the mouse liver and attenuated the release of alanine aminotransferase, aspartate aminotransferase, and carboxylesterase 1. Additionally, MET reduced the distribution of DOX in the heart, liver, and kidney and enhanced the urinary elimination of DOX; however, it did not increase the nephric toxicity of DOX. In conclusion, our study demonstrated that MET alleviates DOX hepatotoxicity by inhibiting OCTN1- and OCTN2-mediated DOX uptake in vitro (mouse hepatocytes and HepaRG or HepG2 cells) and in mice.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Metformina , Simportadores , Camundongos , Animais , Proteínas de Transporte de Cátions Orgânicos/genética , Membro 5 da Família 22 de Carreadores de Soluto , Metformina/farmacologia , Doxorrubicina/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
15.
Sci Rep ; 14(1): 3925, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366023

RESUMO

Solute carrier family (SLC) transporters are expressed in the digestive system and play important roles in maintaining physiological functions in the body. In addition, SLC transporters act as oncoproteins or tumor-suppressor proteins during the development, progression, and metastasis of various digestive system cancers. SLC22A18, a member of the SLC22 gene family, is an orphan transporter with an unknown endogenous substrate. Previous study revealed that SLC22A18 is downregulated in colorectal cancer tissues and that it acts as a suppressor in colorectal cancer, although the effects of SLC22A18 variants on colon cancer cell proliferation, migration, and invasion are unknown. Therefore, in this study, we identified SLC22A18 variants found in multiple populations by searching public databases and determined the in vitro effects of these missense variations on transporter expression and cancer progression. Our results indicated that three missense SLC22A18 variants-p.Ala6Thr, p.Arg12Gln, and p.Arg86His-had significantly lower cell expression than the wild type, possibly owing to intracellular degradation. Furthermore, these three variants caused significantly higher proliferation, migration, and invasion of colon cancer cells than the wild type. Our findings suggest that missense variants of SLC22A18 can potentially serve as biomarkers or prognostic tools that enable clinicians to predict colorectal cancer progression.


Assuntos
Neoplasias do Colo , Proteínas de Transporte de Cátions Orgânicos , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Prognóstico , Proteínas Supressoras de Tumor/genética , Proteínas de Transporte de Cátions Orgânicos/genética
16.
Ann Biol Clin (Paris) ; 81(6): 602-609, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38391165

RESUMO

This study aims to evaluate the mRNA levels of solute carrier family 22, member 17 (SLC22A17) and its potential clinical value as a diagnostic and prognostic biomarker in non-small cell lung cancer. This prospective study measured SLC22A17 mRNA levels in lung cancer and paracancer tissues using quantitative reverse transcription-polymerase chain reaction (PCR). The levels of SLC22A17 mRNA in plasma samples from healthy control subjects and patients with lung cancer were also measured. The association between SLC22A17 mRNA levels in plasma and clinicopathological characteristics was determined. Receiver operating characteristic (ROC) curve analysis was performed to determine the diagnostic value of SLC22A17 in plasma. Survival curve analysis was performed using the Kaplan-Meier method. SLC22A17 mRNA levels were significantly higher in lung cancer samples than in the paired paracancerous tissues. Plasma SLC22A17 mRNA levels were also significantly higher in patients with lung cancer than in healthy controls. The COX analysis indicated that there was a significant correlation between elevated plasma SLC22A17 mRNA levels and lymph node metastasis, distant metastasis, and TNM stage. Furthermore, the ROC curve analysis demonstrated that plasma SLC22A17 had high diagnostic value. High plasma SLC22A17 mRNA levels are associated with a significantly shorter survival time. SLC22A17 is upregulated in lung cancer and may serve as a novel diagnostic and prognostic biomarker.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Prognóstico , RNA Mensageiro/genética , Estudos Prospectivos , Curva ROC , Biomarcadores , Biomarcadores Tumorais/genética , Proteínas de Transporte de Cátions Orgânicos
17.
Biopharm Drug Dispos ; 45(1): 43-57, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38305087

RESUMO

The renal tubular organic cation transporter 2 (OCT2) and multidrug and toxin extrusion protein 1 (MATE1) mediate the vectorial elimination of many drugs and toxins from the kidney, and endogenous biomarkers for vectorial transport (OCT2-MATE1) would allow more accurate drug dosing and help to characterize drug-drug interactions and toxicity. Human serum uptake in OCT2-overexpressing cells and metabolomics analysis were carried out. Potential biomarkers were verified in vitro and in vivo. The specificity of biomarkers was validated in renal transporter overexpressing cells and the sensitivity was investigated by Km . The results showed that the uptake of thiamine, histamine, and 5-hydroxytryptamine was significantly increased in OCT2-overexpressing cells. In vitro assays confirmed that thiamine, histamine, and 5-hydroxytryptamine were substrates of both OCT2 and MATE1. In vivo measurements indicated that the serum thiamine level was increased significantly in the presence of the rOCT2 inhibitor cimetidine, and the level in renal tissue was increased significantly by the rMATE1 inhibitor pyrimethamine. There were no significant changes in the uptake or efflux of thiamine in cell lines overexpressed OAT1, OAT2, OAT3, MRP4, organic anion transporting polypeptide 4C1, P-gp, peptide transporter 2, urate transporter 1, and OAT4. The Km for thiamine with OCT2 and MATE1 were 71.2 and 10.8 µM, respectively. In addition, the cumulative excretion of thiamine at 2 and 4 h was strongly correlated with metformin excretion (R2  > 0.6). Thus, thiamine is preferentially secreted by the OCT2 and MATE1 in renal tubules and can provide a reference value for evaluating the function of the renal tubular OCT2-MATE1.


Assuntos
Proteínas de Transporte de Cátions Orgânicos , Transportador 1 de Cátions Orgânicos , Humanos , Transportador 1 de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Histamina/metabolismo , Serotonina/metabolismo , Rim/metabolismo , Tiamina/metabolismo , Células HEK293
18.
Chem Biol Interact ; 390: 110886, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38280639

RESUMO

Niclosamide is an anthelmintic drug with a long history of use and is generally safe and well tolerated in humans. As the conventional dose of niclosamide results in a low but certain level in systemic circulation, drug interactions with concomitant drugs should be considered. We aimed to investigate the interaction between niclosamide and drug transporters, as such information is currently limited. Niclosamide inhibited the transport activity of OATP1B1, OATP1B3, OAT1, OAT3, and OCT2 in vitro. Among them, the inhibitory effects on OAT1, OAT3, and OCT2 were strong, with IC50 values of less than 1 µM. When 3 mg/kg of niclosamide was co-administered to rats, systemic exposure to furosemide (a substrate of OAT1/3) and metformin (a substrate of OCT2) increased, and the renal clearance (CLr) of the drugs significantly decreased. These results suggest that niclosamide inhibits renal transporters, OAT1/3 and OCT2, not only in vitro but also in vivo, resulting in increased systemic exposure to the substrates of the transporters by strongly blocking the urinary elimination pathway in rats. The findings of this study will support a meticulous understanding of the transporter-mediated drug interactions of niclosamide and consequently aid in effective and safe use of niclosamide.


Assuntos
Transportadores de Ânions Orgânicos Sódio-Independentes , Transportadores de Ânions Orgânicos , Humanos , Ratos , Animais , Transportador 2 de Cátion Orgânico , Proteínas de Transporte de Cátions Orgânicos , Niclosamida/farmacologia , Interações Medicamentosas , Transportadores de Ânions Orgânicos/metabolismo , Células HEK293
19.
Mol Diagn Ther ; 28(1): 87-99, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37971623

RESUMO

BACKGROUND: Renal hypouricemia (RHUC), a rare inherited disorder characterized by impaired uric acid reabsorption and subsequent profound hypouricemia, occurs mainly due to variants in SLC22A12 or SLC2A9. Only anecdotal cases and one small-scale RHUC screening study have been reported in the Chinese population. METHODS: A total of 19 patients with RHUC from 17 unrelated families were recruited from our center. The medical history, clinical manifestations, biochemical exam, and clinical outcomes were collected. Next-generation sequencing-based targeted gene sequencing or whole exon sequencing was performed. RESULTS: A total of 22 variants in SLC22A12 or SLC2A9 were found in 19 patients. The variant c.944G>A (p.W315X) in SLC2A9 was identified in three patients. Three variants c.165C>A (p.D55E), c.1549_1555delGAGACCC (p.E517Rfs*17), and c.1483T>C (p.W495R) in SLC22A12 and three variants c.1215+1G>A (splicing variant), c.643A>C (p.T215P), and c.227C>A (p.S76X) in SLC2A9 were novel. A proportion of 10 out of 19 patients presented with exercise-induced acute kidney injury (EIAKI). The renal outcome was favorable. Five patients had nephrolithiasis, in whom three had hypercalciuria. CONCLUSION: The current study reported six novel variants in SLC22A12 and SLC2A9 genes of Chinese patients with RHUC. The variant c.944G>A (p.W315X) in SLC2A9 may be common in Chinese patients. EIAKI is the main clinical phenotype associated with RHUC in our cohort, with a favorable outcome. Hypercalciuria presented in some RHUC patients is a new finding.


Assuntos
Injúria Renal Aguda , Transportadores de Ânions Orgânicos , Erros Inatos do Transporte Tubular Renal , Cálculos Urinários , Humanos , Hipercalciúria , Proteínas Facilitadoras de Transporte de Glucose/genética , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Genótipo , Fenótipo , China
20.
J Pharmacol Exp Ther ; 388(1): 201-208, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37977812

RESUMO

Creatinine, a clinical marker for kidney function, is predominantly cleared by glomerular filtration, with active tubular secretion contributing to about 30% of its renal clearance. Recent studies suggested the potential involvement of organic anion transporter (OAT)2, in addition to the previously known organic cation transporter (OCT)2-mediated basolateral uptake, in creatinine active secretion. Here we characterized the transport mechanisms of creatinine using transfected human embryonic kidney (HEK)293 cells and freshly prepared human primary renal proximal tubule epithelial cells (hPTCs). Creatinine showed transport by OAT2 in transfected HEK293 cells. In addition, both creatinine and metformin showed transport by OCT2 and multidrug and toxin extrusion pump (MATE)1 and MATE2K, while penciclovir was selective for OAT2. Time-dependent cell accumulation was observed for creatinine and metformin in hPTCs. Their accumulation was increased by pyrimethamine but inhibited by decynium-22, likely due to differential inhibition of OCT2 versus MATEs. Additionally, indomethacin (an OAT2 inhibitor) reduced penciclovir uptake (∼75%) in hPTCs illustrating functional OAT2 activity. However, no modulation of creatinine and metformin cell accumulation was apparent with indomethacin. Creatinine transport characteristics in the presence of inhibitors approached those of metformin, an OCT2/MATE substrate, but were distinct from those of penciclovir, an OAT2-selective substrate. Moreover, indomethacin showed no significant effect on the basolateral-to-apical transport and net secretion of creatinine across hPTC monolayers. Collectively, the functional studies suggest OCT2 as the primary basolateral uptake mechanism and that OAT2 has a minimal role, in creatinine renal secretion. Our results highlight the utility of hPTCs to enable the functional assessment of renal transport mechanisms. SIGNIFICANCE STATEMENT: Our results obtained with primary hPTCs indicate that OCT2/MATE (vs. OAT2) play a major role in the active renal secretion of creatinine. Quantitative pharmacokinetic models should therefore focus on OCT2/MATE when describing serum creatinine and creatinine clearance modulation by inhibitor drugs and genotype- or disease-related activity changes. The present study highlights the utility of freshly isolated hPTCs to support solute carrier phenotyping to enable the functional assessment of renal transport mechanisms.


Assuntos
Metformina , Transportadores de Ânions Orgânicos , Humanos , Transportador 2 de Cátion Orgânico , Creatinina , Proteínas de Transporte de Cátions Orgânicos , Células HEK293 , Rim , Metformina/farmacologia , Indometacina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA