Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 13433, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183732

RESUMO

The Wnt pathway activates target genes by controlling the ß-catenin-T-cell factor (TCF) transcriptional complex during embryonic development and cancer. This pathway can be potentiated by R-spondins, a family of proteins that bind RNF43/ZNRF3 E3 ubiquitin ligases and LGR4/5 receptors to prevent Frizzled degradation. Here we demonstrate that, during Xenopus anteroposterior axis specification, Rspo2 functions as a Wnt antagonist, both morphologically and at the level of gene targets and pathway mediators. Unexpectedly, the binding to RNF43/ZNRF3 and LGR4/5 was not required for the Wnt inhibitory activity. Moreover, Rspo2 did not influence Dishevelled phosphorylation in response to Wnt ligands, suggesting that Frizzled activity is not affected. Further analysis indicated that the Wnt antagonism is due to the inhibitory effect of Rspo2 on TCF3/TCF7L1 phosphorylation that normally leads to target gene activation. Consistent with this mechanism, Rspo2 anteriorizing activity has been rescued in TCF3-depleted embryos. These observations suggest that Rspo2 is a context-specific regulator of TCF3 phosphorylation and Wnt signaling.


Assuntos
Padronização Corporal/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Fator 3 de Transcrição/antagonistas & inibidores , Via de Sinalização Wnt/efeitos dos fármacos , Proteínas de Xenopus/antagonistas & inibidores , Proteínas de Xenopus/fisiologia , Animais , Padronização Corporal/fisiologia , Embrião não Mamífero/anormalidades , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genes Reporter , Cabeça/embriologia , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Fator 3 de Transcrição/metabolismo , Proteínas de Xenopus/biossíntese , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/farmacologia , Xenopus laevis/embriologia
2.
Dev Biol ; 433(2): 276-286, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29291977

RESUMO

Xenopus laevis (an anuran amphibian) shows limb regeneration ability between that of urodele amphibians and that of amniotes. Xenopus frogs can initiate limb regeneration but fail to form patterned limbs. Regenerated limbs mainly consist of cone-shaped cartilage without any joints or branches. These pattern defects are thought to be caused by loss of proper expressions of patterning-related genes. This study shows that hyperinnervation surgery resulted in the induction of a branching regenerate. The hyperinnervated blastema allows the identification and functional analysis of the molecules controlling this patterning of limb regeneration. This paper focuses on the nerve affects to improve Xenopus limb patterning ability during regeneration. The nerve molecules, which regulate limb patterning, were also investigated. Blastemas grown in a hyperinnervated forelimb upregulate limb patterning-related genes (shh, lmx1b, and hoxa13). Nerves projecting their axons to limbs express some growth factors (bmp7, fgf2, fgf8, and shh). Inputs of these factors to a blastema upregulated some limb patterning-related genes and resulted in changes in the cartilage patterns in the regenerates. These results indicate that additional nerve factors enhance Xenopus limb patterning-related gene expressions and limb regeneration ability, and that bmp, fgf, and shh are candidate nerve substitute factors.


Assuntos
Extremidades/fisiologia , Regulação da Expressão Gênica , Transferência de Nervo , Regeneração/fisiologia , Xenopus laevis/fisiologia , Amputação Cirúrgica , Animais , Células Cultivadas , Denervação , Extremidades/inervação , Comportamento Predatório , Regeneração/genética , Nervo Isquiático/lesões , Nervo Isquiático/fisiologia , Natação , Cicatrização/genética , Cicatrização/fisiologia , Proteínas de Xenopus/biossíntese , Proteínas de Xenopus/genética , Xenopus laevis/genética
3.
Cell Death Dis ; 8(5): e2787, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28492553

RESUMO

The Myc/Mad/Max network has long been shown to be an important factor in regulating cell proliferation, death and differentiation in diverse cell types. In general, Myc-Max heterodimers activate target gene expression to promote cell proliferation, although excess of c-Myc can also induce apoptosis. In contrast, Mad competes against Myc to form Mad-Max heterodimers that bind to the same target genes to repress their expression and promote differentiation. The role of the Myc/Mad/Max network during vertebrate development, especially, the so-called postembryonic development, a period around birth in mammals, is unclear. Using thyroid hormone (T3)-dependent Xenopus metamorphosis as a model, we show here that Mad1 is induced by T3 in the intestine during metamorphosis when larval epithelial cell death and adult epithelial stem cell development take place. More importantly, we demonstrate that Mad1 is expressed in the larval cells undergoing apoptosis, whereas c-Myc is expressed in the proliferating adult stem cells during intestinal metamorphosis, suggesting that Mad1 may have a role in cell death during development. By using transcription activator-like effector nuclease-mediated gene-editing technology, we have generated Mad1 knockout Xenopus animals. This has revealed that Mad1 is not essential for embryogenesis or metamorphosis. On the other hand, consistent with its spatiotemporal expression profile, Mad1 knockout leads to reduced larval epithelial apoptosis but surprisingly also results in increased adult stem cell proliferation. These findings not only reveal a novel role of Mad1 in regulating developmental cell death but also suggest that a balance of Mad and Myc controls cell fate determination during adult organ development.


Assuntos
Células-Tronco Adultas/metabolismo , Apoptose/fisiologia , Proteínas de Ligação a DNA/biossíntese , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Intestinos/embriologia , Metamorfose Biológica/fisiologia , Proteínas Proto-Oncogênicas c-myc/biossíntese , Proteínas de Xenopus/biossíntese , Animais , Proteínas de Ligação a DNA/genética , Larva/genética , Larva/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteína Smad1 , Proteínas de Xenopus/genética , Xenopus laevis
4.
Dev Biol ; 426(2): 270-290, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28089430

RESUMO

Cell signaling pathways, such as Wnt, Hedgehog (Hh), Notch, and Hippo, are essential for embryogenesis, organogenesis, and tissue homeostasis. In this study, we analyzed 415 genes involved in these pathways in the allotetraploid frog, Xenopus laevis. Most genes are retained in two subgenomes called L and S (193 homeologous gene pairs and 29 singletons). This conservation rate of homeologs is much higher than that of all genes in the X. laevis genome (86.9% vs 60.2%). Among singletons, 24 genes are retained in the L subgenome, a rate similar to the average for all genes (82.8% vs 74.6%). In addition, as general components of signal transduction, we also analyzed 32 heparan sulfate proteoglycan (HSPG)-related genes and eight TLE/Groucho transcriptional corepressors-related genes. In these gene sets, all homeologous pairs have been retained. Transcriptome analysis using RNA-seq data from developmental stages and adult tissues demonstrated that most homeologous pairs of signaling components have variable expression patterns, in contrast to the conservative expression profiles of homeologs for transcription factors. Our results indicate that homeologous gene pairs for cell signaling regulation have tended to become subfunctionalized after allotetraploidization. Diversification of signaling pathways by subfunctionalization of homeologs may enhance environmental adaptability. These results provide insights into the evolution of signaling pathways after polyploidization.


Assuntos
Perfilação da Expressão Gênica , Proteínas Hedgehog/genética , Receptores Notch/genética , Transdução de Sinais/genética , Proteínas Wnt/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética , Animais , Receptores Frizzled/biossíntese , Receptores Frizzled/genética , Expressão Gênica , Genoma , Proteínas Hedgehog/biossíntese , Anotação de Sequência Molecular , Receptores Notch/biossíntese , Frações Subcelulares/metabolismo , Sintenia , Tetraploidia , Transcriptoma , Proteínas Wnt/biossíntese , Via de Sinalização Wnt/genética , Proteínas de Xenopus/biossíntese
6.
Cell Cycle ; 14(17): 2777-84, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26131587

RESUMO

DNA topoisomerase II (TopoII) regulates DNA topology by its strand passaging reaction, which is required for genome maintenance by resolving tangled genomic DNA. In addition, TopoII contributes to the structural integrity of mitotic chromosomes and to the activation of cell cycle checkpoints in mitosis. Post-translational modification of TopoII is one of the key mechanisms by which its broad functions are regulated during mitosis. SUMOylation of TopoII is conserved in eukaryotes and plays a critical role in chromosome segregation. Using Xenopus laevis egg extract, we demonstrated previously that TopoIIα is modified by SUMO on mitotic chromosomes and that its activity is modulated via SUMOylation of its lysine at 660. However, both biochemical and genetic analyses indicated that TopoII has multiple SUMOylation sites in addition to Lys660, and the functions of the other SUMOylation sites were not clearly determined. In this study, we identified the SUMOylation sites on the C-terminal domain (CTD) of TopoIIα. CTD SUMOylation did not affect TopoIIα activity, indicating that its function is distinct from that of Lys660 SUMOylation. We found that CTD SUMOylation promotes protein binding and that Claspin, a well-established cell cycle checkpoint mediator, is one of the SUMOylation-dependent binding proteins. Claspin harbors 2 SUMO-interacting motifs (SIMs), and its robust association to mitotic chromosomes requires both the SIMs and TopoIIα-CTD SUMOylation. Claspin localizes to the mitotic centromeres depending on mitotic SUMOylation, suggesting that TopoIIα-CTD SUMOylation regulates the centromeric localization of Claspin. Our findings provide a novel mechanistic insight regarding how TopoIIα-CTD SUMOylation contributes to mitotic centromere activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Antígenos de Neoplasias/biossíntese , Centrômero/metabolismo , DNA Topoisomerases Tipo II/biossíntese , Proteínas de Ligação a DNA/biossíntese , Sumoilação/fisiologia , Proteínas de Xenopus/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/análise , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Animais , Antígenos de Neoplasias/genética , Centrômero/química , Centrômero/genética , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/genética , Feminino , Masculino , Dados de Sequência Molecular , Proteínas de Xenopus/análise , Proteínas de Xenopus/genética , Xenopus laevis
7.
Dev Cell ; 34(3): 364-72, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26212134

RESUMO

In early embryos, the DNA damage checkpoint is silent until the midblastula transition (MBT) because of maternal limiting factors of unknown identity. Here we identify the RAD18 ubiquitin ligase as one such factor in Xenopus. We show, in vitro and in vivo, that inactivation of RAD18 function leads to DNA damage-dependent checkpoint activation, monitored by CHK1 phosphorylation. Moreover, we show that the abundance of both RAD18 and PCNA monoubiquitylated (mUb) are developmentally regulated. Increased DNA abundance limits the availability of RAD18 close to the MBT, thereby reducing PCNA(mUb) and inducing checkpoint derepression. Furthermore, we show that this embryonic-like regulation can be reactivated in somatic mammalian cells by ectopic RAD18 expression, therefore conferring resistance to DNA damage. Finally, we find high RAD18 expression in cancer stem cells highly resistant to DNA damage. Together, these data propose RAD18 as a critical embryonic checkpoint-inhibiting factor and suggest that RAD18 deregulation may have unexpected oncogenic potential.


Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Animais , Proteínas de Ciclo Celular , Células Cultivadas , Quinase 1 do Ponto de Checagem , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Embrião não Mamífero , Dados de Sequência Molecular , Células-Tronco Neoplásicas/metabolismo , Óvulo/citologia , Fosforilação , Proteínas Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas de Xenopus/biossíntese , Proteínas de Xenopus/genética
8.
Sheng Wu Gong Cheng Xue Bao ; 30(4): 615-24, 2014 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-25195251

RESUMO

The antimicrobial peptide magainin II is expressed in the skin of the African clawed frog, Xenopus laevis, and exhibits a broad spectrum of antimicrobial activity as well as tumoricidal properties at low concentrations. In addition, magaininII plays a synergistic role during antimicrobial and tumoricidal processes with another antimicrobial peptide PGLa that is also expressed in Xenopus laevis. The optimized cDNA sequence of magainin II and magainin II-PGLa hybrid peptide according to E. coli or Pichia pastoris codon usage frequency were synthesized and sub-cloned into prokaryotic expression vector pGEX and Pichia pastoris secreted expression vector pPIC9k. The resulting recombinant plasmids were named as pGEX-magainin II and pPIC9k-magainin II-PGLa. The GST-magainin II fusion protein was highly expressed in E. coli. Furthermore, magainin II was successfully purified by digestion with PreScission Protease to cleave the GST tag. Additionally, our data obtained from the ELISA revealed that magainin II -PGLa hybrid peptide was successfully expressed in Pichia pastoris. These experiments establish a useful system for further studies of these antimicrobial peptides.


Assuntos
Magaininas/biossíntese , Peptídeos/metabolismo , Proteínas de Xenopus/biossíntese , Animais , Escherichia coli/metabolismo , Vetores Genéticos , Magaininas/genética , Peptídeos/genética , Pichia/metabolismo , Plasmídeos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas de Xenopus/genética , Xenopus laevis
9.
Int J Dev Biol ; 58(10-12): 841-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26154325

RESUMO

Members of the cysteine-rich intestinal protein (Crip) family belong to the group 2 LIM proteins. Crip proteins are widely expressed in adult mammals but their expression profile and function during embryonic development are still mostly unknown. In this study, we have described for the first time the spatio-temporal expression pattern of the three family members crip1, crip2 and crip3 during Xenopus laevis embryogenesis by RT-PCR and whole mount in situ hybridization approaches. We observed that all three genes are expressed in the pronephros, branchial arches and the eye. Furthermore, crip1 transcripts could be visualized in the developing cranial ganglia and neural tube. In contrast, crip2 could be detected in the cardiovascular system, the brain and the neural tube while crip3 was expressed in the cranial ganglions and the heart. Based on these findings, we suggest that each crip family member may play an important role during embryonic development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas com Domínio LIM/biossíntese , Proteínas de Xenopus/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Encéfalo/metabolismo , Região Branquial/metabolismo , Sistema Cardiovascular/metabolismo , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Olho/metabolismo , Gânglios/metabolismo , Hibridização In Situ , Proteínas com Domínio LIM/genética , Miocárdio/metabolismo , Tubo Neural/metabolismo , Pronefro/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis
10.
OMICS ; 17(7): 384-92, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23829578

RESUMO

TNFSF13 is one of the tumor necrosis factor (TNF) superfamily members that plays important roles in immune homeostasis and proliferation or apoptosis of certain tumor cell lines. This report describes the development of Xenopus laevis TNFSF13 as a model to study its important role in relation to immunological diseases. In brief, TNFSF13 from Xenopus laevis (designated XlTNFSF13) was first amplified by RT-PCR and rapid amplification of cDNA end (RACE) techniques. Bioinformatics analyses revealed the gene structure, three-dimensional structure, and evolutionary relationships. Real-time quantitative PCR (QPCR) analysis identified the tissue distribution of XlTNFSF13 in the major visceral organs. The recombinant plasmid SUMO-XsTNFSF13 was expressed in E. coli Rosseta (DE3). Subsequently, the recombinant protein purified through Ni-NTA affinity chromatography was analyzed by SDS-PAGE and confirmed by Western blot analysis. Laser scanning confocal microscopy analysis revealed the binding activity of pSUMO-XsTNFSF13 to the surface of B cells. WST-8 assays further indicated that purified XsTNFSF13 could cause the survival/proliferation of B cells. In conclusion, we underscore that as a model organism for human disease, Xenopus laevis has been widely used in molecular biology research. Yet while TNFSF13 research in mammalian, fish (e.g., zebrafish), mouse, and human is widely available, studies in the amphibian species are limited. The latter area of OMICS and integrative biology scholarship is directly informed with the present study, with a view to implications for the future study of human immunological diseases.


Assuntos
Fator Ativador de Células B/genética , Fator Ativador de Células B/imunologia , Doenças do Sistema Imunitário/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/imunologia , Sequência de Aminoácidos , Animais , Fator Ativador de Células B/biossíntese , Linfócitos B/imunologia , Proliferação de Células , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Clonagem Molecular/métodos , Biologia Computacional/métodos , DNA Complementar/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Doenças do Sistema Imunitário/imunologia , Camundongos , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Alinhamento de Sequência , Distribuição Tecidual , Proteínas de Xenopus/biossíntese , Xenopus laevis
11.
Int J Dev Biol ; 57(1): 49-54, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23585352

RESUMO

TCF1 belongs to the family of LEF1/TCF transcription factors that regulate gene expression downstream of Wnt/ß-catenin signaling, which is crucial for embryonic development and is involved in adult stem cell regulation and tumor growth. In early Xenopus embryos, tcf1 plays an important role in mesoderm induction and patterning. Foxd3 emerged as a potential tcf1 target gene in a microarray analysis of gastrula stage embryos. Because foxd3 and tcf1 are coexpressed during gastrulation, we investigated whether foxd3 is regulated by tcf1. By using morpholino-mediated knockdown, we show that during gastrulation foxd3 expression is dependent on tcf1. By chromatin immunoprecipitation, we also demonstrate direct interaction of ß-catenin/tcf complexes with the foxd3 gene locus. Hence, our results indicate that tcf1 acts as an essential activator of foxd3, which is critical for dorsal mesoderm formation in early embryos.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Gastrulação , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Animais , Fatores de Transcrição Forkhead/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Fator 1-alfa Nuclear de Hepatócito/biossíntese , Mesoderma/embriologia , Morfolinos , Transdução de Sinais/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Proteínas de Xenopus/biossíntese , Xenopus laevis/genética , Xenopus laevis/metabolismo , beta Catenina/metabolismo
12.
Mol Cell Biochem ; 366(1-2): 69-80, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22422046

RESUMO

Cyclic ADP-ribose (cADPR), a metabolite of NAD(+), is known to function as a second messenger for intracellular Ca(2+) mobilization in various vertebrate and invertebrate tissues. In this study, we isolated two Xenopus laevis cDNAs (frog cd38 and cd157 cDNAs) homologous to the one encoding the human cADPR-metabolizing enzyme CD38. Frog CD38 and CD157 are 298-amino acid proteins with 35.9 and 27.2 % identity to human CD38 and CD157, respectively. Transfection of expression vectors for frog CD38 and CD157 into COS-7 cells revealed that frog CD38 had NAD(+) glycohydrolase, ADP-ribosyl cyclase (ARC), and cADPR hydrolase activities, and that frog CD157 had no enzymatic activity under physiological conditions. In addition, when recombinant CD38 and frog brain homogenate were electrophoresed on an SDS-polyacrylamide gel, ARC of the brain homogenate migrated to the same position in the gel as that of frog CD38, suggesting that frog CD38 is the major enzyme responsible for cADPR metabolism in amphibian cells. The frog cd38 gene consists of eight exons and is ubiquitously expressed in various tissues. These findings provide evidence for the existence of the CD38-cADPR signaling system in frog cells and suggest that the CD38-cADPR signaling system is conserved during vertebrate evolution.


Assuntos
ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase/genética , Antígenos CD/genética , ADP-Ribose Cíclica/biossíntese , Proteínas de Xenopus/genética , Xenopus laevis/genética , ADP-Ribosil Ciclase/biossíntese , ADP-Ribosil Ciclase/química , ADP-Ribosil Ciclase 1/biossíntese , ADP-Ribosil Ciclase 1/química , Sequência de Aminoácidos , Animais , Antígenos CD/biossíntese , Antígenos CD/química , Sequência de Bases , Encéfalo/enzimologia , Células COS , Chlorocebus aethiops , Clonagem Molecular , Sequência Conservada , ADP-Ribose Cíclica/metabolismo , Evolução Molecular , Proteínas Ligadas por GPI/biossíntese , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Humanos , Hidrólise , Nucleotídeos de Inosina/química , Cinética , Dados de Sequência Molecular , NAD/análogos & derivados , NAD/química , Especificidade de Órgãos , Filogenia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Análise de Sequência de DNA , Proteínas de Xenopus/biossíntese , Proteínas de Xenopus/química
13.
J Biol Chem ; 287(13): 10639-10649, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22215682

RESUMO

Cell cycle re-entry during vertebrate oocyte maturation is mediated through translational activation of select target mRNAs, culminating in the activation of mitogen-activated protein kinase and cyclin B/cyclin-dependent kinase (CDK) signaling. The temporal order of targeted mRNA translation is crucial for cell cycle progression and is determined by the timing of activation of distinct mRNA-binding proteins. We have previously shown in oocytes from Xenopus laevis that the mRNA-binding protein Musashi targets translational activation of early class mRNAs including the mRNA encoding the Mos proto-oncogene. However, the molecular mechanism by which Musashi function is activated is unknown. We report here that activation of Musashi1 is mediated by Ringo/CDK signaling, revealing a novel role for early Ringo/CDK function. Interestingly, Musashi1 activation is subsequently sustained through mitogen-activated protein kinase signaling, the downstream effector of Mos mRNA translation, thus establishing a positive feedback loop to amplify Musashi function. The identified regulatory sites are present in mammalian Musashi proteins, and our data suggest that phosphorylation may represent an evolutionarily conserved mechanism to control Musashi-dependent target mRNA translation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Oócitos/metabolismo , Biossíntese de Proteínas/fisiologia , Proteínas Proto-Oncogênicas c-mos/biossíntese , Proteínas de Ligação a RNA/metabolismo , Proteínas de Xenopus/biossíntese , Proteínas de Xenopus/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Células Cultivadas , Evolução Molecular , Mamíferos , Proteínas do Tecido Nervoso/genética , Oócitos/citologia , Proteínas Proto-Oncogênicas c-mos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas , Proteínas de Xenopus/genética , Xenopus laevis
14.
Dev Dyn ; 241(2): 403-14, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22190352

RESUMO

BACKGROUND: During Xenopus laevis metamorphosis, Sonic hedgehog (Shh) is directly induced by thyroid hormone (TH) at the transcription level as one of the earliest events in intestinal remodeling. However, the regulation of other components of this signaling pathway remains to be analyzed. Here, we analyzed the spatiotemporal expression of Patched (Ptc)-1, Smoothened (Smo), Gli1, Gli2, and Gli3 during natural and TH-induced intestinal remodeling. RESULTS: We show that all of the genes examined are transiently up-regulated in the mesenchymal tissues during intestinal metamorphosis. CONCLUSIONS: Interestingly, in the presence of protein synthesis inhibitors, Gli2 but not the others was induced by TH, suggesting that Gli2 is a direct TH response gene, while the others are likely indirect ones. Furthermore, we demonstrate by the organ culture experiment that overexpression of Shh enhances the expression of Ptc-1, Smo, and Glis even in the absence of TH, indicating that Shh regulates its own pathway components during intestinal remodeling.


Assuntos
Proteínas Hedgehog/biossíntese , Intestinos/crescimento & desenvolvimento , Metamorfose Biológica/fisiologia , Hormônios Tireóideos/metabolismo , Xenopus laevis/crescimento & desenvolvimento , Animais , Mucosa Intestinal/metabolismo , Fatores de Transcrição Kruppel-Like/biossíntese , Metamorfose Biológica/efeitos dos fármacos , Proteínas Oncogênicas/biossíntese , Comunicação Parácrina , Receptores de Superfície Celular/biossíntese , Proteínas Repressoras/biossíntese , Receptor Smoothened , Hormônios Tireóideos/farmacologia , Transativadores/biossíntese , Regulação para Cima , Proteínas de Xenopus/biossíntese , Xenopus laevis/metabolismo , Proteína GLI1 em Dedos de Zinco , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco
15.
Pharmacol Rev ; 64(1): 1-15, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22090471

RESUMO

Calcium-activated chloride channels (CaCCs) are widely expressed in various tissues and implicated in physiological processes such as sensory transduction, epithelial secretion, and smooth muscle contraction. Transmembrane proteins with unknown function 16 (TMEM16A) has recently been identified as a major component of CaCCs. Detailed molecular analysis of TMEM16A will be needed to understand its structure-function relationships. The role this channel plays in physiological systems remains to be established and is currently a subject of intense investigation.


Assuntos
Canais de Cloreto/fisiologia , Proteínas de Neoplasias/fisiologia , Proteínas de Xenopus/fisiologia , Animais , Anoctamina-1 , Canais de Cloreto/antagonistas & inibidores , Canais de Cloreto/biossíntese , Canais de Cloreto/classificação , Fenômenos Eletrofisiológicos , Glicosilação , Humanos , Agências Internacionais , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/classificação , Especificidade de Órgãos , Fosforilação , Conformação Proteica , Terminologia como Assunto , Proteínas de Xenopus/antagonistas & inibidores , Proteínas de Xenopus/biossíntese , Proteínas de Xenopus/classificação
16.
Gene Expr Patterns ; 11(8): 511-6, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21920462

RESUMO

Development in the frog, Xenopus laevis, requires the utilization of yolk glyco-lipo-proteins in a temporally- and spatially-dependent manner. The metabolism of the yolk produces hydrogen peroxide (H(2)O(2)), a potent reactive oxygen species (ROS). Peroxiredoxins (prdxs) are a family of six anti-oxidant enzymes that, amongst other roles, reduce H(2)O(2). Prdxs reduce H(2)O(2) through a thiol-redox reaction at conserved cysteine residues which results in the creation of disulfide bonds. Recently the thiol-redox reaction of Prdxs has also been implicated in several cell signaling systems. Here we report the cloning and expression patterns during development of six peroxiredoxin homologs from the frog X. laevis. Sequence analysis confirmed their identity as well as their evolutionary relationship with peroxiredoxins from several other species. Using RT-PCR and in situ hybridization analysis we have shown that there is early and robust expression of all six homologs during development. All six X. laevis peroxiredoxins are expressed in neural regions including the brain, eyes, as well as the somites. Different expression patterns for each peroxiredoxin are also observed in the pronephric region, including the proximal and distal tubules. Expression of several peroxiredoxins was also observed in the blood precursors and the olfactory placode. These results suggest important roles for all six peroxiredoxins during early development. These roles may be restricted to their functions as anti-oxidant enzymes, but may also be related to their emerging roles in redox signaling.


Assuntos
Embrião não Mamífero/embriologia , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Família Multigênica/fisiologia , Peroxirredoxinas/biossíntese , Proteínas de Xenopus/biossíntese , Animais , Embrião não Mamífero/enzimologia , Especificidade de Órgãos/fisiologia , Xenopus laevis
17.
Neuron ; 68(3): 442-55, 2010 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21040846

RESUMO

Regulation of progenitor cell fate determines the numbers of neurons in the developing brain. While proliferation of neural progenitors predominates during early central nervous system (CNS) development, progenitor cell fate shifts toward differentiation as CNS circuits develop, suggesting that signals from developing circuits may regulate proliferation and differentiation. We tested whether activity regulates neurogenesis in vivo in the developing visual system of Xenopus tadpoles. Both cell proliferation and the number of musashi1-immunoreactive progenitors in the optic tectum decrease as visual system connections become stronger. Visual deprivation for 2 days increased proliferation of musashi1-immunoreactive radial glial progenitors, while visual experience increased neuronal differentiation. Morpholino-mediated knockdown and overexpression of musashi1 indicate that musashi1 is necessary and sufficient for neural progenitor proliferation in the CNS. These data demonstrate a mechanism by which increased brain activity in developing circuits decreases cell proliferation and increases neuronal differentiation through the downregulation of musashi1 in response to circuit activity.


Assuntos
Sistema Nervoso Central/citologia , Sistema Nervoso Central/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Ribonucleoproteínas/genética , Ribonucleoproteínas/fisiologia , Células-Tronco/fisiologia , Visão Ocular/fisiologia , Proteínas de Xenopus/genética , Proteínas de Xenopus/fisiologia , Adenosina Trifosfatases/biossíntese , Adenosina Trifosfatases/genética , Animais , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células , Imuno-Histoquímica , Larva , Componente 7 do Complexo de Manutenção de Minicromossomo , Neuroglia/metabolismo , Neuroglia/fisiologia , Estimulação Luminosa , Privação Sensorial/fisiologia , Colículos Superiores/citologia , Colículos Superiores/crescimento & desenvolvimento , Vias Visuais/citologia , Vias Visuais/crescimento & desenvolvimento , Xenopus , Proteínas de Xenopus/biossíntese
18.
Nat Neurosci ; 13(8): 944-50, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20581840

RESUMO

Neuronal differentiation is accomplished through cascades of intrinsic genetic factors initiated in neuronal progenitors by external gradients of morphogens. Activity has been thought to be important only late in development, but recent evidence suggests that activity also regulates early neuronal differentiation. Activity in post-mitotic neurons before synapse formation can regulate phenotypic specification, including neurotransmitter choice, but the mechanisms are not clear. We identified a mechanism that links endogenous calcium spike activity with an intrinsic genetic pathway to specify neurotransmitter choice in neurons in the dorsal embryonic spinal cord of Xenopus tropicalis. Early activity modulated transcription of the GABAergic/glutamatergic selection gene tlx3 through a variant cAMP response element (CRE) in its promoter. The cJun transcription factor bound to this CRE site, modulated transcription and regulated neurotransmitter phenotype via its transactivation domain. Calcium signaled through cJun N-terminal phosphorylation, which integrated activity-dependent and intrinsic neurotransmitter specification. This mechanism provides a basis for early activity to regulate genetic pathways at critical decision points, switching the phenotype of developing neurons.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/biossíntese , Neurogênese/genética , Neurônios/citologia , Neurotransmissores/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas de Xenopus/biossíntese , Animais , Sequência de Bases , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Ensaio de Desvio de Mobilidade Eletroforética , Expressão Gênica , Proteínas de Homeodomínio/genética , Imuno-Histoquímica , Hibridização In Situ , Dados de Sequência Molecular , Neurônios/metabolismo , Regiões Promotoras Genéticas/genética , Elementos de Resposta/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Xenopus , Proteínas de Xenopus/genética
19.
J Biol Chem ; 284(28): 18994-9005, 2009 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19414592

RESUMO

The bone morphogenetic protein (BMP) family of signaling molecules and their antagonists are involved in patterning of the body axis and numerous aspects of organogenesis. Classical biochemical purification and protein sequencing of highly purified fractions containing potent bone forming activity from bovine cartilage identified several BMPs together with a number of other proteins. One such protein was SMOC-2 (secreted modular calcium-binding protein-2), classified as belonging to the BM-40 family of modular extracellular proteins. Data regarding the biological function of SMOC-2 and closely related SMOC-1 remain limited, and their expression or function during embryological development is unknown. We therefore isolated the Xenopus ortholog of human SMOC-1 (XSMOC-1) and explored its function in Xenopus embryos. In gain-of-function assays, XSMOC-1 acted similarly to a BMP antagonist. However, in contrast to known extracellular ligand-binding BMP antagonists, such as noggin, SMOC antagonizes BMP activity in the presence of a constitutively active BMP receptor, indicating a mechanism of action downstream of the receptor. We provide several lines of evidence to suggest that SMOC acts downstream of the BMP receptor via MAPK-mediated phosphorylation of the Smad linker region. Loss-of-function studies, using antisense morpholino oligonucleotides, revealed XSMOC-1 to be essential for postgastrulation development. The catastrophic developmental failure observed following XSMOC knockdown resembles that observed following simultaneous depletion of three ligand-binding BMP antagonists described in prior studies. These findings provide a direct link between the extracellular matrix-associated protein SMOC and a signaling pathway of general importance in anatomic patterning and cell or tissue fate specification.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Osteonectina/fisiologia , Proteínas de Xenopus/fisiologia , Animais , Humanos , Ligantes , Camundongos , Modelos Biológicos , Oligonucleotídeos Antissenso/química , Osteonectina/biossíntese , Osteonectina/metabolismo , Fosforilação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Xenopus , Proteínas de Xenopus/biossíntese , Xenopus laevis , Peixe-Zebra
20.
J Biol Chem ; 284(11): 7190-200, 2009 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-19129191

RESUMO

Alternative translation is an underappreciated post-transcriptional regulation mechanism. Although only a small number of genes are found to be alternatively translated, most genes undergoing alternative translation play important roles in tumorigenesis and development. Protein phosphatase 2A (PP2A) is involved in many cellular events during tumorigenesis and development. The specificity, localization, and activity of PP2A are regulated by B regulatory subunits. B56epsilon, a member of the B56 regulatory subunit family, is involved in multiple signaling pathways and regulates a number of developmental processes. Here we report that B56epsilon is alternatively translated, leading to the production of a full-length form and a shorter isoform that lacks the N-terminal 76 amino acid residues of the full-length form. Alternative translation of B56epsilon occurs through a cap-dependent mechanism. We provide evidence that the shorter isoform is required for Wnt signaling and regulates the midbrain/hindbrain boundary formation during Xenopus embryonic development. This demonstrates that the shorter isoform of B56epsilon has important biological functions. Furthermore, we show that the N-terminal sequence of B56epsilon, which is not present in the shorter isoform, contains a nuclear localization signal, whereas the C terminus of B56epsilon contains a nuclear export signal. The shorter isoform, which lacks the N-terminal nuclear localization signal, is restricted to the cytoplasm. In contrast, the full-length form can be localized to the nucleus in a cell type-specific manner. The finding that B56epsilon is alternatively translated adds a new level of regulation to PP2A holoenzymes.


Assuntos
Proteínas de Drosophila/biossíntese , Mesencéfalo/embriologia , Fosfoproteínas Fosfatases/biossíntese , Biossíntese de Proteínas/fisiologia , Proteína Fosfatase 2/biossíntese , Rombencéfalo/embriologia , Transdução de Sinais/fisiologia , Proteínas Wnt/metabolismo , Proteínas de Xenopus/biossíntese , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Linhagem Celular , Núcleo Celular/enzimologia , Núcleo Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Holoenzimas/biossíntese , Holoenzimas/genética , Humanos , Isoenzimas/biossíntese , Isoenzimas/genética , Mesencéfalo/enzimologia , Camundongos , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Fosfoproteínas Fosfatases/genética , Proteína Fosfatase 2/genética , Estrutura Terciária de Proteína/fisiologia , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , Rombencéfalo/enzimologia , Proteínas Wnt/genética , Proteínas de Xenopus/genética , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA