Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Virol ; 97(10): e0072223, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37754761

RESUMO

IMPORTANCE: Chronic hepatitis B is the most important cause of liver cancer worldwide and affects more than 290 million people. Current treatments are mostly suppressive and rarely lead to a cure. Therefore, there is a need for novel and curative drugs that target the host or the causative agent, hepatitis B virus itself. Capsid assembly modulators are an interesting class of antiviral molecules that may one day become part of curative treatment regimens for chronic hepatitis B. Here we explore the characteristics of a particularly interesting subclass of capsid assembly modulators. These so-called non-HAP CAM-As have intriguing properties in cell culture but also clear virus-infected cells from the mouse liver in a gradual and sustained way. We believe they represent a considerable improvement over previously reported molecules and may one day be part of curative treatment combinations for chronic hepatitis B.


Assuntos
Antivirais , Capsídeo , Vírus da Hepatite B , Hepatite B Crônica , Montagem de Vírus , Animais , Humanos , Camundongos , Antivirais/classificação , Antivirais/farmacologia , Antivirais/uso terapêutico , Capsídeo/química , Capsídeo/efeitos dos fármacos , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/efeitos dos fármacos , Proteínas do Capsídeo/metabolismo , Células Cultivadas , Vírus da Hepatite B/química , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/crescimento & desenvolvimento , Vírus da Hepatite B/metabolismo , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Técnicas In Vitro , Montagem de Vírus/efeitos dos fármacos , Modelos Animais de Doenças
2.
Asian Pac J Cancer Prev ; 22(3): 785-791, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33773542

RESUMO

BACKGROUND: Global trend is moving towards the use of natural phytochemicals to fight against pathogens. Human cervical cancer is directly associated with onco-potent type of Human Papilloma Virus (HPV). There is no known medicine for clearance of HPV type whose persistence is the cause of occurrence and re-occurrence of cervical cancer. The different species of fig fruit and their latex are reported to have HPV associated genital warts clearance capability. METHODS: In the current investigation, the effect of the methanol extract of Ficus benghalensis L. fruits on HPV type18 viral load in HeLa cell line was tested by doing PCR using HPV L1 primers (MY09/My011) and the cytotoxicity was also analysed by MTT assay. The induction of apoptotic activity in terms of DNA fragmentation and hyper-chromic effects of DNA was analysed. RESULTS: The PCR results showed a reduction in the HPV18 DNA and also the treatment exhibited a promising cytotoxicity with IC50 value at 211.86 µg/ml. The DNA samples from treated HeLa cells showed DNA shearing and laddering as a mark of apoptotic DNA fragmentation (Fig. 2) and the UV absorbance value at 260 nm was found to be significantly (p <0.01) higher in the DNA sample treated with fruit extract compared to the untreated DNA sample. CONCLUSION: The Ficus benghalensis L. fruit extract reduced the HPV viral load in HPV18 containing HeLa cells and showed an effective cytotoxicity on HeLa cell line. It also could induce the apoptotic activity in HeLa cell line and this study results suggest that the Ficus benghalensis L. fruits can be used to fight against cervical carcinoma, acting on HPV load.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas do Capsídeo/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Ficus , Papillomavirus Humano 18/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Proteínas do Capsídeo/genética , Sobrevivência Celular/efeitos dos fármacos , Feminino , Frutas , Células HeLa , Papillomavirus Humano 18/genética , Humanos , Neoplasias do Colo do Útero/virologia
3.
J Virol ; 94(23)2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907979

RESUMO

Pandemic human immunodeficiency virus type 1 (HIV-1) is the result of the zoonotic transmission of simian immunodeficiency virus (SIV) from the chimpanzee subspecies Pan troglodytestroglodytes (SIVcpzPtt). The related subspecies Pan troglodytesschweinfurthii is the host of a similar virus, SIVcpzPts, which did not spread to humans. We tested these viruses with small-molecule capsid inhibitors (PF57, PF74, and GS-CA1) that interact with a binding groove in the capsid that is also used by CPSF6. While HIV-1 was sensitive to capsid inhibitors in cell lines, human macrophages, and peripheral blood mononuclear cells (PBMCs), SIVcpzPtt was resistant in rhesus FRhL-2 cells and human PBMCs but was sensitive to PF74 in human HOS and HeLa cells. SIVcpzPts was insensitive to PF74 in FRhL-2 cells, HeLa cells, PBMCs, and macrophages but was inhibited by PF74 in HOS cells. A truncated version of CPSF6 (CPSF6-358) inhibited SIVcpzPtt and HIV-1, while in contrast, SIVcpzPts was resistant to CPSF6-358. Homology modeling of HIV-1, SIVcpzPtt, and SIVcpzPts capsids and binding energy estimates suggest that these three viruses bind similarly to the host proteins cyclophilin A (CYPA) and CPSF6 as well as the capsid inhibitor PF74. Cyclosporine treatment, mutation of the CYPA-binding loop in the capsid, or CYPA knockout eliminated the resistance of SIVcpzPts to PF74 in HeLa cells. These experiments revealed that the antiviral capacity of PF74 is controlled by CYPA in a virus- and cell type-specific manner. Our data indicate that SIVcpz viruses can use infection pathways that escape the antiviral activity of PF74. We further suggest that the antiviral activity of PF74 capsid inhibitors depends on cellular cofactors.IMPORTANCE HIV-1 originated from SIVcpzPtt but not from the related virus SIVcpzPts, and thus, it is important to describe molecular infection by SIVcpzPts in human cells to understand the zoonosis of SIVs. Pharmacological HIV-1 capsid inhibitors (e.g., PF74) bind a capsid groove that is also a binding site for the cellular protein CPSF6. SIVcpzPts was resistant to PF74 in HeLa cells but sensitive in HOS cells, thus indicating cell line-specific resistance. Both SIVcpz viruses showed resistance to PF74 in human PBMCs. Modulating the presence of cyclophilin A or its binding to capsid in HeLa cells overcame SIVcpzPts resistance to PF74. These results indicate that early cytoplasmic infection events of SIVcpzPts may differ between cell types and affect, in an unknown manner, the antiviral activity of capsid inhibitors. Thus, capsid inhibitors depend on the activity or interaction of currently uncharacterized cellular factors.


Assuntos
Fármacos Anti-HIV/farmacologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/efeitos dos fármacos , Proteínas do Capsídeo/metabolismo , Capsídeo/efeitos dos fármacos , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Fatores de Poliadenilação e Clivagem de mRNA/química , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Animais , Sítios de Ligação , Proteínas do Capsídeo/genética , Linhagem Celular , Ciclofilina A/genética , Ciclofilina A/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , HIV-1 , Células HeLa , Humanos , Indazóis/farmacologia , Indóis/farmacologia , Leucócitos Mononucleares/virologia , Macrófagos/virologia , Modelos Moleculares , Pan troglodytes/virologia , Fenilalanina/análogos & derivados , Fenilalanina/farmacologia , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Piridinas/farmacologia , Alinhamento de Sequência , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/química , Vírus da Imunodeficiência Símia/genética , Zoonoses , Fatores de Poliadenilação e Clivagem de mRNA/genética
4.
Proc Natl Acad Sci U S A ; 117(20): 10848-10855, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32371486

RESUMO

Grapevine fanleaf virus (GFLV) is a picorna-like plant virus transmitted by nematodes that affects vineyards worldwide. Nanobody (Nb)-mediated resistance against GFLV has been created recently, and shown to be highly effective in plants, including grapevine, but the underlying mechanism is unknown. Here we present the high-resolution cryo electron microscopy structure of the GFLV-Nb23 complex, which provides the basis for molecular recognition by the Nb. The structure reveals a composite binding site bridging over three domains of one capsid protein (CP) monomer. The structure provides a precise mapping of the Nb23 epitope on the GFLV capsid in which the antigen loop is accommodated through an induced-fit mechanism. Moreover, we uncover and characterize several resistance-breaking GFLV isolates with amino acids mapping within this epitope, including C-terminal extensions of the CP, which would sterically interfere with Nb binding. Escape variants with such extended CP fail to be transmitted by nematodes linking Nb-mediated resistance to vector transmission. Together, these data provide insights into the molecular mechanism of Nb23-mediated recognition of GFLV and of virus resistance loss.


Assuntos
Nepovirus/efeitos dos fármacos , Doenças das Plantas/imunologia , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/farmacologia , Animais , Anticorpos Antivirais/imunologia , Capsídeo/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/efeitos dos fármacos , Microscopia Crioeletrônica , Epitopos/química , Modelos Moleculares , Nematoides/virologia , Nepovirus/ultraestrutura , Doenças das Plantas/virologia , Folhas de Planta/virologia , Vírus de Plantas/imunologia , Vírus de Plantas/fisiologia , Conformação Proteica , Vitis
5.
PLoS One ; 13(9): e0203069, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30212479

RESUMO

BACKGROUND: Disulfiram (DSF), which is used to treat alcohol dependence, has been reported to have anti-cancer effects in various malignant tumors. In this study, we investigated the anti-cancer effects and mechanism of DSF in HNSCC. METHODS: Head and neck squamous carcinoma cell lines (FaDu and Hep2) were used to analyze the anti-cancer effects of DSF. The anti-cancer effects of DSF were confirmed in vivo using a xenograft tumor model. RESULTS: The anti-cancer effects of DSF in HNSCC were found to be copper (Cu) dependent. Specifically, DSF/Cu markedly inhibited HNSCC at a concentration of 1 µM. After DSF/Cu administration, production of reactive oxygen species (ROS) was remarkable starting at 0.5 µM, suggesting that the inhibitory effects of DSF/Cu on HNSCC are mediated through the formation of ROS. The levels of phospho-JNK, phospho-cJun and phospho-p38 were increased after DSF/Cu treatment while levels of phospho-Akt were decreased. These results suggested that the inhibitory effects of DSF/Cu on HNSCC cells involve ROS formation and down-regulation of Akt-signaling. Through these molecular mechanisms, DSF ultimately induce the inhibitory effects on HNSCC cell lines mainly through autophagic cell death, not apoptotic cell death. Lastly, we investigated the clinical relevance of DSF/Cu using a HNSCC xenograft animal model, which showed that tumor growth was remarkably decreased by DSF (50 mg/kg injection). CONCLUSION: In treating patients with HNSCC, DSF may contribute to improved HNSCC patient's survival. The characteristic anti-cancer effects of DSF on HNSCC may suggest new therapeutic potential for this medication in HNSCC patients.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Dissulfiram/farmacologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Animais , Autofagia/fisiologia , Proteínas do Capsídeo/efeitos dos fármacos , Proteínas do Capsídeo/fisiologia , Linhagem Celular Tumoral , Cobre/metabolismo , Avaliação Pré-Clínica de Medicamentos , Feminino , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Espécies Reativas de Oxigênio/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carga Tumoral
6.
Antiviral Res ; 158: 135-142, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30031759

RESUMO

One of the most promising viral targets in current hepatitis B virus (HBV) drug development is the core protein due to its multiple roles in the viral life cycle. Here we investigated the differences in the mode of action and antiviral activity of representatives of six different capsid assembly modifier (CAM) scaffolds: three from the well-characterized scaffolds heteroarylpyrimidine (HAP), sulfamoylbenzamide (SBA), and phenylpropenamide (PPA), and three from novel scaffolds glyoxamide-pyrrolamide (GPA), pyrazolyl-thiazole (PT), and dibenzo-thiazepin-2-one (DBT). The target activity and antiviral efficacy of the different CAMs were tested in biochemical and cellular assays. Analytical size exclusion chromatography and transmission electron microscopy showed that only the HAP compound induced formation of aberrant non-capsid structures (class II mode of action), while the remaining CAMs did not affect capsid gross morphology (class I mode of action). Intracellular lysates from the HepAD38 cell line, inducibly replicating HBV, showed no reduction in the quantities of intracellular core protein or capsid after treatment with SBA, PPA, GPA, PT, or DBT compounds; however HAP-treatment led to a profound decrease in both. Additionally, immunofluorescence staining of compound-treated HepAD38 cells showed that all non-HAP CAMs led to a shift in the equilibrium of HBV core antigen (HBcAg) towards complete cytoplasmic staining, while the HAP induced accumulation of HBcAg aggregates in the nucleus. Our study demonstrates that the novel scaffolds GPA, PT, and DBT exhibit class I modes of action, alike SBA and PPA, whereas HAP remains the only scaffold belonging to class II inhibitors.


Assuntos
Antivirais/farmacologia , Proteínas do Capsídeo/efeitos dos fármacos , Proteínas do Capsídeo/metabolismo , Capsídeo/efeitos dos fármacos , Vírus da Hepatite B/efeitos dos fármacos , Antivirais/química , Benzamidas/química , Benzamidas/farmacologia , Benzoatos , Linhagem Celular , Desenvolvimento de Medicamentos , Antígenos do Núcleo do Vírus da Hepatite B , Vírus da Hepatite B/metabolismo , Humanos , Pirimidinas/química , Pirimidinas/farmacologia , Proteínas do Core Viral , Montagem de Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
7.
J Virol ; 92(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29212943

RESUMO

Productive picornavirus infection requires the hijacking of host cell pathways to aid with the different stages of virus entry, synthesis of the viral polyprotein, and viral genome replication. Many picornaviruses, including foot-and-mouth disease virus (FMDV), assemble capsids via the multimerization of several copies of a single capsid precursor protein into a pentameric subunit which further encapsidates the RNA. Pentamer formation is preceded by co- and posttranslational modification of the capsid precursor (P1-2A) by viral and cellular enzymes and the subsequent rearrangement of P1-2A into a structure amenable to pentamer formation. We have developed a cell-free system to study FMDV pentamer assembly using recombinantly expressed FMDV capsid precursor and 3C protease. Using this assay, we have shown that two structurally different inhibitors of the cellular chaperone heat shock protein 90 (hsp90) impeded FMDV capsid precursor processing and subsequent pentamer formation. Treatment of FMDV permissive cells with the hsp90 inhibitor prior to infection reduced the endpoint titer by more than 10-fold while not affecting the activity of a subgenomic replicon, indicating that translation and replication of viral RNA were unaffected by the drug.IMPORTANCE FMDV of the Picornaviridae family is a pathogen of huge economic importance to the livestock industry due to its effect on the restriction of livestock movement and necessary control measures required following an outbreak. The study of FMDV capsid assembly, and picornavirus capsid assembly more generally, has tended to be focused upon the formation of capsids from pentameric intermediates or the immediate cotranslational modification of the capsid precursor protein. Here, we describe a system to analyze the early stages of FMDV pentameric capsid intermediate assembly and demonstrate a novel requirement for the cellular chaperone hsp90 in the formation of these pentameric intermediates. We show the added complexity involved for this process to occur, which could be the basis for a novel antiviral control mechanism for FMDV.


Assuntos
Proteínas do Capsídeo/metabolismo , Vírus da Febre Aftosa/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Montagem de Vírus , Proteases Virais 3C , Animais , Benzoquinonas/farmacologia , Proteínas do Capsídeo/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular , Sistema Livre de Células , Cricetinae , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Febre Aftosa/metabolismo , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/crescimento & desenvolvimento , Proteínas de Choque Térmico HSP90/efeitos dos fármacos , Isoxazóis/farmacologia , Lactamas Macrocíclicas/farmacologia , Precursores de Proteínas/efeitos dos fármacos , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , RNA Viral/genética , RNA Viral/metabolismo , Resorcinóis/farmacologia , Proteínas Virais/efeitos dos fármacos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Montagem de Vírus/genética , Montagem de Vírus/fisiologia , Replicação Viral
8.
J Virol ; 87(5): 2587-96, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23255800

RESUMO

Type I interferons induce a complex transcriptional program that leads to a generalized antiviral response against a large panel of viruses, including human immunodeficiency virus type 1 (HIV-1). However, despite the fact that interferons negatively regulate HIV-1 ex vivo, a chronic interferon state is linked to the progression of AIDS and to robust viral replication, rather than protection, in vivo. To explain this apparent contradiction, we hypothesized that HIV-1 may have evolved a partial resistance to interferon, and to test this hypothesis, we analyzed the effects of alpha interferon (IFN-α) on the infectivity of HIV-1, human immunodeficiency virus type 2 (HIV-2), and rhesus monkey simian immunodeficiency virus (SIVmac). The results we obtained indicate that HIV-1 is more resistant to an IFN-α-induced response than are HIV-2 and SIVmac. Our data indicate that the accumulation of viral DNA is more compromised following the infection of IFN-α-treated cells with HIV-2 and SIVmac than with HIV-1. This defect correlates with a faster destabilization of HIV-2 viral nucleoprotein complexes (VNCs), suggesting a link between VNC destabilization and impaired viral DNA (vDNA) accumulation. The differential susceptibilities to IFN-α of the primate lentiviruses tested here do not map to the capsid protein (CA), excluding de facto a role for human tripartite motif protein isoform 5 alpha (Trim5α) in this restriction; this also suggests that an additional restriction mechanism differentially affects primate lentivirus infection. The different behaviors of HIV-1 and HIV-2 with respect to IFN-α responses may account at least in part for the differences in pathogenesis observed between these two virus types.


Assuntos
HIV-1/fisiologia , HIV-2/fisiologia , Interferon-alfa/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Replicação Viral , Proteínas do Capsídeo/efeitos dos fármacos , Linhagem Celular Tumoral , DNA Viral/genética , DNA Viral/metabolismo , Células HEK293 , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/imunologia , HIV-2/imunologia , Células HeLa , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Macrófagos/virologia , Glicoproteínas de Membrana , Proteínas dos Retroviridae/metabolismo , Vírus da Imunodeficiência Símia/imunologia , Proteínas do Envelope Viral , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
9.
J Biol Chem ; 287(29): 24473-82, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22619177

RESUMO

In many viruses, a precursor particle, or procapsid, is assembled and undergoes massive chemical and physical modification to produce the infectious capsid. Capsid assembly and maturation are finely tuned processes in which viral and host factors participate. We show that the precursor of the VP2 capsid protein (pVP2) of the infectious bursal disease virus (IBDV), a double-stranded RNA virus, is processed at the C-terminal domain (CTD) by a host protease, the puromycin-sensitive aminopeptidase (PurSA). The pVP2 CTD (71 residues) has an important role in determining the various conformations of VP2 (441 residues) that build the T = 13 complex capsid. pVP2 CTD activity is controlled by co- and posttranslational proteolytic modifications of different targets by the VP4 viral protease and by VP2 itself to yield the mature VP2-441 species. Puromycin-sensitive aminopeptidase is responsible for the peptidase activity that cleaves the Arg-452-Arg-453 bond to generate the intermediate pVP2-452 polypeptide. A pVP2 R453A substitution abrogates PurSA activity. We used a baculovirus-based system to express the IBDV polyprotein in insect cells and found inefficient formation of virus-like particles similar to IBDV virions, which correlates with the absence of puromycin-sensitive aminopeptidase in these cells. Virus-like particle assembly was nonetheless rescued efficiently by coexpression of chicken PurSA or pVP2-452 protein. Silencing or pharmacological inhibition of puromycin-sensitive aminopeptidase activity in cell lines permissive for IBDV replication caused a major blockade in assembly and/or maturation of infectious IBDV particles, as virus yields were reduced markedly. PurSA activity is thus essential for IBDV replication.


Assuntos
Aminopeptidases/metabolismo , Proteínas do Capsídeo/metabolismo , Vírus da Doença Infecciosa da Bursa/fisiologia , Peptídeo Hidrolases/metabolismo , Vírus de RNA/fisiologia , Montagem de Vírus/fisiologia , Replicação Viral/fisiologia , Aminopeptidases/efeitos dos fármacos , Animais , Proteínas do Capsídeo/efeitos dos fármacos , Linhagem Celular , Cães , Vírus da Doença Infecciosa da Bursa/efeitos dos fármacos , Peptídeo Hidrolases/efeitos dos fármacos , Puromicina/farmacologia , Vírus de RNA/efeitos dos fármacos , RNA de Cadeia Dupla/genética , Montagem de Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
10.
Mini Rev Med Chem ; 7(11): 1155-65, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18045219

RESUMO

Viruses can produce viral oncoproteins that drive multiple genetic alterations as the consequence of neoplastic transformation. Viral proteins encoded by onco-related viruses such as polyomavirus SV40 or Epstein-Barr virus are involved in cellular processes resulting in imbalance between proliferation and cell death, knowledge of which continues to be crucial for combating cancer. On the other hand, viruses also generate viral components that, from a cold viral protein, can become a tumor-selective killer by sensing cellular tumorigenic hallmarks. For instance, the avian virus derived apoptin protein has been proven to induce tumor-regression in various pre-clinical animal models without showing detectable side effects. In particular, apoptin-interacting protein partners such as components of the anaphase promoting complex were identified as potential anticancer drug targets. The adenovirus-derived protein E4orf4, another viral protein with tumor-specific apoptosis characteristics, has been proven to interact with the tumor-suppressor protein phosphatase 2A. This review aims to describe recent studies with representative viral elements that have contributed to our understanding of critical tumorigenic processes and have conferred an impact on the development of novel anti-cancer therapies.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Proteínas do Capsídeo/fisiologia , Elementos Facilitadores Genéticos , Neoplasias/tratamento farmacológico , Vírus 40 dos Símios/fisiologia , Proteínas Virais/fisiologia , Animais , Proteínas do Capsídeo/efeitos dos fármacos , Proteínas do Capsídeo/farmacologia , Humanos , Proteína Fosfatase 2/metabolismo , Transdução de Sinais , Proteínas Virais/efeitos dos fármacos , Proteínas Virais/metabolismo
11.
Artigo em Russo | MEDLINE | ID: mdl-17672126

RESUMO

Influence of moraprenylphosphates (phosphorylated polyprenol of plant origin) upon the accumulation of Taylor murine encephalomyelitis virus VP3 protein in the susceptible cell cultures was studied. It has been shown that moraprenylphosphates inhibited the accumulation of VP3 at early stages of infectious process. Moraprenylphosphates were found to decrease infectivity of the virus as well as virus-induced cellular apoptosis. Mechanisms of immunomodulating and antiviral activity of moraprenylphosphates and prospects of their use as antiviral drugs have been discussed.


Assuntos
Antivirais/farmacologia , Fosfatos de Poli-Isoprenil/farmacologia , Theilovirus/efeitos dos fármacos , Animais , Proteínas do Capsídeo/biossíntese , Proteínas do Capsídeo/efeitos dos fármacos , Infecções por Cardiovirus/virologia , Linhagem Celular/efeitos dos fármacos , Linhagem Celular/virologia , Cricetinae , Camundongos , Theilovirus/patogenicidade , Theilovirus/fisiologia , Virulência/efeitos dos fármacos
12.
J Hosp Infect ; 65(3): 264-70, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17241695

RESUMO

Human adenoviruses have often been used as surrogates for testing broad-spectrum virucidal efficacy of biocides. However, recent studies have shown that members of this group of viruses have quite different chemical sensitivities and only serotypes 5 and 44 can be recommended as model viruses. In this study, the hexon protein of the serotypes 1, 2, 5, 6 and 8 was exposed to biocides and subsequently detected by western blotting and the RPS Adeno Detector. Only peracetic acid (PAA) at a relatively high concentration of 0.5% led to complete denaturation of hexon protein within 60 min. This effect was uniform for all adenoviruses tested and was not observed after exposure to 0.05-2.5% povidone-iodine (PVP-I) or 0.7% formaldehyde. However, viral infectivity and genome integrity were influenced by PVP-I and formaldehyde and lower concentrations of PAA. In conclusion, the hexon protein of human adenoviruses shows an unexpectedly high and uniform resistance to chemical biocides. The different chemical sensitivities of adenoviruses cannot be explained by the sensitivity of this main structural compound, but the present findings provide new insights into the virucidal action of disinfectants.


Assuntos
Adenoviridae/efeitos dos fármacos , Antivirais/farmacologia , Capsídeo/efeitos dos fármacos , Desinfetantes/farmacologia , Desinfecção/métodos , Adenoviridae/fisiologia , Proteínas do Capsídeo/análise , Proteínas do Capsídeo/efeitos dos fármacos , Formaldeído/farmacologia , Humanos , Ácido Peracético/farmacologia , Povidona-Iodo/farmacologia
13.
Cancer Gene Ther ; 13(12): 1105-14, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16841078

RESUMO

Chemotherapy, including microtubule (MT)-interacting agents, can enhance the tumor-eradicating activity of replication-competent adenoviruses. The purpose of this study was to obtain more insight into the mechanism underlying this enhancement that may be exploited for the development of improved therapy. Two MT-interacting agents with opposite activity, paclitaxel (PTX) that stabilizes and vincristine (VCR) that destabilizes MTs, were found to synergistically enhance adenoviral oncolysis in non-small-cell lung cancer (NSCLC) cells. To explore the possibility that these drugs affect the viral life cycle by modulating adenoviral gene expression, we used a quantitative reverse transcription-polymerase chain reaction assay and found that PTX, but not VCR, increased the expression of E1A13S, ADP and Penton genes, which correlated with an increase in viral particle assembly and release. Next, the effect of combined treatment on cell-cycle progression was studied. Both drugs suppressed adenovirus-induced S-phase arrest and instead caused G2/M arrest, which was accompanied by an increase in apoptotic cells. Taken together, the enhancement of oncolysis by MT-interacting drugs appears not to require specific MT transport or scaffold functions. Our findings suggest that MT-interacting drug-induced cellular signals that modulate cell-cycle arrest and apoptosis are primarily on the basis of their oncolysis-enhancing activity.


Assuntos
Adenoviridae/genética , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Paclitaxel/farmacologia , Vincristina/farmacologia , Adenoviridae/efeitos dos fármacos , Proteínas E3 de Adenovirus/efeitos dos fármacos , Proteínas E3 de Adenovirus/genética , Antineoplásicos Fitogênicos/farmacologia , Apoptose/genética , Proteínas do Capsídeo/efeitos dos fármacos , Proteínas do Capsídeo/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclo Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Vetores Genéticos/genética , Vetores Genéticos/farmacologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Microtúbulos/efeitos dos fármacos , Células Tumorais Cultivadas
14.
Curr Drug Targets Infect Disord ; 2(1): 17-32, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12462150

RESUMO

Despite the unprecedented successes in the therapy of HIV infection, AIDS remains a major world health problem being the first cause of death in Africa and the fourth leading cause of death worldwide. Rapid emergence of drug-resistant HIV variants and severe side effects limit the efficacy of existing therapies. The intrinsic high variability of HIV calls for combining different drugs with distinct mode of action to achieve synergistic antiviral activity. Efforts are being made to develop agents addressing new steps in HIV replication and to optimize both antiviral activity and pharmacokinetic of the current drugs targeting reverse transcriptase and protease. The class of viral entry inhibitors is undergoing evaluation for both systemic and topical administration, and compounds targeting the fusion step may be the first to reach the market. Identification of compounds unambiguously affecting HIV replication by targeting integrase supports the potential of this crucial viral enzyme as a drug target. Targeting HIV gene regulation, which could also lead to cellular toxicity, may also become an important discovery strategy, provided that inhibitors with sufficient specificity are identified. In this review we will summarize the current understanding of the key steps in HIV life cycle in the context of representative inhibitors based on their modes of action. We then present a summary of compounds under clinical development, with the aim of providing a picture of the current potential for targeting HIV.


Assuntos
Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , HIV/efeitos dos fármacos , Terapia Antirretroviral de Alta Atividade , Proteínas do Capsídeo/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/virologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , Transcriptase Reversa do HIV/antagonistas & inibidores , Humanos , Receptores Virais/efeitos dos fármacos , Inibidores da Transcriptase Reversa/farmacologia , Inibidores da Transcriptase Reversa/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA