Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 436
Filtrar
1.
Cancer Res Commun ; 4(7): 1815-1833, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949950

RESUMO

Myristoylation is a type of protein acylation by which the fatty acid myristate is added to the N-terminus of target proteins, a process mediated by N-myristoyltransferases (NMT). Myristoylation is emerging as a promising cancer therapeutic target; however, the molecular determinants of sensitivity to NMT inhibition or the mechanism by which it induces cancer cell death are not completely understood. We report that NMTs are a novel therapeutic target in lung carcinoma cells with LKB1 and/or KEAP1 mutations in a KRAS-mutant background. Inhibition of myristoylation decreases cell viability in vitro and tumor growth in vivo. Inhibition of myristoylation causes mitochondrial ferrous iron overload, oxidative stress, elevated protein poly (ADP)-ribosylation, and death by parthanatos. Furthermore, NMT inhibitors sensitized lung carcinoma cells to platinum-based chemotherapy. Unexpectedly, the mitochondrial transporter translocase of inner mitochondrial membrane 17 homolog A (TIM17A) is a critical target of myristoylation inhibitors in these cells. TIM17A silencing recapitulated the effects of NMT inhibition at inducing mitochondrial ferrous iron overload and parthanatos. Furthermore, sensitivity of lung carcinoma cells to myristoylation inhibition correlated with their dependency on TIM17A. This study reveals the unexpected connection between protein myristoylation, the mitochondrial import machinery, and iron homeostasis. It also uncovers myristoylation inhibitors as novel inducers of parthanatos in cancer, and the novel axis NMT-TIM17A as a potential therapeutic target in highly aggressive lung carcinomas. SIGNIFICANCE: KRAS-mutant lung carcinomas with LKB1 and/or KEAP1 co-mutations have intrinsic therapeutic resistance. We show that these tumors are sensitive to NMT inhibitors, which slow tumor growth in vivo and sensitize cells to platinum-based chemotherapy in vitro. Inhibition of myristoylation causes death by parthanatos and thus has the potential to kill apoptosis and ferroptosis-resistant cancer cells. Our findings warrant investigation of NMT as a therapeutic target in highly aggressive lung carcinomas.


Assuntos
Aciltransferases , Sobrecarga de Ferro , Neoplasias Pulmonares , Mitocôndrias , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Animais , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Aciltransferases/antagonistas & inibidores , Aciltransferases/genética , Camundongos , Sobrecarga de Ferro/metabolismo , Linhagem Celular Tumoral , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Mutação , Estresse Oxidativo/efeitos dos fármacos
2.
Cancer Biol Ther ; 25(1): 2375440, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38978225

RESUMO

Hepatocellular carcinoma (HCC) is one of the most lethal malignant tumors worldwide. Brahma-related gene 1 (BRG1), as a catalytic ATPase, is a major regulator of gene expression and is known to mutate and overexpress in HCC. The purpose of this study was to investigate the mechanism of action of BRG1 in HCC cells. In our study, BRG1 was silenced or overexpressed in human HCC cell lines. Transwell and wound healing assays were used to analyze cell invasiveness and migration. Mitochondrial membrane potential (MMP) and mitochondrial permeability transition pore (mPTP) detection were used to evaluate mitochondrial function in HCC cells. Colony formation and cell apoptosis assays were used to evaluate the effect of BRG1/TOMM40/ATP5A1 on HCC cell proliferation and apoptosis/death. Immunocytochemistry (ICC), immunofluorescence (IF) staining and western blot analysis were used to determine the effect of BRG1 on TOMM40, ATP5A1 pathway in HCC cells. As a result, knockdown of BRG1 significantly inhibited cell proliferation and invasion, promoted apoptosis in HCC cells, whereas BRG1 overexpression reversed the above effects. Overexpression of BRG1 can up-regulate MMP level, inhibit mPTP opening and activate TOMM40, ATP5A1 expression. Our results suggest that BRG1, as an oncogene, promotes HCC progression by regulating TOMM40 affecting mitochondrial function and ATP5A1 synthesis. Targeting BRG1 may represent a new and effective way to prevent HCC development.


Assuntos
Apoptose , Carcinoma Hepatocelular , Proliferação de Células , DNA Helicases , Neoplasias Hepáticas , Mitocôndrias , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Nucleares , Fatores de Transcrição , Humanos , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , DNA Helicases/metabolismo , DNA Helicases/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , Metástase Neoplásica , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
3.
Phytother Res ; 38(8): 3856-3876, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38761036

RESUMO

Enhancement of malignant cell immunogenicity to relieve immunosuppression of lung cancer microenvironment is essential in lung cancer treatment. In previous study, we have demonstrated that dihydroartemisinin (DHA), a kind of phytopharmaceutical, is effective in inhibiting lung cancer cells and boosting their immunogenicity, while the initial target of DHA's intracellular action is poorly understood. The present in-depth analysis aims to reveal the influence of DHA on the highly expressed TOM70 in the mitochondrial membrane of lung cancer. The affinity of DHA and TOM70 was analyzed by microscale thermophoresis (MST), pronase stability, and thermal stability. The functions and underlying mechanism were investigated using western blots, qRT-PCR, flow cytometry, and rescue experiments. TOM70 inhibition resulted in mtDNA damage and translocation to the cytoplasm from mitochondria due to the disruption of mitochondrial homeostasis. Further ex and in vivo findings also showed that the cGAS/STING/NLRP3 signaling pathway was activated by mtDNA and thereby malignant cells underwent pyroptosis, leading to enhanced immunogenicity of lung cancer cells in the presence of DHA. Nevertheless, DHA-induced mtDNA translocation and cGAS/STING/NLRP3 mobilization were synchronously attenuated when TOM70 was replenished. Finally, DHA was demonstrated to possess potent anti-lung cancer efficacy in vitro and in vivo. Taken together, these data confirm that TOM70 is an important target for DHA to disturb mitochondria homeostasis, which further activates STING and arouses pyroptosis to strengthen immunogenicity against lung cancer thereupon. The present study provides vital clues for phytomedicine-mediated anti-tumor therapy.


Assuntos
Artemisininas , Neoplasias Pulmonares , Mitocôndrias , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Piroptose , Neoplasias Pulmonares/tratamento farmacológico , Artemisininas/farmacologia , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Piroptose/efeitos dos fármacos , Camundongos , Animais , Linhagem Celular Tumoral , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , DNA Mitocondrial , Células A549 , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos BALB C
4.
Free Radic Res ; 58(4): 261-275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38599240

RESUMO

Iron is essential for all the lives and mitochondria integrate iron into heme and Fe-S clusters for diverse use as cofactors. Here, we screened mitochondrial proteins in KU812 human chronic myelogenous leukemia cells by glutathione S-transferase pulldown assay with PCBP2 to identify mitochondrial receptors for PCBP2, a major cytosolic Fe(II) chaperone. LC-MS analyses identified TOM20, sideroflexin-3 (SFXN3), SFXN1 and TOM70 in the affinity-score sequence. Stimulated emission depletion microscopy and proteinase-K digestion of mitochondria in HeLa cells revealed that TOM20 is located in the outer membrane of mitochondria whereas SFXN3 is located in the inner membrane. Although direct association was not observed between PCBP2 and SFXN3 with co-immunoprecipitation, proximity ligation assay demonstrated proximal localization of PCBP2 with TOM20 and there was a direct binding between TOM20 and SFXN3. Single knockdown either of PCBP2 and SFXN3 in K562 leukemia cells significantly decreased mitochondrial catalytic Fe(II) and mitochondrial maximal respiration. SFXN3 but not MFRN1 knockout (KO) in mouse embryonic fibroblasts decreased FBXL5 and heme oxygenase-1 (HO-1) but increased transferrin uptake and induced ferritin, indicating that mitochondrial iron entry through SFXN3 is distinct. MFRN1 KO revealed more intense mitochondrial Fe(II) deficiency than SFXN3 KO. Insufficient mitochondrial heme synthesis was evident under iron overload both with SFXN3 and MFRN KO, which was partially reversed by HO-1 inhibitor. Conversely, SFXN3 overexpression caused cytosolic iron deficiency with mitochondrial excess Fe(II), which further sensitized HeLa cells to RSL3-induced ferroptosis. In conclusion, we discovered a novel pathway of iron entry into mitochondria from cytosol through PCBP2-TOM20-SFXN3 axis.


Assuntos
Ferro , Mitocôndrias , Proteínas de Ligação a RNA , Humanos , Mitocôndrias/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Ferro/metabolismo , Animais , Receptores de Superfície Celular/metabolismo , Camundongos , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Células HeLa , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/genética
5.
Biochem Soc Trans ; 52(2): 911-922, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38629718

RESUMO

To date, there is no general physical model of the mechanism by which unfolded polypeptide chains with different properties are imported into the mitochondria. At the molecular level, it is still unclear how transit polypeptides approach, are captured by the protein translocation machinery in the outer mitochondrial membrane, and how they subsequently cross the entropic barrier of a protein translocation pore to enter the intermembrane space. This deficiency has been due to the lack of detailed structural and dynamic information about the membrane pores. In this review, we focus on the recently determined sub-nanometer cryo-EM structures and our current knowledge of the dynamics of the mitochondrial two-pore outer membrane protein translocation machinery (TOM core complex), which provide a starting point for addressing the above questions. Of particular interest are recent discoveries showing that the TOM core complex can act as a mechanosensor, where the pores close as a result of interaction with membrane-proximal structures. We highlight unusual and new correlations between the structural elements of the TOM complexes and their dynamic behavior in the membrane environment.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Transporte Proteico , Microscopia Crioeletrônica/métodos , Humanos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Modelos Moleculares , Conformação Proteica , Animais
6.
Sci Rep ; 14(1): 8840, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632467

RESUMO

Lung adenocarcinoma (LUAD), a leading cause of cancer-related mortality worldwide, demands a deeper understanding of its molecular mechanisms and the identification of reliable biomarkers for better diagnosis and targeted therapy. Leveraging data from the Cancer Genome Atlas (TCGA), the Clinical Proteomic Tumor Analysis Consortium (CPTAC), and the Human Protein Atlas (HPA), we investigated the mRNA and protein expression profiles of TIMM17A and assessed its prognostic significance through Kaplan-Meier survival curves and Cox regression analysis. Through Gene Set Enrichment Analysis, we explored the regulatory mechanisms of TIMM17A in LUAD progression and demonstrated its role in modulating the proliferative capacity of A549 cells, a type of LUAD cell, via in vitro experiments. Our results indicate that TIMM17A is significantly upregulated in LUAD tissues, correlating with clinical staging, lymph node metastasis, overall survival, and progression-free survival, thereby establishing it as a critical independent prognostic factor. The construction of a nomogram model further enhances our ability to predict patient outcomes. Knockdown of TIMM17A inhibited the growth of LUAD cells. The potential of TIMM17A as a biomarker and therapeutic target for LUAD presents a promising pathway for improving patient diagnosis and treatment strategies.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Humanos , Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Nomogramas , Prognóstico , Proteômica , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais , Células A549
7.
Phytomedicine ; 128: 155547, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38547615

RESUMO

BACKGROUND: Emerging evidence suggests that pyroptosis, a form of programmed cell death, has been implicated in cancer progression. The involvement of specific proteins in pyroptosis is an area of growing interest. TOM20, an outer mitochondrial membrane protein, has recently garnered attention for its potential role in pyroptosis. Our previous study found that NBT could induce pyroptosis by ROS/JNK pathway in esophageal cancer cells. PURPOSE: This study aims to investigate whether NBT induces pyroptosis and verify whether such effects are involved in up-regulation of TOM20 in esophageal cancer cells. METHODS: The University of ALabama at Birmingham CANcer data analysis Portal (UALCAN) was used to analyze the clinical significance of GSDME in esophageal cancer. MTT assay, morphological observation and Western blot were performed to verify the roles of TOM20 and BAX in NBT-induced pyroptosis after CRISPR-Cas9-mediated knockout. Immunofluorescence was used to determine the subcellular locations of BAX and cytochrome c. MitoSOX Red was employed to assess the mitochondrial reactive oxygen species (ROS) level. KYSE450 and TOM20 knockout KYSE450-/- xenograft models were established to elucidate the mechanisms involved in NBT-induced cell death. RESULTS: In this study, NBT effectively upregulated the expression of TOM20 and facilitated the translocation of BAX to mitochondria, which promoted the release of cytochrome c from mitochondria to the cytoplasm, leading to the activation of caspase-9 and caspase-3, and finally induced pyroptosis. Knocking out TOM20 by CRISPR-Cas9 significantly inhibited the expression of BAX and the downstream BAX/caspase-3/GSDME pathway, which attenuated NBT-induced pyroptosis. The elevated mitochondrial ROS level was observed after NBT treatment. Remarkably, the inhibition of ROS by N-acetylcysteine (NAC) effectively suppressed the activation of TOM20/BAX pathway. Moreover, in vivo experiments demonstrated that NBT exhibited potent antitumor effects in both KYSE450 and TOM20 knockout KYSE450-/- xenograft models. Notably, the attenuated antitumor effects and reduced cleavage of GSDME were observed in the TOM20 knockout model. CONCLUSION: These findings reveal that NBT induces pyroptosis through ROS/TOM20/BAX/GSDME pathway, which highlight the therapeutic potential of targeting TOM20 and GSDME, providing promising prospects for the development of innovative and effective treatment approaches for esophageal cancer.


Assuntos
Neoplasias Esofágicas , Gasderminas , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Piroptose , Espécies Reativas de Oxigênio , Transdução de Sinais , Proteína X Associada a bcl-2 , Animais , Humanos , Masculino , Camundongos , Proteína X Associada a bcl-2/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Piroptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
8.
Clin Breast Cancer ; 24(5): e333-e349.e1, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38548519

RESUMO

BACKGROUND: Female breast cancer has become the world's most common malignant tumor, displacing lung malignancy, and the incidence of malignant tumors has increased continuously in recent decades. However, the underlying molecular mechanisms of breast tumorigenesis have not been fully elucidated. By consulting the literature, we discovered that the TIMM8A gene could affect oxidative stress and apoptosis in patients with Mohr-Tranebjærg syndrome. However, the biological function of TIMM8A has yet to be explored. MATERIALS AND METHODS: We investigated the expression level of TIMM8A via bioinformatic analysis and performed immunohistochemistry, diagnostic value, immune infiltration, functional enrichment, and survival analyses. Nonetheless, in vitro, additional experiments were performed. We explored whether TIMM8A expression was greater in breast tumors than in nearby normal tissues through qRT‒PCR. The expression of TIMM8A was knocked down by siRNA. Then, we conducted proliferation tests (CCK-8 experiment and colony formation) and Transwell assays (migration and invasion assays) to determine the specific biological functions of TIMM8A in the MDA-MB-231 and BT-549 cell lines. RESULTS: Tumor samples exhibited higher TIMM8A expression and exon expression, whereas normal tissues had higher TIMM8A methylation. The expression level of TIMM8A was linked to immune infiltration and survival, making it a valuable prognostic indicator and effective diagnostic tool. Functional enrichment analysis of TIMM8A indicated potential pathways through which it may play a role. In vitro experiments demonstrated that suppressing TIMM8A significantly inhibited the viability, colony formation, migration, and invasion of breast carcinoma cell lines. CONCLUSION: This study revealed that TIMM8A is an oncogene and is critical for the tumorigenesis of breast carcinoma.


Assuntos
Neoplasias da Mama , Carcinogênese , Regulação Neoplásica da Expressão Gênica , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Feminino , Humanos , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Prognóstico , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo
9.
Cell Death Dis ; 15(3): 204, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467612

RESUMO

Mitochondria play a multifaceted role in supporting bladder cancer progression. Translocase of inner mitochondrial membrane 44 (TIMM44) is essential for maintaining function and integrity of mitochondria. We here tested the potential effect of MB-10 (MitoBloCK-10), a first-in-class TIMM44 blocker, against bladder cancer cells. TIMM44 mRNA and protein expression is significantly elevated in both human bladder cancer tissues and cells. In both patient-derived primary bladder cancer cells and immortalized (T24) cell line, MB-10 exerted potent anti-cancer activity and inhibited cell viability, proliferation and motility. The TIMM44 blocker induced apoptosis and cell cycle arrest in bladder cancer cells, but failed to provoke cytotoxicity in primary bladder epithelial cells. MB-10 disrupted mitochondrial functions in bladder cancer cells, causing mitochondrial depolarization, oxidative stress and ATP reduction. Whereas exogenously-added ATP and the antioxidant N-Acetyl Cysteine mitigated MB-10-induced cytotoxicity of bladder cancer cells. Genetic depletion of TIMM44 through CRISPR-Cas9 method also induced robust anti-bladder cancer cell activity and MB-10 had no effect in TIMM44-depleted cancer cells. Contrarily, ectopic overexpression of TIMM44 using a lentiviral construct augmented proliferation and motility of primary bladder cancer cells. TIMM44 is important for Akt-mammalian target of rapamycin (mTOR) activation. In primary bladder cancer cells, Akt-S6K1 phosphorylation was decreased by MB-10 treatment or TIMM44 depletion, but enhanced after ectopic TIMM44 overexpression. In vivo, intraperitoneal injection of MB-10 impeded bladder cancer xenograft growth in nude mice. Oxidative stress, ATP reduction, Akt-S6K1 inhibition and apoptosis were detected in MB-10-treated xenograft tissues. Moreover, genetic depletion of TIMM44 also arrested bladder cancer xenograft growth in nude mice, leading to oxidative stress, ATP reduction and Akt-S6K1 inhibition in xenograft tissues. Together, targeting overexpressed TIMM44 by MB-10 significantly inhibits bladder cancer cell growth in vitro and in vivo.


Assuntos
Transdução de Sinais , Neoplasias da Bexiga Urinária , Camundongos , Animais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Nus , Bexiga Urinária/metabolismo , Proliferação de Células , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Apoptose , Trifosfato de Adenosina/farmacologia , Linhagem Celular Tumoral , Mamíferos , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial
10.
Oncogene ; 43(9): 636-649, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184713

RESUMO

Continuous administration of oxaliplatin, the most widely used first-line chemotherapy drug for colorectal cancer (CRC), eventually leads to drug resistance. Increasing the sensitivity of CRC cells to oxaliplatin is a key strategy to overcome this issue. Impairment of mitochondrial function is a pivotal mechanism determining the sensitivity of CRC to oxaliplatin. We discovered an inverse correlation between Translocase of Outer Mitochondrial Membrane 20 (TOMM20) and oxaliplatin sensitivity as well as an inverse relationship between TOMM20 and HECT, UBA, and WWE domain containing E3 ligase 1 (HUWE1) expression in CRC. For the first time, we demonstrated that HUWE1 ubiquitinates TOMM20 directly and also regulates TOMM20 degradation via the PARKIN-mediated pathway. Furthermore, we showed that overexpression of HUWE1 in CRC cells has a negative effect on mitochondrial function, including the generation of ATP and maintenance of mitochondrial membrane potential, leading to increased production of ROS and apoptosis. This effect was amplified when cells were treated simultaneously with oxaliplatin. Our study conclusively shows that TOMM20 is a novel target of HUWE1. Our findings indicate that HUWE1 plays a critical role in regulating oxaliplatin sensitivity by degrading TOMM20 and inducing mitochondrial damage in CRC.


Assuntos
Proteínas de Membrana Transportadoras , Ubiquitina-Proteína Ligases , Humanos , Oxaliplatina/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte , Receptores de Superfície Celular/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
11.
Mol Cancer Res ; 22(2): 197-208, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37878010

RESUMO

Pancreatic cancer has the worst prognosis among all cancers, underscoring the need for improved management strategies. Dysregulated mitochondrial function is a common feature in several malignancies, including pancreatic cancer. Although mitochondria have their own genome, most mitochondrial proteins are nuclear-encoded and imported by a multi-subunit translocase of the outer mitochondrial membrane (TOMM). TOMM22 is the central receptor of the TOMM complex and plays a role in complex assembly. Pathobiologic roles of TOMM subunits remain largely unexplored. Here we report that TOMM22 protein/mRNA is overexpressed in pancreatic cancer and inversely correlated with disease outcomes. TOMM22 silencing decreased, while its forced overexpression promoted the growth and malignant potential of the pancreatic cancer cells. Increased import of several mitochondrial proteins, including those associated with mitochondrial respiration, was observed upon TOMM22 overexpression which was associated with increased RCI activity, NAD+/NADH ratio, oxygen consumption rate, membrane potential, and ATP production. Inhibition of RCI activity decreased ATP levels and suppressed pancreatic cancer cell growth and malignant behavior confirming that increased TOMM22 expression mediated the phenotypic changes via its modulation of mitochondrial protein import and functions. Altogether, these results suggest that TOMM22 overexpression plays a significant role in pancreatic cancer pathobiology by altering mitochondrial protein import and functions. IMPLICATIONS: TOMM22 bears potential for early diagnostic/prognostic biomarker development and therapeutic targeting for better management of patients with pancreatic cancer.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , Neoplasias Pancreáticas , Humanos , Trifosfato de Adenosina/metabolismo , Proteínas de Transporte/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Transporte Proteico
12.
Respir Res ; 24(1): 310, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093274

RESUMO

BACKGROUND: Hypoxic pulmonary hypertension (HPH) is a common type of pulmonary hypertension and characterized by pulmonary vascular remodeling and constriction. A large number of studies have shown that pulmonary vascular endothelial cells (PVECs) dysfunction plays an important role in the initiation and development stages of HPH, but the mechanism of PVECs dysfunction after hypoxia remains unclear. In this study, we explored the exact mechanism of PVECs dysfunction after hypoxia. METHODS: In vitro, we used primary cultured PVECs hypoxia model to mimic HPH injury. We detected the expressions of mitochondrial biogenesis markers, mitochondrial transcription factor A (TFAM) level inside mitochondria, mitochondrial quantity and function, and the components expressions of translocase of outer mitochondrial membrane (TOM) at 24 h after hypoxia. To explore the effects of Tom70 on mitochondrial biogenesis and functions of PVECs after hypoxia, Tom70 overexpression adenovirus was constructed, and the expressions of mitochondrial biogenesis markers, TFAM level inside mitochondria, mitochondrial quantity and function, and the functions of PVECs were detected. And in vivo, we used cre-dependent overexpression adenovirus of Tom70 in the Cdh5-CreERT2 mouse model of HPH to verify the role of upregulating PVECs Tom70 in improving HPH. RESULTS: Hypoxia obviously increased the expressions of mitochondrial biogenesis markers for PGC-1α, NRF-1 and TFAM, but reduced the content of TFAM in mitochondria and the quantity and functions of mitochondria. In addition, only Tom70 expression among the TOM components was significantly decreased after hypoxia, and up-regulation of Tom70 significantly increased the content of TFAM in mitochondria of PVECs by transporting TFAM into mitochondria after hypoxia, enhanced the quantity and functions of mitochondria, improved the functions of PVECs, and ultimately alleviated HPH. CONCLUSION: The findings of present study demonstrated that hypoxia induced the decreased expression of Tom70 in PVECs, reduced the mitochondrial biogenesis-associated TFAM protein transporting into mitochondria, inhibited mitochondrial biogenesis, caused PVECs injury, and prompted the formation of HPH. However, up-regulation of Tom70 abolished the hypoxia-induced injurious effects on PVECs and alleviated HPH.


Assuntos
Hipertensão Pulmonar , Animais , Camundongos , Células Endoteliais/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipóxia/complicações , Pulmão/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Biogênese de Organelas
13.
Nat Struct Mol Biol ; 30(12): 1996-2008, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37696957

RESUMO

Over half of mitochondrial proteins are imported from the cytosol via the pre-sequence pathway, controlled by the TOM complex in the outer membrane and the TIM23 complex in the inner membrane. The mechanisms through which proteins are translocated via the TOM and TIM23 complexes remain unclear. Here we report the assembly of the active TOM-TIM23 supercomplex of Saccharomyces cerevisiae with translocating polypeptide substrates. Electron cryo-microscopy analyses reveal that the polypeptide substrates pass the TOM complex through the center of a Tom40 subunit, interacting with a glutamine-rich region. Structural and biochemical analyses show that the TIM23 complex contains a heterotrimer of the subunits Tim23, Tim17 and Mgr2. The polypeptide substrates are shielded from lipids by Mgr2 and Tim17, which creates a translocation pathway characterized by a negatively charged entrance and a central hydrophobic region. These findings reveal an unexpected pre-sequence pathway through the TOM-TIM23 supercomplex spanning the double membranes of mitochondria.


Assuntos
Proteínas de Membrana Transportadoras , Proteínas de Saccharomyces cerevisiae , Proteínas de Membrana Transportadoras/química , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas de Transporte/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Proteico , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Mitocondriais/metabolismo , Peptídeos/metabolismo , Proteínas de Membrana/metabolismo
14.
J Exp Clin Cancer Res ; 42(1): 204, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563661

RESUMO

BACKGROUND: Prostate cancer(PCa) is the most commonly occurring male cancer in the USA. Abiraterone or Enzalutamide have been approved for the treatment of metastatic castration-resistant prostate cancer (CRPC). However, the treatment-emergent neuroendocrine PCa (t-NEPC) may develop, resulting in drug resistance in about 10-17% CRPC patients. The detailed mechanisms remain unclear.. METHODS: The expression correlation of TOMM20 and AR in PCa was determined by analyzing publicly available datasets, or by IHC staining in tumor specimens. The protein interaction of TOMM20 and AR was validated by co-immunoprecipitation or GST pull-down assay. The impact of TOMM20 depletion on drug sensitivity were elucidated by assays of cell proliferation, invasion, sphere formation, xenograft growth and intravenous metastasis. The intracellular ROS level was measured by flow cytometry, and the NEPC transdifferentiation and characteristics of cancer stem-like cells were validated by RNA-seq, RT-PCR and western blotting. RESULTS: The protein level of TOMM20 is positively correlated with AR in PCa cells and specimens. TOMM20 protein physically interacts with AR. AR antagonists induced the protein degradation of TOMM20 through autophagy-lysosomal pathway, thereby elevating the intracellular ROS level and activating PI3K/AKT signaling pathway. When TOMM20 was depleted, PCa cells underwent EMT, acquired the characteristics of cancer stem-like cells, and developed resistance to AR antagonists. The stable depletion of TOMM20 promoted the transdifferentiation of PCa adenocarcinoma into NEPC and metastasis. Conversely, the rescue of TOMM20 re-sensitized the resistant PCa cells to AR antagonists. CONCLUSIONS: TOMM20 protein degradation induced by AR antagonists promoted the transdifferentiation of PCa to NEPC, thereby revealing a novel molecular mechanism by which AR antagonists develop drug resistance through mitochondrial outer membrane-mediated signaling pathway. These findings suggested that the decreasing or loss of TOMM20 expression in PCa tissues might become a useful predictor of PCa resistance to AR antagonists.


Assuntos
Antagonistas de Receptores de Andrógenos , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Autofagia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Fosfatidilinositol 3-Quinases , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Espécies Reativas de Oxigênio , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Antagonistas de Receptores de Andrógenos/farmacologia , Animais
15.
J Transl Med ; 21(1): 464, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438854

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a highly prevalent cardiopulmonary disorder characterized by vascular remodeling and increased resistance in pulmonary artery. Mitochondrial coiled-coil-helix-coiled-coil-helix domain (CHCHD)-containing proteins have various important pathophysiological roles. However, the functional roles of CHCHD proteins in hypoxic PAH is still ambiguous. Here, we aimed to investigate the role of CHCHD4 in hypoxic PAH and provide new insight into the mechanism driving the development of PAH. METHODS: Serotype 1 adeno-associated viral vector (AAV) carrying Chchd4 was intratracheally injected to overexpress CHCHD4 in Sprague Dawley (SD) rats. The Normoxia groups of animals were housed at 21% O2. Hypoxia groups were housed at 10% O2, for 8 h/day for 4 consecutive weeks. Hemodynamic and histological characteristics are investigated in PAH. Primary pulmonary artery smooth muscle cells of rats (PASMCs) are used to assess how CHCHD4 affects proliferation and migration. RESULTS: We found CHCHD4 was significantly downregulated among CHCHD proteins in hypoxic PASMCs and lung tissues from hypoxic PAH rats. AAV1-induced CHCHD4 elevation conspicuously alleviates vascular remodeling and pulmonary artery resistance, and orchestrates mitochondrial oxidative phosphorylation in PASMCs. Moreover, we found overexpression of CHCHD4 impeded proliferation and migration of PASMCs. Mechanistically, through lung tissues bulk RNA-sequencing (RNA-seq), we further identified CHCHD4 modulated mitochondrial dynamics by directly interacting with SAM50, a barrel protein on mitochondrial outer membrane surface. Furthermore, knockdown of SAM50 reversed the biological effects of CHCHD4 overexpression in isolated PASMCs. CONCLUSIONS: Collectively, our data demonstrated that CHCHD4 elevation orchestrates mitochondrial oxidative phosphorylation and antagonizes aberrant PASMC cell growth and migration, thereby disturbing hypoxic PAH, which could serve as a promising therapeutic target for PAH treatment.


Assuntos
Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Hipertensão Arterial Pulmonar , Animais , Ratos , Hipóxia/complicações , Proteínas Mitocondriais , Fosforilação Oxidativa , Hipertensão Arterial Pulmonar/genética , Ratos Sprague-Dawley , Remodelação Vascular , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/genética
16.
Nature ; 621(7979): 620-626, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37344598

RESUMO

Mitochondria import nearly all of their approximately 1,000-2,000 constituent proteins from the cytosol across their double-membrane envelope1-5. Genetic and biochemical studies have shown that the conserved protein translocase, termed the TIM23 complex, mediates import of presequence-containing proteins (preproteins) into the mitochondrial matrix and inner membrane. Among about ten different subunits of the TIM23 complex, the essential multipass membrane protein Tim23, together with the evolutionarily related protein Tim17, has long been postulated to form a protein-conducting channel6-11. However, the mechanism by which these subunits form a translocation path in the membrane and enable the import process remains unclear due to a lack of structural information. Here we determined the cryo-electron microscopy structure of the core TIM23 complex (heterotrimeric Tim17-Tim23-Tim44) from Saccharomyces cerevisiae. Contrary to the prevailing model, Tim23 and Tim17 themselves do not form a water-filled channel, but instead have separate, lipid-exposed concave cavities that face in opposite directions. Our structural and biochemical analyses show that the cavity of Tim17, but not Tim23, forms the protein translocation path, whereas Tim23 probably has a structural role. The results further suggest that, during translocation of substrate polypeptides, the nonessential subunit Mgr2 seals the lateral opening of the Tim17 cavity to facilitate the translocation process. We propose a new model for the TIM23-mediated protein import and sorting mechanism, a central pathway in mitochondrial biogenesis.


Assuntos
Mitocôndrias , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Microscopia Crioeletrônica , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/química , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/ultraestrutura , Transporte Proteico , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Mitocôndrias/química , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura
17.
Cell Death Dis ; 14(5): 307, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147302

RESUMO

The mitochondrial integrity and function in endothelial cells are essential for angiogenesis. TIMM44 (translocase of inner mitochondrial membrane 44) is essential for integrity and function of mitochondria. Here we explored the potential function and the possible mechanisms of TIMM44 in angiogenesis. In HUVECs, human retinal microvascular endothelial cells and hCMEC/D3 brain endothelial cells, silence of TIMM44 by targeted shRNA largely inhibited cell proliferation, migration and in vitro capillary tube formation. TIMM44 silencing disrupted mitochondrial functions in endothelial cells, causing mitochondrial protein input arrest, ATP reduction, ROS production, and mitochondrial depolarization, and leading to apoptosis activation. TIMM44 knockout, by Cas9-sgRNA strategy, also disrupted mitochondrial functions and inhibited endothelial cell proliferation, migration and in vitro capillary tube formation. Moreover, treatment with MB-10 ("MitoBloCK-10"), a TIMM44 blocker, similarly induced mitochondrial dysfunction and suppressed angiogenic activity in endothelial cells. Contrarily, ectopic overexpression of TIMM44 increased ATP contents and augmented endothelial cell proliferation, migration and in vitro capillary tube formation. In adult mouse retinas, endothelial knockdown of TIMM44, by intravitreous injection of endothelial specific TIMM44 shRNA adenovirus, inhibited retinal angiogenesis, causing vascular leakage, acellular capillary growth, and retinal ganglion cells degeneration. Significant oxidative stress was detected in TIMM44-silenced retinal tissues. Moreover, intravitreous injection of MB-10 similarly induced oxidative injury and inhibited retinal angiogenesis in vivo. Together, the mitochondrial protein TIMM44 is important for angiogenesis in vitro and in vivo, representing as a novel and promising therapeutic target of diseases with abnormal angiogenesis.


Assuntos
Células Endoteliais , Proteínas Mitocondriais , Animais , Camundongos , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Células Endoteliais/metabolismo , Mitocôndrias/metabolismo , Proliferação de Células , Movimento Celular , RNA Interferente Pequeno/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial
18.
Am J Clin Pathol ; 159(5): 492-501, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36857736

RESUMO

OBJECTIVES: As few large studies identify correlative biomarkers in chordoma, our objective was to use our large, single-center chordoma tumor bank to identify novel signaling pathways. METHODS: Clinical and pathologic data for 73 patients with chordoma were retrospectively collected. Tumor microarrays were built from 61 archived chordoma specimens; immunohistochemistry for TOMM20, TIGAR, and MCT1 were performed; and semiquantitative analysis of staining intensity and percentage of positive tumor cells was performed. Average composite scores of MCT1, TIGAR, and TOMM20 expression were compared by disease status and anatomic location. RESULTS: Higher expression of TOMM20 was seen in recurrent and metastatic chordomas compared with primary lesions. Comparing composite scores of primary lesions in patients with primary disease only vs those with recurrent disease showed that TIGAR and TOMM20 expressions are significantly higher in primary lesions, followed by a history of recurrence. A TOMM20 composite score of greater than or equal to 3 significantly decreased overall survival (hazard ratio [HR], 5.83) and recurrence-free survival (HR, 8.95). CONCLUSIONS: Identifying novel signaling pathways that promote chordoma growth and recurrence is critical for developing targeted therapy for chordoma. TOMM20 may be a biomarker associated with chordoma disease progression.


Assuntos
Cordoma , Humanos , Cordoma/patologia , Estudos Retrospectivos , Prognóstico , Receptores de Superfície Celular/metabolismo , Modelos de Riscos Proporcionais , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial
19.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835494

RESUMO

Translocase of outer mitochondrial membrane 40 (TOMM40) is located in the outer membrane of mitochondria. TOMM40 is essential for protein import into mitochondria. TOMM40 genetic variants are believed to increase the risk of Alzheimer's disease (AD) in different populations. In this study, three exonic variants (rs772262361, rs157581, and rs11556505) and three intronic variants (rs157582, rs184017, and rs2075650) of the TOMM40 gene were identified from Taiwanese AD patients using next-generation sequencing. Associations between the three TOMM40 exonic variants and AD susceptibility were further evaluated in another AD cohort. Our results showed that rs157581 (c.339T > C, p.Phe113Leu, F113L) and rs11556505 (c.393C > T, p.Phe131Leu, F131L) were associated with an increased risk of AD. We further utilized cell models to examine the role of TOMM40 variation in mitochondrial dysfunction that causes microglial activation and neuroinflammation. When expressed in BV2 microglial cells, the AD-associated mutant (F113L) or (F131L) TOMM40 induced mitochondrial dysfunction and oxidative stress-induced activation of microglia and NLRP3 inflammasome. Pro-inflammatory TNF-α, IL-1ß, and IL-6 released by mutant (F113L) or (F131L) TOMM40-activated BV2 microglial cells caused cell death of hippocampal neurons. Taiwanese AD patients carrying TOMM40 missense (F113L) or (F131L) variants displayed an increased plasma level of inflammatory cytokines IL-6, IL-18, IL-33, and COX-2. Our results provide evidence that TOMM40 exonic variants, including rs157581 (F113L) and rs11556505 (F131L), increase the AD risk of the Taiwanese population. Further studies suggest that AD-associated mutant (F113L) or (F131L) TOMM40 cause the neurotoxicity of hippocampal neurons by inducing the activation of microglia and NLRP3 inflammasome and the release of pro-inflammatory cytokines.


Assuntos
Doença de Alzheimer , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Doenças Neuroinflamatórias , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Inflamassomos/metabolismo , Interleucina-6/metabolismo , Microglia/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/genética , Doenças Neuroinflamatórias/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Variação Genética
20.
Blood Cancer Discov ; 4(3): 180-207, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36763002

RESUMO

Acute myeloid leukemia (AML) is fueled by leukemic stem cells (LSC) whose determinants are challenging to discern from hematopoietic stem cells (HSC) or uncover by approaches focused on general cell properties. We have identified a set of RNA-binding proteins (RBP) selectively enriched in human AML LSCs. Using an in vivo two-step CRISPR-Cas9 screen to assay stem cell functionality, we found 32 RBPs essential for LSCs in MLL-AF9;NrasG12D AML. Loss-of-function approaches targeting key hit RBP ELAVL1 compromised LSC-driven in vivo leukemic reconstitution, and selectively depleted primitive malignant versus healthy cells. Integrative multiomics revealed differentiation, splicing, and mitochondrial metabolism as key features defining the leukemic ELAVL1-mRNA interactome with mitochondrial import protein, TOMM34, being a direct ELAVL1-stabilized target whose repression impairs AML propagation. Altogether, using a stem cell-adapted in vivo CRISPR screen, this work demonstrates pervasive reliance on RBPs as regulators of LSCs and highlights their potential as therapeutic targets in AML. SIGNIFICANCE: LSC-targeted therapies remain a significant unmet need in AML. We developed a stem-cell-adapted in vivo CRISPR screen to identify key LSC drivers. We uncover widespread RNA-binding protein dependencies in LSCs, including ELAVL1, which we identify as a novel therapeutic vulnerability through its regulation of mitochondrial metabolism. This article is highlighted in the In This Issue feature, p. 171.


Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Diferenciação Celular , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/uso terapêutico , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA