RESUMO
Purpose: This study aimed to assess the expression of sterile alpha and TIR motif containing protein 1 (SARM1) in both chronic and acute glaucomatous animal models and investigate the underlying SARM1-JNK signaling mechanism responsible for the protective effects of SARM1 downregulation on retinal ganglion cell (RGC) soma and axons in a chronic intraocular hypertension (COH) model. Methods: The COH model was induced by injecting magnetic microbeads into the anterior chamber, whereas the acute model was created through ischemia-reperfusion (I/R) injury. Immunohistochemistry and Western blot were used to assess SARM1 expression and JNK phosphorylation in the retina and optic nerve. SARM1 downregulation was achieved through the intravitreal injection of adeno-associated virus (AAV)2-shRNA. Quantitative analysis of RGC survival was performed by the counting of Brn3A-positive RGCs, and surviving axons were assessed through optic nerve toluidine blue stain. Results: The expression of SARM1 increased 1 week after microbead injection in the optic nerve, whereas the retinal SARM1 expression decreased at 3 days post-injection in the COH model. After 24 hours of reperfusion, SARM1 expression increased in both the optic nerves and the retinas in the I/R injury model. SARM1 downregulation led to increased survival of RGC soma and axons in the COH model. In this model, JNK phosphorylation was significantly reduced concomitant with decreased SARM1 expression. Conclusions: Elevated SARM1 expression was observed in the optic nerves in both the COH and I/R injury models. Downregulation of SARM1 exhibited a protective effect on RGC soma and axons in the COH model, with JNK identified as a downstream regulator of SARM1 in this context.
Assuntos
Proteínas do Domínio Armadillo , Axônios , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Regulação para Baixo , Glaucoma , Hipertensão Ocular , Células Ganglionares da Retina , Animais , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/metabolismo , Proteínas do Domínio Armadillo/metabolismo , Proteínas do Domínio Armadillo/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/biossíntese , Axônios/patologia , Axônios/metabolismo , Glaucoma/metabolismo , Glaucoma/genética , Hipertensão Ocular/metabolismo , Hipertensão Ocular/genética , Masculino , Western Blotting , Pressão Intraocular/fisiologia , Imuno-Histoquímica , Ratos , Camundongos , Fosforilação , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase 4/genéticaRESUMO
Mitochondria-related neurodegenerative diseases have been implicated in the disruption of primary cilia function. Mutation in an intrinsic mitochondrial complex I component NDUFAF2 has been identified in Leigh syndrome, a severe inherited mitochondriopathy. Mutations in ARMC9, which encodes a basal body protein, cause Joubert syndrome, a ciliopathy with defects in the brain, kidney, and eye. Here, we report a mechanistic link between mitochondria metabolism and primary cilia signaling. We discovered that loss of NDUFAF2 caused both mitochondrial and ciliary defects in vitro and in vivo and identified NDUFAF2 as a binding partner for ARMC9. We also found that NDUFAF2 was both necessary and sufficient for cilia formation and that exogenous expression of NDUFAF2 rescued the ciliary and mitochondrial defects observed in cells from patients with known ARMC9 deficiency. NAD+ supplementation restored mitochondrial and ciliary dysfunction in ARMC9-deficient cells and zebrafish and ameliorated the ocular motility and motor deficits of a patient with ARMC9 deficiency. The present results provide a compelling mechanistic link, supported by evidence from human studies, between primary cilia and mitochondrial signaling. Importantly, our findings have significant implications for the development of therapeutic approaches targeting ciliopathies.
Assuntos
Cílios , Doenças Renais Císticas , Doença de Leigh , Mitocôndrias , Peixe-Zebra , Humanos , Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Doença de Leigh/genética , Doença de Leigh/metabolismo , Doença de Leigh/patologia , Cílios/metabolismo , Cílios/patologia , Cílios/genética , Animais , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/genética , Doenças Renais Císticas/genética , Doenças Renais Císticas/metabolismo , Doenças Renais Císticas/patologia , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Proteínas do Domínio Armadillo/metabolismo , Proteínas do Domínio Armadillo/genética , Retina/metabolismo , Retina/patologia , Retina/anormalidades , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Anormalidades do Olho/metabolismo , Camundongos , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Cerebelo/metabolismo , Cerebelo/patologia , Cerebelo/anormalidades , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , MasculinoRESUMO
Armadillo repeat-containing proteins (ARMCs) are a large family found throughout eukaryotes, which play prominent roles in cell adhesion, signaling and cytoskeletal regulation. The ARMC6 protein is highly conserved in primates, including humans, but to date does not have a clear function beyond initial hints of a link to cancer and telomerase activity. We report here in vitro experiments showing ARMC6 binding to DNA promoter sequences from several cancer-related genes (e.g., EGFR, VEGF and c-MYC), and also to the telomeric RNA repeat (TERRA). ARMC6 binding activity appears to recognize G-quadruplex motifs, which are being increasingly implicated as structure-based protein binding sites in chromosome maintenance and repair. In vivo investigation of ARMC6 function revealed that when this protein is overexpressed in human cell lines, there is different expression of genes connected with oncogenic pathways and those implicated in downstream non-canonical telomerase pathways (e.g., VEGF, hTERT, c-MYC, ESM1, MMP3). ARMC6 is already known to interact with human shelterin protein TRF2 and telomerase. The protein binds G-quadruplex structures and does so preferentially to RNA over DNA. As such, this protein may be an example of how a non-canonical nucleic acid structural motif allows mediation between gene regulation and telomeric chromatin rearrangement pathways.
Assuntos
Proteínas do Domínio Armadillo , Quadruplex G , Regiões Promotoras Genéticas , Telômero , Humanos , Proteínas do Domínio Armadillo/metabolismo , Proteínas do Domínio Armadillo/genética , Sítios de Ligação , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/metabolismo , Ligação Proteica , RNA/metabolismo , RNA/genética , Telomerase/metabolismo , Telomerase/genética , Telômero/metabolismo , Fatores de TranscriçãoRESUMO
The Wnt/Wg pathway controls myriads of biological phenomena throughout the development and adult life of all organisms across the phyla. Thus, an aberrant Wnt signaling is associated with a wide range of pathologies in humans. Tight regulation of Wnt/Wg signaling is required to maintain proper cellular homeostasis. Here, we report a novel role of E3 ubiquitin ligase Deltex in Wg signaling regulation. Drosophila dx genetically interacts with wg and its pathway components. Furthermore, Dx LOF results in a reduced spreading of Wg while its over-expression expands the diffusion gradient of the morphogen. We attribute this change in Wg gradient to the endocytosis of Wg through Dx which directly affects the short- and long-range Wg targets. We also demonstrate the role of Dx in regulating Wg effector Armadillo where Dx down-regulates Arm through proteasomal degradation. We also showed the conservation of Dx function in the mammalian system where DTX1 is shown to bind with ß-catenin and facilitates its proteolytic degradation, spotlighting a novel step that potentially modulates Wnt/Wg signaling cascade.
Assuntos
Proteínas do Domínio Armadillo , Proteínas de Drosophila , Proteólise , Ubiquitina-Proteína Ligases , Proteína Wnt1 , Animais , Humanos , Proteínas do Domínio Armadillo/metabolismo , Proteínas do Domínio Armadillo/genética , beta Catenina/metabolismo , beta Catenina/genética , Drosophila/metabolismo , Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Transdução de Sinais , Fatores de Transcrição , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Via de Sinalização Wnt , Proteína Wnt1/metabolismo , Proteína Wnt1/genéticaRESUMO
Establishing modular binders as diagnostic detection agents represents a cost- and time-efficient alternative to the commonly used binders that are generated one molecule at a time. In contrast to these conventional approaches, a modular binder can be designed in silico from individual modules to, in principle, recognize any desired linear epitope without going through a selection and hit-validation process, given a set of preexisting, amino acid-specific modules. Designed armadillo repeat proteins (dArmRP) have been developed as modular binder scaffolds, and we report here the generation of highly specific dArmRP modules by yeast surface display selection, performed on a rationally designed dArmRP library. A selection strategy was developed to distinguish the binding difference resulting from a single amino acid mutation in the target peptide. Our reverse-competitor strategy introduced here employs the designated target as a competitor to increase the sensitivity when separating specific from cross-reactive binders that show similar affinities for the target peptide. With this switch in selection focus from affinity to specificity, we found that the enrichment during this specificity sort is indicative of the desired phenotype, regardless of the binder abundance. Hence, deep sequencing of the selection pools allows retrieval of phenotypic hits with only 0.1% abundance in the selectivity sort pool from the next-generation sequencing data alone. In a proof-of-principle study, a binder was created by replacing all corresponding wild-type modules with a newly selected module, yielding a binder with very high affinity for the designated target that has been successfully validated as a detection agent in western blot analysis.
Assuntos
Proteínas do Domínio Armadillo , Saccharomyces cerevisiae , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Ligação Proteica , Peptídeos/metabolismo , Peptídeos/genética , Peptídeos/química , Epitopos/genética , Biblioteca de PeptídeosRESUMO
Wnt/Wingless (Wg) signaling is critical in development and disease, including cancer. Canonical Wnt signaling is mediated by ß-catenin/Armadillo (Arm in Drosophila) transducing signals to the nucleus, with IFT-A/Kinesin 2 complexes promoting nuclear translocation of ß-catenin/Arm. Here, we demonstrate that a conserved small N-terminal Arm34-87/ß-catenin peptide binds to IFT140, acting as a dominant interference tool to attenuate Wg/Wnt signaling in vivo. Arm34-87 expression antagonizes endogenous Wnt/Wg signaling, resulting in the reduction of its target expression. Arm34-87 inhibits Wg/Wnt signaling by interfering with nuclear translocation of endogenous Arm/ß-catenin, and this can be modulated by levels of wild-type ß-catenin or IFT140, with the Arm34-87 effect being enhanced or suppressed. Importantly, this mechanism is conserved in mammals with the equivalent ß-catenin24-79 peptide blocking nuclear translocation and pathway activation, including in cancer cells. Our work indicates that Wnt signaling can be regulated by a defined N-terminal ß-catenin peptide and thus might serve as an entry point for therapeutic applications to attenuate Wnt/ß-catenin signaling.
Assuntos
Proteínas do Domínio Armadillo , Núcleo Celular , Proteínas de Drosophila , Via de Sinalização Wnt , beta Catenina , beta Catenina/metabolismo , Animais , Proteínas de Drosophila/metabolismo , Núcleo Celular/metabolismo , Humanos , Proteínas do Domínio Armadillo/metabolismo , Proteínas do Domínio Armadillo/genética , Proteína Wnt1/metabolismo , Proteína Wnt1/genética , Transporte Ativo do Núcleo Celular , Drosophila melanogaster/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia , Ligação Proteica , Sequência de Aminoácidos , Fatores de TranscriçãoRESUMO
Primary pigmented nodular adrenocortical disease (PPNAD) and bilateral macronodular adrenocortical disease (BMAD) are 2 forms of adrenocortical nodular diseases causing Cushing's syndrome but are 2 very distinct conditions. PPNAD, affecting mostly young patients with an almost constant severe Cushing's syndrome, is characterized by pigmented micronodules, usually less than 1 cm, not always visible on imaging. On the contrary, BMAD is predominantly diagnosed in the fifth and sixth decades, with highly variable degrees of cortisol excess, from mild autonomous cortisol secretion to overt Cushing's syndrome. BMAD presents as large bilateral adrenal macronodules, easily observed on imaging. Both diseases are often genetically determined: frequently PPNAD is observed in a multiple neoplasia syndrome, Carney complex, and a germline genetic defect is identified in around 80% of index cases, always affecting key actors of the cAMP/protein kinase A (PKA) pathway: mostly PRKAR1A, encoding the PKA 1-alpha regulatory subunit. On the other hand, BMAD appears mostly isolated, and 2 predisposing genes are known at present: ARMC5, accounting for around 20% of index cases, and the recently identified KDM1A, causing the rare presentation with food-dependent Cushing's syndrome, mediated by the ectopic expression of the glucose-dependent insulinotropic polypeptide receptor (GIPR) in adrenal nodules. GIPR was the first demonstrated receptor to illegitimately regulate cortisol secretion in nodular adrenocortical diseases, and a myriad of other receptors and paracrine signals were discovered afterward. The last 30 years were pivotal in the understanding of the genetics and pathophysiology of bilateral adrenocortical nodular diseases, leading to a personalized approach of these fascinating conditions.
Assuntos
Doenças do Córtex Suprarrenal , Síndrome de Cushing , Humanos , Síndrome de Cushing/genética , Síndrome de Cushing/patologia , Síndrome de Cushing/diagnóstico , Doenças do Córtex Suprarrenal/genética , Doenças do Córtex Suprarrenal/patologia , Doenças do Córtex Suprarrenal/complicações , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Complexo de Carney/genética , Complexo de Carney/patologia , Complexo de Carney/complicações , Complexo de Carney/diagnósticoRESUMO
Plakophilin 1 (PKP1), a member of the p120ctn subfamily of the armadillo (ARM)-repeat-containing proteins, is an important structural component of cell-cell adhesion scaffolds although it can also be ubiquitously found in the cytoplasm and the nucleus. RYBP (RING 1A and YY1 binding protein) is a multifunctional intrinsically disordered protein (IDP) best described as a transcriptional regulator. Both proteins are involved in the development and metastasis of several types of tumors. We studied the binding of the armadillo domain of PKP1 (ARM-PKP1) with RYBP by using in cellulo methods, namely immunofluorescence (IF) and proximity ligation assay (PLA), and in vitro biophysical techniques, namely fluorescence, far-ultraviolet (far-UV) circular dichroism (CD), and isothermal titration calorimetry (ITC). We also characterized the binding of the two proteins by using in silico experiments. Our results showed that there was binding in tumor and non-tumoral cell lines. Binding in vitro between the two proteins was also monitored and found to occur with a dissociation constant in the low micromolar range (~10 µM). Finally, in silico experiments provided additional information on the possible structure of the binding complex, especially on the binding ARM-PKP1 hot-spot. Our findings suggest that RYBP might be a rescuer of the high expression of PKP1 in tumors, where it could decrease the epithelial-mesenchymal transition in some cancer cells.
Assuntos
Proteínas Intrinsicamente Desordenadas , Placofilinas , Ligação Proteica , Proteínas Repressoras , Humanos , Proteínas do Domínio Armadillo/metabolismo , Proteínas do Domínio Armadillo/química , Proteínas do Domínio Armadillo/genética , Dicroísmo Circular , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Placofilinas/metabolismo , Placofilinas/genética , Placofilinas/química , Domínios Proteicos , Proteínas Repressoras/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genéticaRESUMO
Sterile alpha and TIR motif-containing 1 (SARM1) is a protein involved in programmed death of injured axons. Following axon injury or a drug-induced insult, the TIR domain of SARM1 degrades the essential molecule nicotinamide adenine dinucleotide (NAD+), leading to a form of axonal death called Wallerian degeneration. Degradation of NAD+ by SARM1 is essential for the Wallerian degeneration process, but accumulating evidence suggest that other activities of SARM1, beyond the mere degradation of NAD+, may be necessary for programmed axonal death. In this study we show that the TIR domains of both human and fruit fly SARM1 produce 1''-2' and 1''-3' glycocyclic ADP-ribose (gcADPR) molecules as minor products. As previously reported, we observed that SARM1 TIR domains mostly convert NAD+ to ADPR (for human SARM1) or cADPR (in the case of SARM1 from Drosophila melanogaster). However, we now show that human and Drosophila SARM1 additionally convert ~0.1-0.5% of NAD+ into gcADPR molecules. We find that SARM1 TIR domains produce gcADPR molecules both when purified in vitro and when expressed in bacterial cells. Given that gcADPR is a second messenger involved in programmed cell death in bacteria and likely in plants, we propose that gcADPR may play a role in SARM1-induced programmed axonal death in animals.
Assuntos
NAD , Degeneração Walleriana , Animais , Humanos , Degeneração Walleriana/metabolismo , Degeneração Walleriana/patologia , NAD/metabolismo , Drosophila melanogaster/metabolismo , Axônios/metabolismo , Bactérias/metabolismo , Adenosina Difosfato Ribose/metabolismo , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismoRESUMO
BACKGROUND: Sterile alpha and TIR motif-containing 1 (Sarm1) is known as a negative regulator of inflammatory responses. However, its role in inflammatory bowel disease (IBD) is still unclear. OBJECTIVE: This study aimed to explore the function of Sarm1 in IBD and its underlying mechanisms. Sarm1 and tumor necrosis factor (TNF) receptor associated factor 3 (TRAF3) knockout (KO) micewere established. METHODS: The colitis was induced using dextran sulfate sodium (DSS). Bone marrow-derived macrophages (BMDMs) were isolated and stimulated with lipopolysaccharides (LPS) or cytidine phosphate guanosine(CpG). Inflammatory cytokines were measured viaELISA. qPCR and Western blotting were used to determine the levels of the mRNA and protein expression, respectively. RESULTS: It was demonstrated that reduced expression of Sarm1 was correlated with the severity of IBD in ulcerative colitis patients, and also with the reduction of pro-inflammatory cytokines in the mouse model induced by DSS. It was further observed that Sarm1 KO enhanced the induction of pro-inflammatory cytokines in both animal and in vitro cell models. Sarm1 deficiency in macrophages increased the severity of colitis in the mouse model induced by DSS. Moreover, Sarm1 regulatedTRAF3 recruitment to myeloid differentiation primary response protein 88 (MyD88), which in turn controlled the MYD88-mediated inflammatory responses. CONCLUSIONS: In summary, our data suggest that Sarm1 controls the MYD88-mediated inflammatory responses in IBD via its regulation of TRAF3 recruitment.
1. Sarm1 KO enhances the induction of pro-inflammatory cytokines in both animal and in vitro cell models.2. Sarm1 deficiency in macrophages increases the severity of colitis in the mouse model.3. Sarm1 regulates TRAF3 recruitment to MyD88.
Assuntos
Proteínas do Domínio Armadillo , Proteínas do Citoesqueleto , Sulfato de Dextrana , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais , Macrófagos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide , Fator 3 Associado a Receptor de TNF , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Proteínas do Domínio Armadillo/metabolismo , Proteínas do Domínio Armadillo/genética , Colite/imunologia , Colite/metabolismo , Colite/induzido quimicamente , Colite/genética , Colite Ulcerativa/imunologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/genética , Colite Ulcerativa/induzido quimicamente , Citocinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Transdução de Sinais , Fator 3 Associado a Receptor de TNF/metabolismo , Fator 3 Associado a Receptor de TNF/genéticaRESUMO
Armcx1 is a member of the ARMadillo repeat-Containing protein on the X chromosome (ARMCX) family, which is recognized to have evolutionary conserved roles in regulating mitochondrial transport and dynamics. Previous research has shown that Armcx1 is expressed at higher levels in mice after axotomy and in adult retinal ganglion cells after crush injury, and this protein increases neuronal survival and axonal regeneration. However, its role in traumatic brain injury (TBI) is unclear. Therefore, the aim of this study was to assess the expression of Armcx1 after TBI and to explore possible related mechanisms by which Armcx1 is involved in TBI. We used C57BL/6 male mice to model TBI and evaluated the role of Armcx1 in TBI by transfecting mice with Armcx1 small interfering RNA (siRNA) to inhibit Armcx1 expression 24 h before TBI modeling. Western blotting, immunofluorescence, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining, Nissl staining, transmission electron microscopy, adenosine triphosphate (ATP) level measurement, neuronal apoptosis analysis, neurological function scoring and the Morris water maze were performed. The results demonstrated that Armcx1 protein expression was elevated after TBI and that the Armcx1 protein was localized in neurons and astroglial cells in cortical tissue surrounding the injury site. In addition, inhibition of Armcx1 expression further led to impaired mitochondrial transport, abnormal morphology, reduced ATP levels, aggravation of neuronal apoptosis and neurological dysfunction, and decrease Miro1 expression. In conclusion, our findings indicate that Armcx1 may exert neuroprotective effects by ameliorating neurological injury after TBI through a mitochondrial transport pathway involving Miro1.
Assuntos
Proteínas do Domínio Armadillo , Lesões Encefálicas Traumáticas , Camundongos Endogâmicos C57BL , Mitocôndrias , Proteínas rho de Ligação ao GTP , Animais , Masculino , Camundongos , Trifosfato de Adenosina/metabolismo , Apoptose/fisiologia , Proteínas do Domínio Armadillo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Aprendizagem em Labirinto/fisiologia , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Proteínas rho de Ligação ao GTP/metabolismoRESUMO
Sterile alpha and HEAT/armadillo motif-containing protein (SARM1) was recently described as a NAD+-consuming enzyme and has previously been shown to regulate immune responses in macrophages. Neuronal SARM1 is known to contribute to axon degeneration due to its NADase activity. However, how SARM1 affects macrophage metabolism has not been explored. Here, we show that macrophages from Sarm1-/- mice display elevated NAD+ concentrations and lower cyclic ADP-ribose, a known product of SARM1-dependent NAD+ catabolism. Further, SARM1-deficient macrophages showed an increase in the reserve capacity of oxidative phosphorylation and glycolysis compared to WT cells. Stimulation of macrophages to a proinflammatory state by lipopolysaccharide (LPS) revealed that SARM1 restricts the ability of macrophages to upregulate glycolysis and limits the expression of the proinflammatory gene interleukin (Il) 1b, but boosts expression of anti-inflammatory Il10. In contrast, we show macrophages lacking SARM1 induced to an anti-inflammatory state by IL-4 stimulation display increased oxidative phosphorylation and glycolysis, and reduced expression of the anti-inflammatory gene, Fizz1. Overall, these data show that SARM1 fine-tunes immune gene transcription in macrophages via consumption of NAD+ and altered macrophage metabolism.
Assuntos
Proteínas do Domínio Armadillo , Proteínas do Citoesqueleto , Neurônios , Animais , Camundongos , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Axônios/metabolismo , ADP-Ribose Cíclica/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , NAD/metabolismo , Neurônios/metabolismoRESUMO
BACKGROUND: Bioenergetic maladaptations and axonopathy are often found in the early stages of neurodegeneration. Nicotinamide adenine dinucleotide (NAD), an essential cofactor for energy metabolism, is mainly synthesized by Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) in CNS neurons. NMNAT2 mRNA levels are reduced in the brains of Alzheimer's, Parkinson's, and Huntington's disease. Here we addressed whether NMNAT2 is required for axonal health of cortical glutamatergic neurons, whose long-projecting axons are often vulnerable in neurodegenerative conditions. We also tested if NMNAT2 maintains axonal health by ensuring axonal ATP levels for axonal transport, critical for axonal function. METHODS: We generated mouse and cultured neuron models to determine the impact of NMNAT2 loss from cortical glutamatergic neurons on axonal transport, energetic metabolism, and morphological integrity. In addition, we determined if exogenous NAD supplementation or inhibiting a NAD hydrolase, sterile alpha and TIR motif-containing protein 1 (SARM1), prevented axonal deficits caused by NMNAT2 loss. This study used a combination of techniques, including genetics, molecular biology, immunohistochemistry, biochemistry, fluorescent time-lapse imaging, live imaging with optical sensors, and anti-sense oligos. RESULTS: We provide in vivo evidence that NMNAT2 in glutamatergic neurons is required for axonal survival. Using in vivo and in vitro studies, we demonstrate that NMNAT2 maintains the NAD-redox potential to provide "on-board" ATP via glycolysis to vesicular cargos in distal axons. Exogenous NAD+ supplementation to NMNAT2 KO neurons restores glycolysis and resumes fast axonal transport. Finally, we demonstrate both in vitro and in vivo that reducing the activity of SARM1, an NAD degradation enzyme, can reduce axonal transport deficits and suppress axon degeneration in NMNAT2 KO neurons. CONCLUSION: NMNAT2 ensures axonal health by maintaining NAD redox potential in distal axons to ensure efficient vesicular glycolysis required for fast axonal transport.
Assuntos
Transporte Axonal , NAD , Nicotinamida-Nucleotídeo Adenililtransferase , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Proteínas do Domínio Armadillo/metabolismo , Axônios/metabolismo , Proteínas do Citoesqueleto/metabolismo , Glicólise , Homeostase , NAD/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismoRESUMO
Ultra-tight binding is usually observed for proteins associating with rigidified molecules. Previously, we demonstrated that femtomolar binders derived from the Armadillo repeat proteins (ArmRPs) can be designed to interact very tightly with fully flexible peptides. Here we show for ArmRPs with four and seven sequence-identical internal repeats that the peptide-ArmRP complexes display conformational dynamics. These dynamics stem from transient breakages of individual protein-residue contacts that are unrelated to overall unbinding. The labile contacts involve electrostatic interactions. We speculate that these dynamics allow attaining very high binding affinities, since they reduce entropic losses. Importantly, only NMR techniques can pick up these local events by directly detecting conformational exchange processes without complications from changes in solvent entropy. Furthermore, we demonstrate that the interaction surface of the repeat protein regularizes upon peptide binding to become more compatible with the peptide geometry. These results provide novel design principles for ultra-tight binders.
Assuntos
Proteínas de Transporte , Peptídeos , Proteínas de Transporte/metabolismo , Peptídeos/química , Proteínas/metabolismo , Proteínas do Domínio Armadillo/metabolismo , Entropia , Ligação Proteica , Conformação ProteicaRESUMO
Armcx1 is highly expressed in the brain and is located in the mitochondrial outer membrane of neurons, where it mediates mitochondrial transport. Mitochondrial transport promotes the removal of damaged mitochondria and the replenishment of healthy mitochondria, which is essential for neuronal survival after traumatic brain injury (TBI). This study investigated the role of Armcx1 and its potential regulator(s) in secondary brain injury (SBI) after TBI. An in vivo TBI model was established in male C57BL/6 mice via controlled cortical impact (CCI). Adeno-associated viruses (AAVs) with Armcx1 overexpression and knockdown were constructed and administered to mice via stereotactic cortical injection. Exogenous miR-223-3p mimic or inhibitor was transfected into cultured cortical neurons, which were then scratched to simulate TBI in vitro. It was found that Armcx1 expression decreased significantly, while miR-223-3p levels increased markedly in peri-lesion tissues after TBI. The overexpression of Armcx1 significantly reduced TBI-induced neurological dysfunction, neuronal cell death, mitochondrial dysfunction, and axonal injury, while the knockdown of Armcx1 had the opposite effect. Armcx1 was potentially a direct target of miR-223-3p. The miR-223-3p mimic obviously reduced the Armcx1 protein level, while the miR-223-3p inhibitor had the opposite effect. Finally, the miR-223-3p inhibitor dramatically improved mitochondrial membrane potential (MMP) and increased the total length of the neurites without affecting branching numbers. In summary, our results suggest that the decreased expression of Armcx1 protein in neurons after experimental TBI aggravates secondary brain injury, which may be regulated by miR-223-3p. Therefore, this study provides a potential therapeutic approach for treating TBI.
Assuntos
Proteínas do Domínio Armadillo , Lesões Encefálicas Traumáticas , MicroRNAs , Proteínas Mitocondriais , Animais , Masculino , Camundongos , Lesões Encefálicas Traumáticas/metabolismo , Morte Celular , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Proteínas do Domínio Armadillo/metabolismo , Proteínas Mitocondriais/metabolismoRESUMO
BACKGROUND: Globally, gastric cancer (GC) is one of the world's most widespread malignancies, with persistent high mortality and morbidity rates. Increasing evidence now suggests that microRNAs (miRNAs) participate in many biological processes, with miR-455-3p having key roles in the progression of diverse cancers. Nevertheless, miR-455-3p function and expression in GC remain unclear. METHODS: We explored miR-455-3p expression in GC using quantitative polymerase chain reaction (qPCR). To further examine the effect of miR-455-3p in GC, after transfecting miR-455-3p mimics or inhibitors into GC cells, 5-ethynyl-2'-deoxyuridine (EdU) incorporation and colony formation assays were performed to examine cell proliferation. Flow cytometry was used to detect apoptosis, and expression levels of Bax, Bcl-2, Snail, N-cadherin, E-cadherin, and Caspase-3 were assessed by western blotting (WB). Using online databases and luciferase assays, we identified armadillo repeat-containing protein 8 (ARMC8) as a promising target of miR-455-3p. A mouse tumor model was established to investigate actions of miR-455-3p in vivo. Expression levels of C-myc, cyclinD1, and ß-catenin were examined using WB and immunofluorescence. RESULTS: MiR-455-3p expression was attenuated in GC tissue and cell lines. MiR-455-3p overexpression inhibited GC cell proliferation, epithelial-mesenchymal transition (EMT), as well as facilitated apoptosis, while suppression of miR-455-3p had the opposite effects. From luciferase assays, we confirmed that ARMC8 was a novel and direct downstream target gene of miR-455-3p, and that the tumor suppressive role of miR-455-3p was in part reversed due to ARMC8 overexpression. Moreover, miR-455-3p inhibited GC growth in vivo via ARMC8. We also observed that miR-455-3p repressed canonical Wnt pathway activation by binding to ARMC8. CONCLUSIONS: MiR-455-3p exerted tumor inhibitory effects in GC by targeting ARMC8. Therefore, intervening in the miR-455-3p/ARMC8/Wnt/ßcatenin axis could be a promising novel treatment strategy for GC.
Assuntos
Proteínas do Domínio Armadillo , MicroRNAs , Neoplasias Gástricas , Via de Sinalização Wnt , Animais , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Luciferases/genética , Luciferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Via de Sinalização Wnt/genética , Humanos , Proteínas do Domínio Armadillo/metabolismoRESUMO
Outer arm dynein (OAD) is the main force generator of ciliary beating. Although OAD loss is the most frequent cause of human primary ciliary dyskinesia, the docking mechanism of OAD onto the ciliary doublet microtubule (DMT) remains elusive in vertebrates. Here, we analyzed the functions of Calaxin/Efcab1 and Armc4, the two of five components of vertebrate OAD-DC (docking complex), using zebrafish spermatozoa and cryo-electron tomography. Mutation of armc4 caused complete loss of OAD, whereas mutation of calaxin caused only partial loss of OAD. Detailed structural analysis revealed that calaxin-/- OADs are tethered to DMT through DC components other than Calaxin, and that recombinant Calaxin can autonomously rescue the deficient DC structure and the OAD instability. Our data demonstrate the discrete roles of Calaxin and Armc4 in the OAD-DMT interaction, suggesting the stabilizing process of OAD docking onto DMT in vertebrates.
Assuntos
Cílios , Proteínas do Citoesqueleto , Dineínas , Microtúbulos , Peixe-Zebra , Animais , Masculino , Axonema/metabolismo , Cílios/genética , Cílios/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Mutação , Peixe-Zebra/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Espermatozoides/metabolismo , Microscopia de Fluorescência , Microscopia Crioeletrônica , Modelos Moleculares , Estabilidade ProteicaRESUMO
Monocyte exhaustion characterized by immune-suppressive features can develop during sepsis and contribute to adverse patient outcomes. However, molecular mechanisms responsible for the establishment of immune-suppressive monocytes with reduced expression of immune-enhancing mediators such as CD86 during sepsis are not well understood. In this study, we identified that the TLR4 intracellular adaptor TRAM plays a key role in mediating the sustained reduction of CD86 expression on exhausted monocytes and generating an immune-suppressive monocyte state. TRAM contributes to the prolonged suppression of CD86 through inducing TAX1BP1 as well as SARM1, collectively inhibiting Akt and NFκB. TRAM deficient mice are protected from cecal slurry-induced experimental sepsis and retain immune-competent monocytes with CD86 expression. Our data reveal a key molecular circuitry responsible for monocyte exhaustion and provide a viable target for rejuvenating functional monocytes and treating sepsis.
Assuntos
Antígeno B7-2 , Exaustão do Sistema Imunitário , Monócitos , Receptores de Interleucina , Sepse , Animais , Humanos , Camundongos , Proteínas do Domínio Armadillo/metabolismo , Antígeno B7-2/metabolismo , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/patologia , Subunidade p50 de NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sepse/metabolismo , Sepse/patologia , Transdução de Sinais , Camundongos Knockout , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismoRESUMO
Axon loss contributes to many common neurodegenerative disorders. In healthy axons, the axon survival factor NMNAT2 inhibits SARM1, the central executioner of programmed axon degeneration. We identified 2 rare NMNAT2 missense variants in 2 brothers afflicted with a progressive neuropathy syndrome. The polymorphisms resulted in amino acid substitutions V98M and R232Q, which reduced NMNAT2 NAD+-synthetase activity. We generated a mouse model to mirror the human syndrome and found that Nmnat2V98M/R232Q compound-heterozygous CRISPR mice survived to adulthood but developed progressive motor dysfunction, peripheral axon loss, and macrophage infiltration. These disease phenotypes were all SARM1-dependent. Remarkably, macrophage depletion therapy blocked and reversed neuropathic phenotypes in Nmnat2V98M/R232Q mice, identifying a SARM1-dependent neuroimmune mechanism as a key driver of disease pathogenesis. These findings demonstrate that SARM1 induced inflammatory neuropathy and highlight the potential of immune therapy as a treatment for this rare syndrome and other neurodegenerative conditions associated with NMNAT2 loss and SARM1 activation.
Assuntos
Nicotinamida-Nucleotídeo Adenililtransferase , Doenças do Sistema Nervoso Periférico , Masculino , Animais , Camundongos , Humanos , Adulto , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Degeneração Neural/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Axônios/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Macrófagos/metabolismoRESUMO
Axon degeneration is an early pathological event in many neurological diseases. The identification of the nicotinamide adenine dinucleotide (NAD) hydrolase SARM1 as a central metabolic sensor and axon executioner presents an exciting opportunity to develop novel neuroprotective therapies that can prevent or halt the degenerative process, yet limited progress has been made on advancing efficacious inhibitors. We describe a class of NAD-dependent active-site SARM1 inhibitors that function by intercepting NAD hydrolysis and undergoing covalent conjugation with the reaction product adenosine diphosphate ribose (ADPR). The resulting small-molecule ADPR adducts are highly potent and confer compelling neuroprotection in preclinical models of neurological injury and disease, validating this mode of inhibition as a viable therapeutic strategy. Additionally, we show that the most potent inhibitor of CD38, a related NAD hydrolase, also functions by the same mechanism, further underscoring the broader applicability of this mechanism in developing therapies against this class of enzymes.