Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928376

RESUMO

SARS-CoV-2 is the causative agent of the COVID-19 pandemic, the acute respiratory disease which, so far, has led to over 7 million deaths. There are several symptoms associated with SARS-CoV-2 infections which include neurological and psychiatric disorders, at least in the case of pre-Omicron variants. SARS-CoV-2 infection can also promote the onset of glioblastoma in patients without prior malignancies. In this study, we focused on the Envelope protein codified by the virus genome, which acts as viroporin and that is reported to be central for virus propagation. In particular, we characterized the electrophysiological profile of E-protein transfected U251 and HEK293 cells through the patch-clamp technique and FURA-2 measurements. Specifically, we observed an increase in the voltage-dependent (Kv) and calcium-dependent (KCa) potassium currents in HEK293 and U251 cell lines, respectively. Interestingly, in both cellular models, we observed a depolarization of the mitochondrial membrane potential in accordance with an alteration of U251 cell growth. We, therefore, investigated the transcriptional effect of E protein on the signaling pathways and found several gene alterations associated with apoptosis, cytokines and WNT pathways. The electrophysiological and transcriptional changes observed after E protein expression could explain the impact of SARS-CoV-2 infection on gliomagenesis.


Assuntos
COVID-19 , Glioblastoma , Potencial da Membrana Mitocondrial , SARS-CoV-2 , Humanos , Glioblastoma/metabolismo , Glioblastoma/virologia , Glioblastoma/patologia , Glioblastoma/genética , Células HEK293 , SARS-CoV-2/fisiologia , COVID-19/virologia , COVID-19/metabolismo , Linhagem Celular Tumoral , Proteínas do Envelope de Coronavírus/metabolismo , Proteínas do Envelope de Coronavírus/genética , Apoptose , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/virologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética
2.
Proteins ; 90(5): 1102-1114, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35119706

RESUMO

Coronaviruses, especially severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), present an ongoing threat to human wellbeing. Consequently, elucidation of molecular determinants of their function and interaction with the host is an important task. Whereas some of the coronaviral proteins are extensively characterized, others remain understudied. Here, we use molecular dynamics simulations to analyze the structure and dynamics of the SARS-CoV-2 envelope (E) protein (a viroporin) in the monomeric form. The protein consists of the hydrophobic α-helical transmembrane domain (TMD) and amphiphilic α-helices H2 and H3, connected by flexible linkers. We show that TMD has a preferable orientation in the membrane, while H2 and H3 reside at the membrane surface. Orientation of H2 is strongly influenced by palmitoylation of cysteines Cys40, Cys43, and Cys44. Glycosylation of Asn66 affects the orientation of H3. We also observe that the monomeric E protein both generates and senses the membrane curvature, preferably localizing with the C-terminus at the convex regions of the membrane; the protein in the pentameric form displays these properties as well. Localization to curved regions may be favorable for assembly of the E protein oligomers, whereas induction of curvature may facilitate the budding of the viral particles. The presented results may be helpful for a better understanding of the function of the coronaviral E protein and viroporins in general, and for overcoming the ongoing SARS-CoV-2 pandemic.


Assuntos
COVID-19 , Proteínas do Envelope de Coronavírus/química , SARS-CoV-2 , Humanos , Domínios Proteicos , Proteínas do Envelope Viral/química
3.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35058348

RESUMO

Novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants pose a challenge to controlling the COVID-19 pandemic. Previous studies indicate that clinical samples collected from individuals infected with the Delta variant may contain higher levels of RNA than previous variants, but the relationship between levels of viral RNA and infectious virus for individual variants is unknown. We measured infectious viral titer (using a microfocus-forming assay) and total and subgenomic viral RNA levels (using RT-PCR) in a set of 162 clinical samples containing SARS-CoV-2 Alpha, Delta, and Epsilon variants that were collected in identical swab kits from outpatient test sites and processed soon after collection. We observed a high degree of variation in the relationship between viral titers and RNA levels. Despite this, the overall infectivity differed among the three variants. Both Delta and Epsilon had significantly higher infectivity than Alpha, as measured by the number of infectious units per quantity of viral E gene RNA (5.9- and 3.0-fold increase; P < 0.0001, P = 0.014, respectively) or subgenomic E RNA (14.3- and 6.9-fold increase; P < 0.0001, P = 0.004, respectively). In addition to higher viral RNA levels reported for the Delta variant, the infectivity (amount of replication competent virus per viral genome copy) may be increased compared to Alpha. Measuring the relationship between live virus and viral RNA is an important step in assessing the infectivity of novel SARS-CoV-2 variants. An increase in the infectivity for Delta may further explain increased spread, suggesting a need for increased measures to prevent viral transmission.


Assuntos
COVID-19/epidemiologia , Regulação Viral da Expressão Gênica , Genoma Viral , RNA Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Animais , COVID-19/patologia , COVID-19/transmissão , COVID-19/virologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Proteínas do Envelope de Coronavírus/genética , Proteínas do Envelope de Coronavírus/metabolismo , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , RNA Viral/metabolismo , SARS-CoV-2/classificação , SARS-CoV-2/metabolismo , Células Vero , Carga Viral , Virulência
4.
Sci Rep ; 11(1): 24432, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34952919

RESUMO

Despite the initial success of some drugs and vaccines targeting COVID-19, understanding the mechanism underlying SARS-CoV-2 disease pathogenesis remains crucial for the development of further approaches to treatment. Some patients with severe Covid-19 experience a cytokine storm and display evidence of inflammasome activation leading to increased levels of IL-1ß and IL-18; however, other reports have suggested reduced inflammatory responses to Sars-Cov-2. In this study we have examined the effects of the Sars-Cov-2 envelope (E) protein, a virulence factor in coronaviruses, on inflammasome activation and pulmonary inflammation. In cultured macrophages the E protein suppressed inflammasome priming and NLRP3 inflammasome activation. Similarly, in mice transfected with E protein and treated with poly(I:C) to simulate the effects of viral RNA, the E protein, in an NLRP3-dependent fashion, reduced expression of pro-IL-1ß, levels of IL-1ß and IL-18 in broncho-alveolar lavage fluid, and macrophage infiltration in the lung. To simulate the effects of more advanced infection, macrophages were treated with both LPS and poly(I:C). In this setting the E protein increased NLRP3 inflammasome activation in both murine and human macrophages. Thus, the Sars-Cov-2 E protein may initially suppress the host NLRP3 inflammasome response to viral RNA while potentially increasing NLRP3 inflammasome responses in the later stages of infection. Targeting the Sars-Cov-2 E protein especially in the early stages of infection may represent a novel approach to Covid-19 therapy.


Assuntos
Proteínas do Envelope de Coronavírus/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , SARS-CoV-2/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/química , COVID-19/patologia , COVID-19/virologia , Proteínas do Envelope de Coronavírus/genética , Regulação para Baixo/efeitos dos fármacos , Estresse do Retículo Endoplasmático , Humanos , Inflamassomos/efeitos dos fármacos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Janus Quinases/genética , Janus Quinases/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Poli I-C/farmacologia , RNA Viral/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/isolamento & purificação
5.
Front Immunol ; 12: 724060, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539660

RESUMO

Thirty-five peptides selected from functionally-relevant SARS-CoV-2 spike (S), membrane (M), and envelope (E) proteins were suitably modified for immunising MHC class II (MHCII) DNA-genotyped Aotus monkeys and matched with HLA-DRß1* molecules for use in humans. This was aimed at producing the first minimal subunit-based, chemically-synthesised, immunogenic molecules (COLSARSPROT) covering several HLA alleles. They were predicted to cover 48.25% of the world's population for 6 weeks (short-term) and 33.65% for 15 weeks (long-lasting) as they induced very high immunofluorescent antibody (IFA) and ELISA titres against S, M and E parental native peptides, SARS-CoV-2 neutralising antibodies and host cell infection. The same immunological methods that led to identifying new peptides for inclusion in the COLSARSPROT mixture were used for antigenicity studies. Peptides were analysed with serum samples from patients suffering mild or severe SARS-CoV-2 infection, thereby increasing chemically-synthesised peptides' potential coverage for the world populations up to 62.9%. These peptides' 3D structural analysis (by 1H-NMR acquired at 600 to 900 MHz) suggested structural-functional immunological association. This first multi-protein, multi-epitope, minimal subunit-based, chemically-synthesised, highly immunogenic peptide mixture highlights such chemical synthesis methodology's potential for rapidly obtaining very pure, highly reproducible, stable, cheap, easily-modifiable peptides for inducing immune protection against COVID-19, covering a substantial percentage of the human population.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Proteínas do Envelope de Coronavírus/imunologia , Proteínas M de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Aotidae , COVID-19/prevenção & controle , Cadeias HLA-DRB1/genética , Humanos , Peptídeos/imunologia , SARS-CoV-2/imunologia
6.
Virus Res ; 302: 198472, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34118359

RESUMO

The human ß-coronavirus SARS-CoV-2 epidemic started in late December 2019 in Wuhan, China. It causes Covid-19 disease which has become pandemic. Each of the five-known human ß-coronaviruses has four major structural proteins (E, M, N and S) and 16 non-structural proteins encoded by ORF1a and ORF1b together (ORF1ab) that are involved in virus pathogenicity and infectivity. Here, we performed detailed positive selection analyses for those six genes among the four previously known human ß-coronaviruses and within 38 SARS-CoV-2 genomes to assess signatures of adaptive evolution using maximum likelihood approaches. Our results suggest that three genes (E, S and ORF1ab genes) are under strong signatures of positive selection among human ß-coronavirus, influencing codons that are located in functional important protein domains. The E protein-coding gene showed signatures of positive selection in two sites, Asp 66 and Ser 68, located inside a putative transmembrane α-helical domain C-terminal part, which is preferentially composed by hydrophilic residues. Such Asp and Ser sites substitutions (hydrophilic residues) increase the stability of the transmembrane domain in SARS-CoV-2. Moreover, substitutions in the spike (S) protein S1 N-terminal domain have been found, all of them were located on the S protein surface, suggesting their importance in viral transmissibility and survival. Furthermore, evidence of strong positive selection was detected in three of the SARS-CoV-2 nonstructural proteins (NSP1, NSP3, NSP16), which are encoded by ORF1ab and play vital roles in suppressing host translation machinery, viral replication and transcription and inhibiting the host immune response. These results are insightful to assess the role of positive selection in the SARS-CoV-2 encoded proteins, which will allow to better understand the virulent pathogenicity of the virus and potentially identifying targets for drug or vaccine strategy design.


Assuntos
COVID-19/virologia , Proteínas do Envelope de Coronavírus/genética , Pandemias , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Proteínas Virais/genética , Substituição de Aminoácidos , COVID-19/epidemiologia , Humanos , Poliproteínas/genética , Domínios Proteicos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Virulência/genética , Replicação Viral
7.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34143202

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a causative agent of the coronavirus disease (COVID-19), is a part of the $\beta $-Coronaviridae family. The virus contains five major protein classes viz., four structural proteins [nucleocapsid (N), membrane (M), envelop (E) and spike glycoprotein (S)] and replicase polyproteins (R), synthesized as two polyproteins (ORF1a and ORF1ab). Due to the severity of the pandemic, most of the SARS-CoV-2-related research are focused on finding therapeutic solutions. However, studies on the sequences and structure space throughout the evolutionary time frame of viral proteins are limited. Besides, the structural malleability of viral proteins can be directly or indirectly associated with the dysfunctionality of the host cell proteins. This dysfunctionality may lead to comorbidities during the infection and may continue at the post-infection stage. In this regard, we conduct the evolutionary sequence-structure analysis of the viral proteins to evaluate their malleability. Subsequently, intrinsic disorder propensities of these viral proteins have been studied to confirm that the short intrinsically disordered regions play an important role in enhancing the likelihood of the host proteins interacting with the viral proteins. These interactions may result in molecular dysfunctionality, finally leading to different diseases. Based on the host cell proteins, the diseases are divided in two distinct classes: (i) proteins, directly associated with the set of diseases while showing similar activities, and (ii) cytokine storm-mediated pro-inflammation (e.g. acute respiratory distress syndrome, malignancies) and neuroinflammation (e.g. neurodegenerative and neuropsychiatric diseases). Finally, the study unveils that males and postmenopausal females can be more vulnerable to SARS-CoV-2 infection due to the androgen-mediated protein transmembrane serine protease 2.


Assuntos
COVID-19/genética , Genoma Viral/genética , Conformação Proteica , SARS-CoV-2/ultraestrutura , COVID-19/virologia , Proteínas do Envelope de Coronavírus/genética , Proteínas do Envelope de Coronavírus/ultraestrutura , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/ultraestrutura , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/ultraestrutura , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Proteínas do Complexo da Replicase Viral/genética , Proteínas do Complexo da Replicase Viral/ultraestrutura , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/ultraestrutura
8.
Virol J ; 18(1): 110, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078394

RESUMO

BACKGROUND: The reliable detection of SARS-CoV-2 has become one of the most important contributions to COVID-19 crisis management. With the publication of the first sequences of SARS-CoV-2, several diagnostic PCR assays have been developed and published. In addition to in-house assays the market was flooded with numerous commercially available ready-to-use PCR kits, with both approaches showing alarming shortages in reagent supply. AIM: Here we present a resource-efficient in-house protocol for the PCR detection of SARS-CoV-2 RNA in patient specimens (RKI/ZBS1 SARS-CoV-2 protocol). METHODS: Two duplex one-step real-time RT-PCR assays are run simultaneously and provide information on two different SARS-CoV-2 genomic regions. Each one is duplexed with a control that either indicates potential PCR inhibition or proves the successful extraction of nucleic acid from the clinical specimen. RESULTS: Limit of RNA detection for both SARS-CoV-2 assays is below 10 genomes per reaction. The protocol enables testing specimens in duplicate across the two different SARS-CoV-2 PCR assays, saving reagents by increasing testing capacity. The protocol can be run on various PCR cyclers with several PCR master mix kits. CONCLUSION: The presented RKI/ZBS1 SARS-CoV-2 protocol represents a cost-effective alternative in times of shortages when commercially available ready-to-use kits may not be available or affordable.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , RNA Viral/análise , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/genética , Proteínas do Envelope de Coronavírus/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Limite de Detecção , Poliproteínas/genética , RNA Viral/genética , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade , Proteínas Virais/genética
9.
J Immunol ; 206(12): 3000-3009, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34078711

RESUMO

SARS-CoV-2, the virus that has caused the COVID-19 pandemic, robustly activates the host immune system in critically ill patients. Understanding how the virus engages the immune system will facilitate the development of needed therapeutic strategies. In this study, we demonstrate both in vitro and in vivo that the SARS-CoV-2 surface proteins spike (S) and envelope (E) activate the key immune signaling IFN pathway in both human and mouse immune and epithelial cells independent of viral infection and replication. These proteins induce reactive oxidative species generation and increases in human- and murine-specific, IFN-responsive cytokines and chemokines, similar to their upregulation in critically ill COVID-19 patients. Induction of IFN signaling is dependent on canonical but discrepant inflammatory signaling mediators, as the activation induced by S is dependent on IRF3, TBK1, and MyD88, whereas that of E is largely MyD88 independent. Furthermore, these viral surface proteins, specifically E, induced peribronchial inflammation and pulmonary vasculitis in a mouse model. Finally, we show that the organized inflammatory infiltrates are dependent on type I IFN signaling, specifically in lung epithelial cells. These findings underscore the role of SARS-CoV-2 surface proteins, particularly the understudied E protein, in driving cell specific inflammation and their potential for therapeutic intervention.


Assuntos
Proteínas do Envelope de Coronavírus/imunologia , Células Epiteliais/imunologia , Inflamação/imunologia , Interferon Tipo I/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Linhagem Celular Tumoral , Células Epiteliais/virologia , Feminino , Humanos , Masculino , Camundongos
10.
Nat Immunol ; 22(7): 829-838, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963333

RESUMO

The innate immune response is critical for recognizing and controlling infections through the release of cytokines and chemokines. However, severe pathology during some infections, including SARS-CoV-2, is driven by hyperactive cytokine release, or a cytokine storm. The innate sensors that activate production of proinflammatory cytokines and chemokines during COVID-19 remain poorly characterized. In the present study, we show that both TLR2 and MYD88 expression were associated with COVID-19 disease severity. Mechanistically, TLR2 and Myd88 were required for ß-coronavirus-induced inflammatory responses, and TLR2-dependent signaling induced the production of proinflammatory cytokines during coronavirus infection independent of viral entry. TLR2 sensed the SARS-CoV-2 envelope protein as its ligand. In addition, blocking TLR2 signaling in vivo provided protection against the pathogenesis of SARS-CoV-2 infection. Overall, our study provides a critical understanding of the molecular mechanism of ß-coronavirus sensing and inflammatory cytokine production, which opens new avenues for therapeutic strategies to counteract the ongoing COVID-19 pandemic.


Assuntos
COVID-19/imunologia , Proteínas do Envelope de Coronavírus/metabolismo , Síndrome da Liberação de Citocina/imunologia , SARS-CoV-2/imunologia , Receptor 2 Toll-Like/metabolismo , Animais , COVID-19/complicações , COVID-19/diagnóstico , COVID-19/virologia , Chlorocebus aethiops , Síndrome da Liberação de Citocina/diagnóstico , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Imunidade Inata/efeitos dos fármacos , Leucócitos Mononucleares , Macrófagos , Masculino , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Cultura Primária de Células , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/antagonistas & inibidores , Receptor 2 Toll-Like/genética , Células Vero , Tratamento Farmacológico da COVID-19
11.
Genome ; 64(7): 665-678, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33788636

RESUMO

SARS-CoV-2 is mutating and creating divergent variants across the world. An in-depth investigation of the amino acid substitutions in the genomic signature of SARS-CoV-2 proteins is highly essential for understanding its host adaptation and infection biology. A total of 9587 SARS-CoV-2 structural protein sequences collected from 49 different countries are used to characterize protein-wise variants, substitution patterns (type and location), and major substitution changes. The majority of the substitutions are distinct, mostly in a particular location, and lead to a change in an amino acid's biochemical properties. In terms of mutational changes, envelope (E) and membrane (M) proteins are relatively more stable than nucleocapsid (N) and spike (S) proteins. Several co-occurrence substitutions are observed, particularly in S and N proteins. Substitution specific to active sub-domains reveals that heptapeptide repeat, fusion peptides, transmembrane in S protein, and N-terminal and C-terminal domains in the N protein are remarkably mutated. We also observe a few deleterious mutations in the above domains. The overall study on non-synonymous mutation in structural proteins of SARS-CoV-2 at the start of the pandemic indicates a diversity amongst virus sequences.


Assuntos
SARS-CoV-2/química , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/genética , Substituição de Aminoácidos , Aminoácidos/química , Proteínas do Envelope de Coronavírus/química , Proteínas do Envelope de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/genética , Humanos , Mutação , Taxa de Mutação , Fosfoproteínas/química , Fosfoproteínas/genética , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética
12.
Exp Eye Res ; 203: 108433, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33400927

RESUMO

Although severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) infection have emerged globally, findings related to ocular involvement and reported cases are quite limited. Immune reactions against viral infections are closely related to viral and host proteins sequence similarity. Molecular Mimicry has been described for many different viruses; sequence similarities of viral and human tissue proteins may trigger autoimmune reactions after viral infections due to similarities between viral and human structures. With this study, we aimed to investigate the protein sequence similarity of SARS CoV-2 with retinal proteins and retinal pigment epithelium (RPE) surface proteins. Retinal proteins involved in autoimmune retinopathy and retinal pigment epithelium surface transport proteins were analyzed in order to infer their structural similarity to surface glycoprotein (S), nucleocapsid phosphoprotein (N), membrane glycoprotein (M), envelope protein (E), ORF1ab polyprotein (orf1ab) proteins of SARS CoV-2. Protein similarity comparisons, 3D protein structure prediction, T cell epitopes-MHC binding prediction, B cell epitopes-MHC binding prediction and the evaluation of the antigenicity of peptides assessments were performed. The protein sequence analysis was made using the Pairwise Sequence Alignment and the LALIGN program. 3D protein structure estimates were made using Swiss Model with default settings and analyzed with TM-align web server. T-cell epitope identification was performed using the Immune Epitope Database and Analysis (IEDB) resource Tepitool. B cell epitopes based on sequence characteristics of the antigen was performed using amino acid scales and HMMs with the BepiPred 2.0 web server. The predicted peptides/epitopes in terms of antigenicity were examined using the default settings with the VaxiJen v2.0 server. Analyses showed that, there is a meaningful similarities between 6 retinal pigment epithelium surface transport proteins (MRP-4, MRP-5, RFC1, SNAT7, TAUT and MATE) and the SARS CoV-2 E protein. Immunoreactive epitopic sites of these proteins which are similar to protein E epitope can create an immune stimulation on T cytotoxic and T helper cells and 6 of these 9 epitopic sites are also vaxiJen. These result imply that autoimmune cross-reaction is likely between the studied RPE proteins and SARS CoV-2 E protein. The structure of SARS CoV-2, its proteins and immunologic reactions against these proteins remain largely unknown. Understanding the structure of SARS CoV-2 proteins and demonstration of similarity with human proteins are crucial to predict an autoimmune response associated with immunity against host proteins and its clinical manifestations as well as possible adverse effects of vaccination.


Assuntos
Sequência de Aminoácidos , Doenças Autoimunes/virologia , Proteínas do Olho/química , Doenças Retinianas/virologia , SARS-CoV-2/química , Homologia de Sequência , Proteínas Virais/química , COVID-19/epidemiologia , Biologia Computacional , Proteínas do Envelope de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/química , Infecções Oculares Virais/virologia , Humanos , Glicoproteínas de Membrana/química , Fosfoproteínas/química , Poliproteínas/química , Epitélio Pigmentado da Retina/química , Proteínas da Matriz Viral/química
13.
Talanta ; 224: 121726, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33379001

RESUMO

The outbreak of COVID-19 caused by a novel Coronavirus (termed SARS-CoV-2) has spread to over 210 countries around the world. Currently, reverse transcription quantitative qPCR (RT-qPCR) is used as the gold standard for diagnosis of SARS-CoV-2. However, the sensitivity of RT-qPCR assays of pharyngeal swab samples are reported to vary from 30% to 60%. More accurate and sensitive methods are urgently needed to support the quality assurance of the RT-qPCR or as an alternative diagnostic approach. A reverse transcription digital PCR (RT-dPCR) method was established and evaluated. To explore the feasibility of RT-dPCR in diagnostic of SARS-CoV-2, a total of 196 clinical pharyngeal swab samples from 103 suspected patients, 77 close contacts and 16 supposed convalescents were analyzed by RT-qPCR and then measured by the proposed RT-dPCR. For the 103 fever suspected patients, 19 (19/25) negative and 42 (42/49) equivocal tested by RT-qPCR were positive according to RT-dPCR. The sensitivity of SARS-CoV-2 detection was significantly improved from 28.2% by RT-qPCR to 87.4% by RT-dPCR. For 29 close contacts (confirmed by additional sample and clinical follow up), 16 (16/17) equivocal and 1 negative tested by RT-qPCR were positive according to RT-dPCR, which is implying that the RT-qPCR is missing a lot of asymptomatic patients. The overall sensitivity, specificity and diagnostic accuracy of RT-dPCR were 91%, 100% and 93%, respectively. RT-dPCR is highly accurate method and suitable for detection of pharyngeal swab samples from COVID-19 suspected patients and patients under isolation and observation who may not be exhibiting clinical symptoms.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , RNA Viral/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/genética , Proteínas do Envelope de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/genética , Humanos , Faringe/virologia , Fosfoproteínas/genética , Poliproteínas/genética , Proteínas Virais/genética
14.
J Biol Chem ; 296: 100111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33229438

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a ß-coronavirus, is the causative agent of the COVID-19 pandemic. Like for other coronaviruses, its particles are composed of four structural proteins: spike (S), envelope (E), membrane (M), and nucleoprotein (N) proteins. The involvement of each of these proteins and their interactions are critical for assembly and production of ß-coronavirus particles. Here, we sought to characterize the interplay of SARS-CoV-2 structural proteins during the viral assembly process. By combining biochemical and imaging assays in infected versus transfected cells, we show that E and M regulate intracellular trafficking of S as well as its intracellular processing. Indeed, the imaging data reveal that S is relocalized at endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) or Golgi compartments upon coexpression of E or M, as observed in SARS-CoV-2-infected cells, which prevents syncytia formation. We show that a C-terminal retrieval motif in the cytoplasmic tail of S is required for its M-mediated retention in the ERGIC, whereas E induces S retention by modulating the cell secretory pathway. We also highlight that E and M induce a specific maturation of N-glycosylation of S, independently of the regulation of its localization, with a profile that is observed both in infected cells and in purified viral particles. Finally, we show that E, M, and N are required for optimal production of virus-like-particles. Altogether, these results highlight how E and M proteins may influence the properties of S proteins and promote the assembly of SARS-CoV-2 viral particles.


Assuntos
Proteínas do Envelope de Coronavírus/genética , Proteínas do Nucleocapsídeo/genética , SARS-CoV-2/crescimento & desenvolvimento , Glicoproteína da Espícula de Coronavírus/genética , Proteínas da Matriz Viral/genética , Vírion/crescimento & desenvolvimento , Montagem de Vírus/fisiologia , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Linhagem Celular Tumoral , Chlorocebus aethiops , Proteínas do Envelope de Coronavírus/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Retículo Endoplasmático/virologia , Expressão Gênica , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Complexo de Golgi/virologia , Células HEK293 , Hepatócitos/metabolismo , Hepatócitos/ultraestrutura , Hepatócitos/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , Proteínas do Nucleocapsídeo/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Proteínas da Matriz Viral/metabolismo , Vírion/genética , Vírion/metabolismo , Internalização do Vírus , Liberação de Vírus/fisiologia
15.
Ann Lab Med ; 41(2): 225-229, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33063685

RESUMO

In response to the ongoing coronavirus disease 2019 (COVID-19) pandemic, an online laboratory surveillance system was established to monitor severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) real-time reverse transcription-PCR (rRT-PCR) testing capacities and results. SARS-CoV-2 rRT-PCR testing data were collected from 97 clinical laboratories, including 84 medical institutions and 13 independent clinical laboratories in Korea. We assessed the testing capacities to utilize SARS-CoV-2 rRT-PCR based on surveillance data obtained from February 7th to June 4th, 2020 and evaluated positive result characteristics according to the reagents used and sample types. A total of 1,890,319 SARS-CoV-2 rRT-PCR testing were performed, 2.3% of which were positive. Strong correlations were observed between the envelope (E) gene and RNA-dependent RNA polymerase (RdRp)/nucleocapsid (N) genes threshold cycle (Ct) values for each reagent. No statistically significant differences in gene Ct values were observed between the paired upper and lower respiratory tract samples, except in the N gene for nasopharyngeal swab and sputum samples. Our study showed that clinical laboratories in Korea have rapidly expanded their testing capacities in response to the COVID-19 outbreak, with a peak daily capacity of 34,193 tests. Rapid expansion in testing capacity is a critical component of the national response to the ongoing pandemic.


Assuntos
Betacoronavirus/genética , Serviços de Laboratório Clínico/estatística & dados numéricos , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Betacoronavirus/isolamento & purificação , COVID-19 , Proteínas do Envelope de Coronavírus , Infecções por Coronavirus/virologia , Humanos , Laboratórios Hospitalares , Pandemias , Pneumonia Viral/virologia , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , República da Coreia , SARS-CoV-2 , Proteínas do Envelope Viral/genética , Proteínas Virais/genética
16.
Indian J Med Microbiol ; 38(3 & 4): 385-389, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33154251

RESUMO

CONTEXT: In the absence of effective treatment or vaccine, the current strategy for the prevention of further transmission of severe acute respiratory syndrome (SARS) CoV-2 (COVID-19) infection is early diagnosis and isolation of cases. The diagnosis of SARS-CoV-2 is done by detecting viral RNA in the nasopharyngeal and throat swabs by real-time polymerase chain reaction (PCR). Many commercial assays are now available for performing the PCR assay. AIMS: The aim was to evaluate the performance of the SD Biosensor nCoV real-time detection kit with the real-time PCR kit provided by the Indian Council of Medical Research-National Institute of Virology (ICMR-NIV), Pune (NIV Protocol). SUBJECTS AND METHODS: A total of 253 pairs of nasopharyngeal-oropharyngeal swabs combined in a single viral transport medium were tested for viral RNA by both the protocols. The sensitivity and specificity of the SD Biosensor were calculated considering the ICMR-NIV kit as the gold standard. Matched pairs of recorded cycle threshold values (Ct values) were compared by Pearson's correlation coefficient. RESULTS: Concordant COVID-19 negative and positive PCR results were reported for 113 and 77 samples, respectively. The SD Biosensor kit additionally detected 62 cases, which were found negative by the NIV protocol. In all discordant positive results by the SD Biosensor kit, the average Ct values were higher than the concordant positive results. A total of forty samples tested positive for E gene by SD Biosensor and having Ct values <25 had 100% concordance with NIV protocol results and 39 samples tested positive for E gene by SD Biosensor having Ct value >32 were all found negative by the NIV protocol. CONCLUSIONS: The results highlight the need for careful evaluation of commercial kits before being deployed for screening of COVID-19 infections.


Assuntos
Betacoronavirus/genética , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , COVID-19 , Teste para COVID-19 , Proteínas do Envelope de Coronavírus , Diagnóstico Precoce , Humanos , Pandemias , Patologia Molecular/métodos , RNA Viral/genética , Kit de Reagentes para Diagnóstico , SARS-CoV-2 , Proteínas do Envelope Viral/genética
17.
Indian J Med Microbiol ; 38(3 & 4): 451-456, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33154262

RESUMO

In the current COVID-19 crisis, many national healthcare systems are confronted with a huge demand for mass testing and an acute shortage of diagnostic resources. Considering group testing as a viable solution, this pilot study was carried out to find the maximum number of samples that can be pooled together to accurately detect one positive sample carrying the severe acute respiratory syndrome-coronavirus 2 viral RNA from different pools. We made different pool sizes ranging from 5 to 30 samples. Three positive samples, covering the common range of polymerase chain reaction (PCR) threshold cycle values (an indirect indicator of viral load) observed in our patients, were selected, and different pools were made with known negative samples. The pools underwent real-time qualitative PCR for the determination of effective maximum pool size. It was observed that up to 20-sample pools of all positive samples could accurately be detected in terms of both E gene and RdRp gene, leading to considerable conservation of resources, time and workforce. However, while deciding the optimal pool size, the infection level in that particular geographical area and sensitivity of the test assay used (limit of detection) have to be taken into account.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/diagnóstico , Programas de Rastreamento/métodos , Pneumonia Viral/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , Carga Viral/métodos , Betacoronavirus/isolamento & purificação , COVID-19 , Técnicas de Laboratório Clínico/métodos , Proteínas do Envelope de Coronavírus , RNA-Polimerase RNA-Dependente de Coronavírus , Testes Diagnósticos de Rotina/métodos , Humanos , Índia , Pandemias , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , SARS-CoV-2 , Manejo de Espécimes , Proteínas do Envelope Viral/genética , Proteínas não Estruturais Virais/genética
19.
Med Hypotheses ; 145: 110342, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33069093

RESUMO

This study aimed at identifying human neural proteins that can be attacked by cross-reacting SARS-COV-2 antibodies causing Guillain-Barré syndrome. These markers can be used for the diagnosis of Guillain-Barré syndrome (GBS). To achieve this goal, proteins implicated in the development of GBS were retrieved from literature. These human proteins were compared to SARS-COV-2 surface proteins to identify homologous sequences using Blastp. Then, MHC-I and MHC-II epitopes were determined in the homologous sequences and used for further analysis. Similar human and SARS-COV-2 epitopes were docked to the corresponding MHC molecule to compare the binding pattern of human and SARS-COV-2 proteins to the MHC molecule. Neural cell adhesion molecule is the only neural protein that showed homologous sequence to SARS-COV-2 envelope protein. The homologous sequence was part of HLA-A68 and HLA-DQA/HLA-DQB epitopes had a similar binding pattern to SARS-COV-2 envelope protein. Based on these results, the study suggests that NCAM may play a significant role in the immunopathogenesis of GBS. NCAM antibodies can be used as a marker for Guillain-Barré syndrome. However, more experimental studies are needed to prove these results.


Assuntos
Antígeno CD56/química , Proteínas do Envelope de Coronavírus/química , Síndrome de Guillain-Barré/imunologia , SARS-CoV-2 , Proteínas Virais/química , Motivos de Aminoácidos , COVID-19/imunologia , Biologia Computacional , Simulação por Computador , Cristalografia por Raios X , Epitopos/química , Antígenos HLA-A/química , Cadeias alfa de HLA-DQ/química , Cadeias beta de HLA-DQ/química , Humanos , Complexo Principal de Histocompatibilidade , Modelos Teóricos , Peptídeos/química , Ligação Proteica
20.
Virol J ; 17(1): 165, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33121513

RESUMO

BACKGROUND: In order to obtain antibodies that recognize natural proteins, it is possible to predict the antigenic determinants of natural proteins, which are eventually embodied as polypeptides. The polypeptides can be coupled with corresponding vectors to stimulate the immune system to produce corresponding antibodies, which is also a simple and effective vaccine development method. The discovery of epitopes is helpful to the development of SARS-CoV-2 vaccine. METHODS: The analyses were related to epitopes on 3 proteins, including spike (S), envelope (E) and membrane (M) proteins, which are located on the lipid envelope of the SARS-CoV-2. Based on the NCBI Reference Sequence: NC_045512.2, the conformational and linear B cell epitopes of the surface protein were predicted separately by various prediction methods. Furthermore, the conservation of the epitopes, the adaptability and other evolutionary characteristics were also analyzed, the sequences of the whole genome of SARS-CoV-2 were obtained from the GISAID. RESULTS: 7 epitopes were predicted, including 6 linear epitopes and 1 conformational epitope. One of the linear and one of the conformational consist of identical sequence, but represent different forms of epitopes. It is worth mentioning that all 6 identified epitopes were conserved in nearly 3500 SARS-CoV-2 genomes, showing that it is helpful to obtain stable and long-acting epitopes under the condition of high frequency of amino acid mutation, which deserved further study at the experiment level. CONCLUSION: The findings would facilitate the vaccine development, had the potential to be directly applied on the prevention in this disease, but also have the potential to prevent the possible threats caused by other types of coronavirus.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/virologia , Epitopos de Linfócito B/imunologia , Pneumonia Viral/virologia , Proteínas do Envelope Viral/imunologia , Proteínas da Matriz Viral/imunologia , COVID-19 , Vacinas contra COVID-19 , Biologia Computacional , Proteínas do Envelope de Coronavírus , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Humanos , Imunogenicidade da Vacina/imunologia , Modelos Moleculares , Pandemias , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Proteínas do Envelope Viral/química , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA