Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
1.
Sci Adv ; 10(16): eadl6144, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640233

RESUMO

Nucleoprotein (NP) is a key structural protein of influenza ribonucleoprotein complexes and is central to viral RNA packing and trafficking. NP also determines the sensitivity of influenza to myxovirus resistance protein 1 (MxA), an innate immunity factor that restricts influenza replication. A few critical MxA-resistant mutations have been identified in NP, including the highly conserved proline-283 substitution. This essential proline-283 substitution impairs influenza growth, a fitness defect that becomes particularly prominent at febrile temperature (39°C) when host chaperones are depleted. Here, we biophysically characterize proline-283 NP and serine-283 NP to test whether the fitness defect is caused by the proline-283 substitution introducing folding defects. We show that the proline-283 substitution changes the folding pathway of NP, making NP more aggregation prone during folding, but does not alter the native structure of the protein. These findings suggest that influenza has evolved to hijack host chaperones to promote the folding of otherwise biophysically incompetent viral proteins that enable innate immune system escape.


Assuntos
Influenza Humana , Humanos , Proteínas do Core Viral/genética , Proteínas do Core Viral/química , Proteínas do Core Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Proteínas de Resistência a Myxovirus
3.
J Biol Chem ; 300(4): 107135, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447796

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric pathogen of the coronavirus family and caused severe economic losses to the global swine industry. Previous studies have established that p53 is a host restriction factor for PEDV infection, and p53 degradation occurs in PEDV-infected cells. However, the underlying molecular mechanisms through which PEDV viral proteins regulate p53 degradation remain unclear. In this study, we found that PEDV infection or expression of the nucleocapsid protein downregulates p53 through a post-translational mechanism: increasing the ubiquitination of p53 and preventing its nuclear translocation. We also show that the PEDV N protein functions by recruiting the E3 ubiquitin ligase COP1 and suppressing COP1 self-ubiquitination and protein degradation, thereby augmenting COP1-mediated degradation of p53. Additionally, COP1 knockdown compromises N-mediated p53 degradation. Functional mapping using truncation analysis showed that the N-terminal domains of N protein were responsible for interacting with COP1 and critical for COP1 stability and p53 degradation. The results presented here suggest the COP1-dependent mechanism for PEDV N protein to abolish p53 activity. This study significantly increases our understanding of PEDV in antagonizing the host antiviral factor p53 and will help initiate novel antiviral strategies against PEDV.


Assuntos
Proteínas do Nucleocapsídeo , Vírus da Diarreia Epidêmica Suína , Proteólise , Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Vírus da Diarreia Epidêmica Suína/metabolismo , Animais , Humanos , Proteínas do Nucleocapsídeo/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Chlorocebus aethiops , Células HEK293 , Suínos , Células Vero
4.
Dokl Biochem Biophys ; 516(1): 93-97, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38539009

RESUMO

Influenza A virus has a wide natural areal among birds, mammals, and humans. One of the main regulatory adaptors of the virus host range is the major NP protein of the viral nucleocapsid. Phylogenetic analysis of the NP protein of different viruses has revealed the existence of two phylogenetic cohorts in human influenza virus population. Cohort I includes classical human viruses that caused epidemics in 1957, 1968, 1977. Cohort II includes the H1N1/2009pdm virus, which had a mixed avian-swine origin but caused global human pandemic. Also, the highly virulent H5N1 avian influenza virus emerged in 2021 and caused outbreaks of lethal infections in mammals including humans, appeared to have the NP gene of the second phylogenetic cohort and, therefore, by the type of adaptation to human is similar to the H1N1/2009pdm virus and seems to possess a high epidemic potential for humans. The data obtained shed light on pathways and dynamics of adaptation of avian influenza viruses to humans and propose phylogenetic algorithm for systemic monitoring of dangerous virus strains to predict epidemic harbingers and take immediate preventive measures.


Assuntos
Especificidade de Hospedeiro , Filogenia , Humanos , Animais , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Influenza Humana/virologia , Influenza Humana/epidemiologia , Influenza Humana/genética , Vírus da Influenza A Subtipo H1N1/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo , Vírus da Influenza A/genética , Virus da Influenza A Subtipo H5N1/genética
5.
Sci Rep ; 14(1): 3711, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355695

RESUMO

The emergence of corona virus disease 2019 (COVID-19), resulting from Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has left an indelible mark on a global scale, causing countless infections and fatalities. This investigation delves into the role of the SARS-CoV-2 nucleocapsid (N) protein within the HEK293 cells, shedding light on its influence over apoptosis, interferon signaling, and cytokines production. The N gene was amplified, inserted into the pAdTrack-CMV vector, and then transfected to the HEK293 cells. Changes in the expression of IRF3, IRF7, IFN-ß, BAK, BAX, and BCL-2 genes were evaluated. The levels of proinflammatory cytokines of IL-6, IL-12, IL-1ß, and TNF-α were also determined. The N protein exhibited an anti-apoptotic effect by modulating critical genes associated with apoptosis, including BAK, BAX, and BCL-2. This effect potentially prolonged the survival of infected cells. The N protein also played a role in immune evasion by suppressing the interferon pathway, evidenced by the downregulation of essential interferon regulatory factors of IRF3 and IRF7, and IFN-ß expression. The N protein expression led to a substantial increase in the production of proinflammatory cytokines of IL-6, IL-12, IL-1ß, and TNF-α. The N protein emerged as a versatile factor and was exerted over apoptosis, interferon signaling, and cytokine production. These findings carry potential implications for the development of targeted therapies to combat COVID-19 and mitigate its global health impact.


Assuntos
COVID-19 , Humanos , COVID-19/genética , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , SARS-CoV-2/metabolismo , Fator de Necrose Tumoral alfa , Células HEK293 , Interleucina-6 , Proteína X Associada a bcl-2/genética , Citocinas , Interferons , Interleucina-12
6.
PLoS Pathog ; 20(1): e1011925, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38190410

RESUMO

Hantaviruses have evolved a unique translation strategy to boost the translation of viral mRNA in infected cells. Hantavirus nucleocapsid protein (NP) binds to the viral mRNA 5' UTR and the 40S ribosomal subunit via the ribosomal protein S19. NP associated ribosomes are selectively loaded on viral transcripts to boost their translation. Here we demonstrate that NP expression upregulated the steady-state levels of a subset of host cell factors primarily involved in protein processing in the endoplasmic reticulum. Detailed investigation of Valosin-containing protein (VCP/p97), one of the upregulated host factors, in both transfected and virus infected cells revealed that NP with the assistance of VCP mRNA 5' UTR facilitates the translation of downstream VCP ORF. The VCP mRNA contains a 5' UTR of 987 nucleotides harboring six unusual start codons upstream of the correct start codon for VCP which is located at 988th position from the 5' cap. In vitro translation of a GFP reporter transcript harboring the VCP mRNA 5' UTR generated both GFP and a short polypeptide of ~14 KDa by translation initiation from start codon located in the 5' UTR at 542nd position from the 5' cap. The translation initiation from 542nd AUG in the UTR sequence was confirmed in cells using a dual reporter construct expressing mCherry and GFP. The synthesis of 14KDa polypeptide dramatically inhibited the translation of the ORF from the downstream correct start codon at 988th position from the 5' cap. We report that purified NP binds to the VCP mRNA 5' UTR with high affinity and NP binding site is located close to the 542ndAUG. NP binding shuts down the translation of 14KDa polypeptide which then facilitates the translation initiation at the correct AUG codon. Knockdown of VCP generated lower levels of poorly infectious hantavirus particle in the cellular cytoplasm whose egress was dramatically inhibited in human umbilical vein endothelial cells. We demonstrated that VCP binds to the hantavirus glycoprotein Gn before its incorporation into assembled virions and facilitates viral spread to neighboring cells during infection. Our results suggest that ribosome engagement at the 542nd AUG codon in the 5' UTR likely regulates the endogenous steady state levels of VCP in cells. Hantaviruses interrupt this regulatory mechanism to enhance the steady state levels of VCP in virus infected cells. This augmentation facilitates virus replication, supports the transmission of the virus to adjacent cells, and promotes the release of infectious virus particles from the host cell.


Assuntos
Orthohantavírus , Proteoma , Humanos , Códon de Iniciação , Proteoma/metabolismo , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Células Endoteliais/metabolismo , Regiões 5' não Traduzidas , Orthohantavírus/genética , RNA Mensageiro/genética , Peptídeos/metabolismo , Biossíntese de Proteínas
7.
J Virol ; 97(10): e0111523, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37796122

RESUMO

IMPORTANCE: Of the flaviviruses, only CSFV and bovine viral diarrhea virus express Npro as the non-structural protein which is not essential for viral replication but functions to dampen host innate immunity. We have deciphered a novel mechanism with which CSFV uses to evade the host antiviral immunity by the N-terminal domain of its Npro to facilitate proteasomal degradation of Sp1 with subsequent reduction of HDAC1 and ISG15 expression. This is distinct from earlier findings involving Npro-mediated IRF3 degradation via the C-terminal domain. This study provides insights for further studies on how HDAC1 plays its role in antiviral immunity, and if and how other viral proteins, such as the core protein of CSFV, the nucleocapsid protein of porcine epidemic diarrhea virus, or even other coronaviruses, exert antiviral immune responses via the Sp1-HDAC1 axis. Such research may lead to a deeper understanding of viral immune evasion strategies as part of their pathogenetic mechanisms.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Endopeptidases , Histona Desacetilase 1 , Imunidade Inata , Complexo de Endopeptidases do Proteassoma , Fator de Transcrição Sp1 , Proteínas Virais , Animais , Peste Suína Clássica/imunologia , Peste Suína Clássica/metabolismo , Peste Suína Clássica/virologia , Vírus da Febre Suína Clássica/enzimologia , Vírus da Febre Suína Clássica/imunologia , Vírus da Febre Suína Clássica/metabolismo , Vírus da Febre Suína Clássica/patogenicidade , Endopeptidases/química , Endopeptidases/metabolismo , Histona Desacetilase 1/biossíntese , Histona Desacetilase 1/metabolismo , Fator Regulador 3 de Interferon , Proteínas do Nucleocapsídeo/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fator de Transcrição Sp1/metabolismo , Suínos/virologia , Proteínas do Core Viral/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Ubiquitinas/metabolismo , Citocinas/metabolismo , Vírus da Diarreia Epidêmica Suína/imunologia , Vírus da Diarreia Epidêmica Suína/metabolismo , Domínios Proteicos
8.
Protein Sci ; 32(12): e4826, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37906538

RESUMO

The nucleocapsid (N) protein is an essential structural component necessary for genomic packaging and replication in various human coronaviruses (HCoVs), such as SARS-CoV-2 and MERS-CoV. Recent studies have revealed that the SARS-CoV-2 N protein exhibits a high capacity for liquid-liquid phase separation (LLPS), which plays multiple roles in viral infection and replication. In this study, we systematically investigate the LLPS capabilities of seven homologous N proteins from different HCoVs using a high-throughput protein phase separation assay. We found that LLPS is a shared intrinsic property among these N proteins. However, the phase separation profiles of the various N protein homologs differ, and they undergo phase separation under distinct in vitro conditions. Moreover, we demonstrate that N protein homologs can co-phase separate with FUS, a SG-containing protein, and accelerate its liquid-to-solid phase transition and amyloid aggregation, which is closely related to amyotrophic lateral sclerosis. Further study shows that N protein homologs can directly bind to the low complexity domain of FUS. Together, our work demonstrates that N proteins of different HCoVs possess phase separation capabilities, which may contribute to promoting pathological aggregation of host proteins and disrupting SG homeostasis during the infection and replication of various HCoVs.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas do Nucleocapsídeo , Humanos , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteína FUS de Ligação a RNA/química
9.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37558389

RESUMO

AIM: Certain probiotic bacteria have been shown to possess an immunomodulatory effect and a protective effect on influenza infections. Using the Staphylococcus epidermidis K1 colonized mice model, we assessed the effect of nasal administration of glycerol or flavin mononucleotide (FMN) on the production of interleukin (IL)-6 mediated by the severe acute respiratory syndrome coronavirus 2 (SARS2-CoV) nucleocapsid protein (NPP). METHODS AND RESULTS: FMN, one of the key electron donors for the generation of electricity facilitated by S. epidermidis ATCC 12228, was detected in the glycerol fermentation medium. Compared to the S. epidermidis ATCC 12228, the S. epidermidis K1 isolate showed significant expression of the electron transfer genes, including pyruvate dehydrogenase (pdh), riboflavin kinase (rk), 1,4-dihydroxy-2-naphthoate octaprenyltransferase (menA), and type II NADH quinone oxidoreductase (ndh2). Institute of cancer research (ICR) mice were intranasally administered with S. epidermidis K1 with or without pretreatment with riboflavin kinase inhibitors, then nasally treated with glycerol or FMN before inoculating the NPP. Furthermore, J774A.1 macrophages were exposed to NPP serum and then treated with NPP of SARS2-CoV. The IL-6 levels in the bronchoalveolar lavage fluid (BALF) of mice and macrophages were quantified using a mouse IL-6 enzyme-linked immunosorbent assay kit. CONCLUSIONS: Here, we report that nasal administration of NPP strongly elevates IL-6 levels in both BALF and J774A.1 macrophages. It is worth noting that NPP-neutralizing antibodies can decrease IL-6 levels in macrophages. The nasal administration of glycerol or FMN to S. epidermidis K1-colonized mice results in a reduction of NPP-induced IL-6 production.


Assuntos
COVID-19 , Interleucina-6 , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Cavidade Nasal , Staphylococcus epidermidis/metabolismo , Glicerol/metabolismo , Proteínas do Nucleocapsídeo/metabolismo
10.
Dermatology ; 239(4): 584-591, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37075721

RESUMO

BACKGROUND: COronaVIrus Disease 19 (COVID-19) is associated with a wide spectrum of skin manifestations, but SARS-CoV-2 RNA in lesional skin has been demonstrated only in few cases. OBJECTIVE: The objective of this study was to demonstrate SARS-CoV-2 presence in skin samples from patients with different COVID-19-related cutaneous phenotypes. METHODS: Demographic and clinical data from 52 patients with COVID-19-associated cutaneous manifestations were collected. Immunohistochemistry and digital PCR (dPCR) were performed in all skin samples. RNA in situ hybridization (ISH) was used to confirm the presence of SARS-CoV-2 RNA. RESULTS: Twenty out of 52 (38%) patients presented SARS-CoV-2 positivity in the skin. Among these, 10/52 (19%) patients tested positive for spike protein on immunohistochemistry, five of whom had also positive testing on dPCR. Of the latter, one tested positive both for ISH and ACE-2 on immunohistochemistry while another one tested positive for nucleocapsid protein. Twelve patients showed positivity only for nucleocapsid protein on immunohistochemistry. CONCLUSIONS: SARS-CoV-2 was detected only in 38% of patients, without any association with a specific cutaneous phenotype, suggesting that the pathophysiology of cutaneous lesions mostly depends on the activation of the immune system. The combination of spike and nucleocapsid immunohistochemistry has higher diagnostic yield than dPCR. Skin persistence of SARS-CoV-2 may depend on timing of skin lesions, viral load, and immune response.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Imuno-Histoquímica , RNA Viral/análise , RNA Viral/metabolismo , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Reação em Cadeia da Polimerase , Biópsia , Teste para COVID-19
11.
Appl Microbiol Biotechnol ; 107(2-3): 651-661, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36602561

RESUMO

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that caused diarrhea and/or vomiting in neonatal piglets worldwide. Coronaviruses nucleocapsid (N) protein is the most conserved structural protein for viral replication and possesses good antigenicity. In this study, three monoclonal antibodies (mAbs), 3B4, 4D3, and 4E3 identified as subclass IgG2aκ were prepared using the lymphocytic hybridoma technology against PDCoV N protein. Furthermore, the B-cell epitope recognized by mAb 4D3 was mapped by dozens of overlapping truncated recombinant proteins based on the western blotting. The polypeptide 28QFRGNGVPLNSAIKPVE44 (EP-4D3) in the N-terminal of PDCoV N protein was identified as the minimal linear epitope for binding mAb 4D3. And the EP-4D3 epitope's amino acid sequence homology study revealed that PDCoV strains are substantially conserved, with the exception of the Alanine43 substitution Valine43 in the China lineage, the Early China lineage, and the Thailand, Vietnam, and Laos lineage. The epitope sequences shared high similarity (94.1%) with porcine coronavirus HKU15-155 (PorCoV HKU15), Asian leopard cats coronavirus (ALCCoV), sparrow coronavirus HKU17 (SpCoV HKU17), and sparrow deltacoronavirus. In contrast, the epitope sequences shared a very low homology (11.8 to 29.4%) with other porcine CoVs (PEDV, TGEV, PRCV, SADS-CoV, PHEV). Overall, the study will enrich the biological function of PDCoV N protein and provide foundational data for further development of diagnostic applications. KEY POINTS: • Three monoclonal antibodies against PDCoV N protein were prepared. • Discovery of a novel B-cell liner epitope (28QFRGNGVPLNSAIKPVE44) of PDCoV N protein. • The epitope EP-4D3 was conserved among PDCoV strains.


Assuntos
Infecções por Coronavirus , Coronavirus , Doenças dos Suínos , Suínos , Animais , Deltacoronavirus/genética , Epitopos de Linfócito B/genética , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Coronavirus/genética , Infecções por Coronavirus/veterinária , Anticorpos Monoclonais
12.
J Biomol Struct Dyn ; 41(3): 1062-1071, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34913847

RESUMO

Intraviral protein-protein interactions are crucial for replication, pathogenicity, and viral assembly. Among these, virus assembly is a critical step as it regulates the arrangements of viral structural proteins and helps in the encapsulation of genomic material. SARS-CoV-2 structural proteins play an essential role in the self-rearrangement, RNA encapsulation, and mature virus particle formation. In SARS-CoV, the membrane protein interacts with the envelope and spike protein in Endoplasmic Reticulum Golgi Intermediate Complex (ERGIC) to form an assembly in the lipid bilayer, followed by membrane-ribonucleoprotein (nucleocapsid) interaction. In this study, we tried to understand the interaction of membrane protein's interaction with envelope, spike, and nucleocapsid proteins using protein-protein docking. Further, simulation studies were performed up to 100 ns to examine the stability of protein-protein complexes of Membrane-Envelope, Membrane-Spike, and Membrane-Nucleocapsid proteins. Prime MM-GBSA showed high binding energy calculations for the simulated structures than the docked complex. The interactions identified in our study will be of great importance, as it provides valuable insight into the protein-protein complex, which could be the potential drug targets for future studies.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Proteínas do Nucleocapsídeo , Humanos , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , SARS-CoV-2/metabolismo , Proteínas do Envelope Viral/química , Proteínas da Matriz Viral/química , Proteínas de Membrana , Simulação de Acoplamento Molecular
13.
Neurology ; 100(13): 624-628, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36526429

RESUMO

BACKGROUND AND OBJECTIVES: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can cause a wide range of neurologic complications; however, its neuropenetrance during the acute phase of the illness is unknown. METHODS: Extracellular vesicles were isolated from brain biopsy tissue from a patient undergoing epilepsy surgery using ultracentrifugation and analyzed by Western blot and qPCR for the presence of virus protein and RNA, respectively. Biopsy tissue was assessed by immunohistochemistry for the presence of microvascular damage and compared with 3 other non-COVID surgical epilepsy brain tissues. RESULTS: We demonstrate the presence of viral nucleocapsid protein in extracellular vesicles and microvascular disease in the brain of a patient undergoing epilepsy surgery shortly after SARS-CoV-2 infection. Endothelial cell activation was indicated by increased levels of platelet endothelial cell adhesion molecule-1 and was associated with fibrinogen leakage and immune cell infiltration in the biopsy tissue as compared with control non-COVID surgical epilepsy brain tissues. DISCUSSION: Despite the lack of evidence of viral replication within the brain, the presence of the nucleocapsid protein was associated with disease-specific endothelial cell activation, fibrinogen leakage, and immune cell infiltration.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Nucleocapsídeo/metabolismo , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Encéfalo/metabolismo
14.
Virology ; 578: 163-170, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36580863

RESUMO

The nucleocapsid (NC) domain of the retroviral Gag polyproteins mediates the incorporation of the viral genomic RNA into virions. Although SIV is widely used as a model for human immunodeficiency virus type 1 (HIV-1) infections, the SIV NC has been the subject of few studies which have provided discrepant data on the relative contribution of the two NC zinc finger motifs to genomic RNA encapsidation. Here, we demonstrate that mutations affecting the first cysteine in the distal zinc finger motif (C33S) or the N-terminal NC basic domain (R7A/K8A) drastically impair virion assembly and viral RNA binding. By contrast, amino acid substitutions targeting the first cysteine of the proximal zinc finger (C12S) or the basic region connecting both zinc fingers (R29A/R30A) allow substantial particle production and genomic RNA encapsidation. Our results help define the relative contribution of the SIV NC zinc finger motifs and basic regions to the NC biological properties.


Assuntos
Proteínas do Nucleocapsídeo , Vírus da Imunodeficiência Símia , Animais , Sequência de Aminoácidos , Aminoácidos/genética , Cisteína/genética , Genômica , Mutação , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/metabolismo , Vírion/genética , Vírion/metabolismo , Montagem de Vírus/genética
15.
Viruses ; 14(10)2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36298853

RESUMO

Viruses, as intracellular parasites, rely on the host organism to complete their life cycle. Although over 70% of plant viruses are transmitted by insect vectors, the role of vector energy metabolism on the infection process of insect-borne plant viruses is unclear. In this study, full-length cDNAs of three energy metabolism-related genes (LsATPase, LsMIT13 and LsNADP-ME) were obtained from the small brown planthopper (SBPH, Laodelphax striatellus), which transmits the Rice stripe virus (RSV). Expression levels of LsATPase, LsMIT13 and LsNADP-ME increased by 105%, 1120% and 259%, respectively, due to RSV infection. The repression of LsATPase, LsMIT13 or LsNADP-ME by RNAi had no effect on RSV nucleocapsid protein (NP) transcripts or protein levels. The repression of LsATPase caused a significant increase in LsMIT13 and LsNADP-ME transcript levels by 230% and 217%, respectively, and the repression of LsMIT13 caused a significant increase in LsNADP-ME mRNA levels. These results suggested that the silencing of LsATPase induced compensatory upregulation of LsMIT13 and LsNADP-ME, and silencing LsMIT13 induced compensatory upregulation of LsNADP-ME. Further study indicated that the co-silencing of LsATPase, LsMIT13 and LsNADP-ME in viruliferous SBPHs increased ATP production and RSV loads by 182% and 117%, respectively, as compared with nonviruliferous SBPHs. These findings indicate that SBPH energy metabolism is involved in RSV infection and provide insight into the association between plant viruses and energy metabolism in the insect vector.


Assuntos
Hemípteros , Oryza , Vírus de Plantas , Tenuivirus , Animais , Tenuivirus/genética , Hemípteros/fisiologia , Insetos Vetores , Vírus de Plantas/genética , RNA Mensageiro/genética , Metabolismo Energético , Proteínas do Nucleocapsídeo/metabolismo , Trifosfato de Adenosina/metabolismo , Doenças das Plantas
16.
Dokl Biochem Biophys ; 506(1): 220-222, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36303056

RESUMO

Based on previous studies, two antibody-like molecules, monobodies, capable of high-affinity interaction with the SARS-CoV-2 nucleocapsid protein (dissociation constant of tens of nM) were selected. For delivery to target cells, genetically engineered constructs containing monobody and TAT peptide, placed either at the N- or C-terminus of the resulting polypeptide, were produced and expressed in E. coli. The construct with the highest affinity to the SARS-CoV-2 nucleocapsid protein was revealed with the use of thermophoresis technique. Cellular thermal shift assay demonstrated the ability of this construct to interact with the nucleocapsid protein within HEK293T cells transfected with the SARS-CoV-2 nucleocapsid protein fused to the mRuby3 fluorescent protein. Replacement of TAT peptide to S10 shuttle peptide, containing endosomolytic peptide, significantly improved the penetration of the construct into the target cells.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Células HEK293 , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/metabolismo , Anticorpos Antivirais
17.
J Virol ; 96(13): e0061822, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35695513

RESUMO

Porcine epidemic diarrhea virus (PEDV) is the globally distributed alphacoronavirus that can cause lethal watery diarrhea in piglets, causing substantial economic damage. However, the current commercial vaccines cannot effectively the existing diseases. Thus, it is of great necessity to identify the host antiviral factors and the mechanism by which the host immune system responds against PEDV infection required to be explored. The current work demonstrated that the host protein, the far upstream element-binding protein 3 (FUBP3), could be controlled by the transcription factor TCFL5, which could suppress PEDV replication through targeting and degrading the nucleocapsid (N) protein of the virus based on selective autophagy. For the ubiquitination of the N protein, FUBP3 was found to recruit the E3 ubiquitin ligase MARCH8/MARCHF8, which was then identified, transported to, and degraded in autolysosomes via NDP52/CALCOCO2 (cargo receptors), resulting in impaired viral proliferation. Additionally, FUBP3 was found to positively regulate type-I interferon (IFN-I) signaling and activate the IFN-I signaling pathway by interacting and increasing the expression of tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3). Collectively, this study showed a novel mechanism of FUBP3-mediated virus restriction, where FUBP3 was found to degrade the viral N protein and induce IFN-I production, aiming to hinder the replication of PEDV. IMPORTANCE PEDV refers to the alphacoronavirus that is found globally and has re-emerged recently, causing severe financial losses. In PEDV infection, the host activates various host restriction factors to maintain innate antiviral responses to suppress virus replication. Here, FUBP3 was detected as a new host restriction factor. FUBP3 was found to suppress PEDV replication via the degradation of the PEDV-encoded nucleocapsid (N) protein via E3 ubiquitin ligase MARCH8 as well as the cargo receptor NDP52/CALCOCO2. Additionally, FUBP3 upregulated the IFN-I signaling pathway by interacting with and increasing tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3) expression. This study further demonstrated that another layer of complexity could be added to the selective autophagy and innate immune response against PEDV infection are complicated.


Assuntos
Infecções por Coronavirus , Interferon Tipo I , Proteínas do Nucleocapsídeo , Vírus da Diarreia Epidêmica Suína , Fatores de Transcrição , Animais , Antivirais , Linhagem Celular , Chlorocebus aethiops , Infecções por Coronavirus/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Fator 3 Associado a Receptor de TNF , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases , Células Vero
18.
Viruses ; 14(3)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35337013

RESUMO

Retroviruses package two copies of their genomic RNA (gRNA) as non-covalently linked dimers. Many studies suggest that the retroviral nucleocapsid protein (NC) plays an important role in gRNA dimerization. The upper part of the L3 RNA stem-loop in the 5' leader of the avian leukosis virus (ALV) is converted to the extended dimer by ALV NC. The L3 hairpin contains three stems and two internal loops. To investigate the roles of internal loops and stems in the NC-mediated extended dimer formation, we performed site-directed mutagenesis, gel electrophoresis, and analysis of thermostability of dimeric RNAs. We showed that the internal loops are necessary for efficient extended dimer formation. Destabilization of the lower stem of L3 is necessary for RNA dimerization, although it is not involved in the linkage structure of the extended dimer. We found that NCs from ALV, human immunodeficiency virus type 1 (HIV-1), and Moloney murine leukemia virus (M-MuLV) cannot promote the formation of the extended dimer when the apical stem contains ten consecutive base pairs. Five base pairs correspond to the maximum length for efficient L3 dimerization induced by the three NCs. L3 dimerization was less efficient with M-MuLV NC than with ALV NC and HIV-1 NC.


Assuntos
Vírus da Leucose Aviária , HIV-1 , Animais , Vírus da Leucose Aviária/genética , Sequência de Bases , Dimerização , HIV-1/genética , Humanos , Camundongos , Vírus da Leucemia Murina de Moloney , Conformação de Ácido Nucleico , Nucleocapsídeo/genética , Nucleocapsídeo/metabolismo , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , RNA Guia de Cinetoplastídeos , RNA Viral/metabolismo
19.
Viruses ; 14(2)2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35215848

RESUMO

Coronavirus disease 2019 (COVID-19), the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is characterized by symptoms such as fever, fatigue, a sore throat, diarrhea, and coughing. Although various new vaccines against COVID-19 have been developed, early diagnostics, isolation, and prevention remain important due to virus mutations resulting in rapid and high disease transmission. Amino acid substitutions in the major diagnostic target antigens of SARS-CoV-2 may lower the sensitivity for the detection of SARS-CoV-2. For this reason, we developed specific monoclonal antibodies that bind to epitope peptides as antigens for the rapid detection of SARS-CoV-2 NP. The binding affinity between antigenic peptides and monoclonal antibodies was investigated, and a sandwich pair for capture and detection was employed to develop a rapid biosensor for SARS-CoV-2 NP. The rapid biosensor, based on a monoclonal antibody pair binding to conserved epitopes of SARS-CoV-2 NP, detected cultured virus samples of SARS-CoV-2 (1.4 × 103 TCID50/reaction) and recombinant NP (1 ng/mL). Laboratory confirmation of the rapid biosensor was performed with clinical specimens (n = 16) from COVID-19 patients and other pathogens. The rapid biosensor consisting of a monoclonal antibody pair (75E12 for capture and the 54G6/54G10 combination for detection) binding to conserved epitopes of SARS-CoV-2 NP could assist in the detection of SARS-CoV-2 NP under the circumstance of spreading SARS-CoV-2 variants.


Assuntos
Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/metabolismo , Técnicas Biossensoriais/métodos , Epitopos/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , SARS-CoV-2/imunologia , Proteínas Virais/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Epitopos/genética , Epitopos/imunologia , Humanos , Imunoensaio , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/imunologia , Peptídeos/imunologia , Peptídeos/metabolismo , Ligação Proteica , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas Virais/imunologia
20.
Sci Rep ; 11(1): 22977, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836987

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging bunyavirus that causes novel zoonotic diseases in Asian countries including China, Japan, South Korea, and Vietnam. In phleboviruses, viral proteins play a critical role in viral particle formation inside the host cells. Viral glycoproteins (GPs) and RNA-dependent RNA polymerase (RdRp) are colocalized in the Golgi apparatus and endoplasmic reticulum-Golgi intermediate compartment (ERGIC). The nucleocapsid (N) protein was widely expressed in the cytoplasm, even in cells coexpressing GP. However, the role of SFTSV N protein remains unclear. The subcellular localization of SFTSV structural proteins was investigated using a confocal microscope. Subsequently, minigenome and immunoprecipitation assays were carried out. The N protein interacts with viral RNA (vRNA) and further shows translational activity with RdRp which is L protein and localized in the ERGIC and Golgi apparatus when co-expressed with GP. On the other hand, mutant N protein did not interact with vRNA either localized in the ERGIC or Golgi apparatus. The interaction between the N protein of SFTSV and vRNA is important for the localization of viral proteins and viral assembly. This study provides useful insights into the life cycle of SFTSV, which will lead to the detection of antiviral targets.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Ribonucleoproteínas/metabolismo , Febre Grave com Síndrome de Trombocitopenia/metabolismo , Proteínas do Envelope Viral/metabolismo , Animais , Chlorocebus aethiops , Células HEK293 , Humanos , Proteínas do Nucleocapsídeo/genética , RNA Polimerase Dependente de RNA/genética , Ribonucleoproteínas/genética , Células Vero , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA