Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.700
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 530, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704457

RESUMO

Cell stiffness is regulated by dynamic interaction between ras-related C3 botulinum toxin substrate 1 (Rac1) and p21 protein-activated kinase 1 (PAK1) proteins, besides other biochemical and molecular regulators. In this study, we investigated how the Placental Growth Factor (PlGF) changes endometrial mechanics by modifying the actin cytoskeleton at the maternal interface. We explored the global effects of PlGF in endometrial stromal cells (EnSCs) using the concerted approach of proteomics, atomic force microscopy (AFM), and electrical impedance spectroscopy (EIS). Proteomic analysis shows PlGF upregulated RhoGTPases activating proteins and extracellular matrix organization-associated proteins in EnSCs. Rac1 and PAK1 transcript levels, activity, and actin polymerization were significantly increased with PlGF treatment. AFM further revealed an increase in cell stiffness with PlGF treatment. The additive effect of PlGF on actin polymerization was suppressed with siRNA-mediated inhibition of Rac1, PAK1, and WAVE2. Interestingly, the increase in cell stiffness by PlGF treatment was pharmacologically reversed with pravastatin, resulting in improved trophoblast cell invasion. Taken together, aberrant PlGF levels in the endometrium can contribute to an altered pre-pregnancy maternal microenvironment and offer a unifying explanation for the pathological changes observed in conditions such as pre-eclampsia (PE).


Assuntos
Endométrio , Fator de Crescimento Placentário , Pré-Eclâmpsia , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP , Feminino , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Humanos , Pré-Eclâmpsia/metabolismo , Gravidez , Endométrio/metabolismo , Endométrio/patologia , Fator de Crescimento Placentário/metabolismo , Fator de Crescimento Placentário/genética , Células Estromais/metabolismo , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Microscopia de Força Atômica
2.
Physiol Res ; 73(2): 305-314, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38710054

RESUMO

Netrin-1 (NTN-1) plays a vital role in the progress of nervous system development and inflammatory diseases. However, the role and underlying mechanism of NTN-1 in inflammatory pain (IP) are unclear. BV2 microglia were treated with LPS to mimic the cell status under IP. Adeno-associated virus carrying the NTN-1 gene (AAV-NTN-1) was used to overexpress NTN-1. Complete Freund's Adjuvant (CFA)-induced mouse was recruited as an in vivo model. MTT and commercial kits were utilized to evaluate cell viability and cell death of BV2 cells. The mRNA expressions and secretions of cytokines were measured using the ELISA method. Also, the pyroptosis and activation of BV2 cells were investigated based on western blotting. To verify the role of Rac1/NF-kappaB signaling, isochamaejasmin (ISO) and AAV-Rac1 were presented. The results showed that NTN-1 expression was decreased in LPS-treated BV2 microglia and spinal cord tissues of CFA-injected mice. Overexpressing NTN-1 dramatically reversed cell viability and decreased cell death rate of BV2 microglia under lipopolysaccharide (LPS) stimulation, while the level of pyroptosis was inhibited. Besides, AAV-NTN-1 rescued the activation of microglia and inflammatory injury induced by LPS, decreasing IBA-1 expression, as well as iNOS, IL-1beta and IL-6 secretions. Meanwhile AAV-NTN-1 promoted the anti-inflammation response, including increases in Arg-1, IL-4 and IL-10 levels. In addition, the LPS-induced activation of Rac1/NF-kappaB signaling was depressed by NTN-1 overexpression. The same results were verified in a CFA-induced mouse model. In conclusion, NTN-1 alleviated IP by suppressing pyroptosis and promoting M2 type activation of microglia via inhibiting Rac1/NF-?B signaling, suggesting the protective role of NTN-1 in IP. Keywords: Netrin-1, Inflammatory pain, Pyroptosis, Microglia M2 activation, Rac1/NF-kappaB.


Assuntos
Inflamação , Microglia , NF-kappa B , Netrina-1 , Neuropeptídeos , Piroptose , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP , Animais , Piroptose/fisiologia , Piroptose/efeitos dos fármacos , Microglia/metabolismo , Camundongos , Netrina-1/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , NF-kappa B/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Dor/metabolismo , Linhagem Celular , Lipopolissacarídeos
3.
Commun Biol ; 7(1): 602, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762624

RESUMO

The role of endothelial cells in promoting cancer cell extravasation to the brain during the interaction of cancer cells with the vasculature is not well characterised. We show that brain endothelial cells activate EGFR signalling in triple-negative breast cancer cells with propensity to metastasise to the brain. This activation is dependent on soluble factors secreted by brain endothelial cells, and occurs via the RAC1 GEF DOCK4, which is required for breast cancer cell extravasation to the brain in vivo. Knockdown of DOCK4 inhibits breast cancer cell entrance to the brain without affecting cancer cell survival or growth. Defective extravasation is associated with loss of elongated morphology preceding intercalation into brain endothelium. We also show that brain endothelial cells promote paracrine stimulation of mesenchymal-like morphology of breast cancer cells via DOCK4, DOCK9, RAC1 and CDC42. This stimulation is accompanied by EGFR activation necessary for brain metastatic breast cancer cell elongation which can be reversed by the EGFR inhibitor Afatinib. Our findings suggest that brain endothelial cells promote metastasis through activation of cell signalling that renders breast cancer cells competent for extravasation. This represents a paradigm of brain endothelial cells influencing the signalling and metastatic competency of breast cancer cells.


Assuntos
Neoplasias Encefálicas , Encéfalo , Células Endoteliais , Receptores ErbB , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP , Receptores ErbB/metabolismo , Receptores ErbB/genética , Humanos , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Feminino , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Linhagem Celular Tumoral , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Camundongos , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética
4.
Cancer Lett ; 591: 216901, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38641311

RESUMO

Diffuse-type gastric cancer (DGC) is a subtype of gastric cancer that is prone to peritoneal dissemination, with poor patient prognosis. Although intercellular adhesion loss between cancer cells is a major characteristic of DGCs, the mechanism underlying the alteration in cell-to-extracellular matrix (ECM) adhesion is unclear. We investigated how DGCs progress and cause peritoneal dissemination through interactions between DGC cells and the tumour microenvironment (TME). P53 knockout and KRASG12V-expressing (GAN-KP) cells and Cdh1-deleted GAN-KP (GAN-KPC) cells were orthotopically transplanted into the gastric wall to mimic peritoneal dissemination. The GAN-KPC tumour morphology was similar to that of human DGCs containing abundant stroma. RNA sequencing revealed that pathways related to Rho GTPases and integrin-ECM interactions were specifically increased in GAN-KPC cells compared with GAN-KP cells. Notably, we found that Rac Family Small GTPase 1 (RAC1) induces Integrin Subunit Alpha 6 (ITGA6) trafficking, leading to its enrichment on the GC cell membrane. Fibroblasts activate the FAK/AKT pathway in GC cells by mediating extracellular matrix (ECM)-Itga6 interactions, exacerbating the malignant phenotype. In turn, GC cells induce abnormal expression of fibroblast collagen and its transformation into cancer-associated fibroblasts (CAFs), resulting in DGC-like subtypes. These findings indicate that Cdh1 gene loss leads to abnormal expression and changes in the subcellular localization of ITGA6 through RAC1 signalling. The latter, through interactions with CAFs, allows for peritoneal dissemination.


Assuntos
Caderinas , Neoplasias Peritoneais , Neoplasias Gástricas , Microambiente Tumoral , Proteínas rac1 de Ligação ao GTP , Humanos , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Caderinas/metabolismo , Caderinas/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Linhagem Celular Tumoral , Neoplasias Peritoneais/secundário , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/metabolismo , Neoplasias Peritoneais/patologia , Animais , Antígenos CD/metabolismo , Antígenos CD/genética , Camundongos , Transdução de Sinais , Células Estromais/metabolismo , Células Estromais/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Adesão Celular , Regulação Neoplásica da Expressão Gênica
5.
Pharmacol Res ; 203: 107165, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561112

RESUMO

The clinical use of the DNA damaging anticancer drug doxorubicin (DOX) is limited by irreversible cardiotoxicity, which depends on the cumulative dose. The RAS-homologous (RHO) small GTPase RAC1 contributes to DOX-induced DNA damage formation and cardiotoxicity. However, the pathophysiological relevance of other RHO GTPases than RAC1 and different cardiac cell types (i.e., cardiomyocytes, non-cardiomyocytes) for DOX-triggered cardiac damage is unclear. Employing diverse in vitro and in vivo models, we comparatively investigated the level of DOX-induced DNA damage in cardiomyocytes versus non-cardiomyocytes (endothelial cells and fibroblasts), in the presence or absence of selected RHO GTPase inhibitors. Non-cardiomyocytes exhibited the highest number of DOX-induced DNA double-strand breaks (DSB), which were efficiently repaired in vitro. By contrast, rather low levels of DSB were formed in cardiomyocytes, which however remained largely unrepaired. Moreover, DOX-induced apoptosis was detected only in non-cardiomyocytes but not in cardiomyocytes. Pharmacological inhibitors of RAC1 and CDC42 most efficiently attenuated DOX-induced DNA damage in all cell types examined in vitro. Consistently, immunohistochemical analyses revealed that the RAC1 inhibitor NSC23766 and the pan-RHO GTPase inhibitor lovastatin reduced the level of DOX-induced residual DNA damage in both cardiomyocytes and non-cardiomyocytes in vivo. Overall, we conclude that endothelial cells, fibroblasts and cardiomyocytes contribute to the pathophysiology of DOX-induced cardiotoxicity, with RAC1- and CDC42-regulated signaling pathways being especially relevant for DOX-stimulated DSB formation and DNA damage response (DDR) activation. Hence, we suggest dual targeting of RAC1/CDC42-dependent mechanisms in multiple cardiac cell types to mitigate DNA damage-dependent cardiac injury evoked by DOX-based anticancer therapy.


Assuntos
Aminoquinolinas , Doxorrubicina , Células Endoteliais , Fibroblastos , Miócitos Cardíacos , Pirimidinas , Proteína cdc42 de Ligação ao GTP , Proteínas rac1 de Ligação ao GTP , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/genética , Animais , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Doxorrubicina/toxicidade , Doxorrubicina/efeitos adversos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Células Endoteliais/metabolismo , Cardiotoxicidade , Antibióticos Antineoplásicos/toxicidade , Camundongos , Apoptose/efeitos dos fármacos , Masculino , Humanos , Camundongos Endogâmicos C57BL , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Neuropeptídeos/metabolismo , Dano ao DNA/efeitos dos fármacos , Células Cultivadas
6.
EBioMedicine ; 103: 105093, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569318

RESUMO

BACKGROUND: Human restricted genes contribute to human specific traits in the immune system. CHRFAM7A, a uniquely human fusion gene, is a negative regulator of the α7 nicotinic acetylcholine receptor (α7 nAChR), the highest Ca2+ conductor of the ACh receptors implicated in innate immunity. Understanding the mechanism of how CHRFAM7A affects the immune system remains unexplored. METHODS: Two model systems are used, human induced pluripotent stem cells (iPSC) and human primary monocytes, to characterize α7 nAChR function, Ca2+ dynamics and decoders to elucidate the pathway from receptor to phenotype. FINDINGS: CHRFAM7A/α7 nAChR is identified as a hypomorphic receptor with mitigated Ca2+ influx and prolonged channel closed state. This shifts the Ca2+ reservoir from the extracellular space to the endoplasmic reticulum (ER) leading to Ca2+ dynamic changes. Ca2+ decoder small GTPase Rac1 is then activated, reorganizing the actin cytoskeleton. Observed actin mediated phenotypes include cellular adhesion, motility, phagocytosis and tissue mechanosensation. INTERPRETATION: CHRFAM7A introduces an additional, human specific, layer to Ca2+ regulation leading to an innate immune gain of function. Through the actin cytoskeleton it drives adaptation to the mechanical properties of the tissue environment leading to an ability to invade previously immune restricted niches. Human genetic diversity predicts profound translational significance as its understanding builds the foundation for successful treatments for infectious diseases, sepsis, and cancer metastasis. FUNDING: This work is supported in part by the Community Foundation for Greater Buffalo (Kinga Szigeti) and in part by NIH grant R01HL163168 (Yongho Bae).


Assuntos
Citoesqueleto de Actina , Sinalização do Cálcio , Células-Tronco Pluripotentes Induzidas , Receptor Nicotínico de Acetilcolina alfa7 , Humanos , Citoesqueleto de Actina/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Cálcio/metabolismo , Monócitos/metabolismo , Imunidade Inata , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Fagocitose
7.
J Cell Biol ; 223(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38551497

RESUMO

Phenotypic heterogeneity poses a significant hurdle for cancer treatment but is under-characterized in the context of tumor invasion. Amidst the range of phenotypic heterogeneity across solid tumor types, collectively invading cells and single cells have been extensively characterized as independent modes of invasion, but their intercellular interactions have rarely been explored. Here, we isolated collectively invading cells and single cells from the heterogeneous 4T1 cell line and observed extensive transcriptional and epigenetic diversity across these subpopulations. By integrating these datasets, we identified laminin-332 as a protein complex exclusively secreted by collectively invading cells. Live-cell imaging revealed that laminin-332 derived from collectively invading cells increased the velocity and directionality of single cells. Despite collectively invading and single cells having similar expression of the integrin α6ß4 dimer, single cells demonstrated higher Rac1 activation upon laminin-332 binding to integrin α6ß4. This mechanism suggests a novel commensal relationship between collectively invading and single cells, wherein collectively invading cells promote the invasive potential of single cells through a laminin-332/Rac1 axis.


Assuntos
Laminina , Proteínas rac1 de Ligação ao GTP , Humanos , Movimento Celular , Integrina alfa6beta4/genética , Calinina , Laminina/genética , Laminina/metabolismo , Neoplasias/genética , Simbiose , Animais , Camundongos , Linhagem Celular Tumoral , Proteínas rac1 de Ligação ao GTP/metabolismo
8.
Hum Cell ; 37(3): 689-703, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38551774

RESUMO

Polycystic ovary syndrome (PCOS) is a complex gynaecological endocrine disease that occurs in women of childbearing age. The pathogenesis of PCOS is still unclear and further exploration is needed. Here, proteomic analysis indicated that the expression of farnesyl diphosphate synthase (FDPS) protein in ovarian tissue of PCOS mice was significantly decreased. The purpose of this study is to investigate the relationship between potential biomarkers of PCOS and granulosa cells (GCs) function. The mechanisms by which FDPS affected the proliferation of granulosa cells were also explored both in vitro and in vivo. We found that knockdown of FDPS inhibited the proliferation of KGN (human ovarian granulosa cell line), while overexpression of FDPS had the opposite effect. FDPS activated Rac1 (Rac Family Small GTPase 1) activity and regulated MAPK/ERK signalling pathway, which affecting the proliferation of KGN cells significantly. In addition, treatment with the adeno-associated virus (AAV)-FDPS reverses the dehydroepiandrosterone (DHEA)-induced PCOS-phenotype in mice. Our data indicated that FDPS could regulate the proliferation of ovarian GCs by modulating MAPK/ERK (mitogen-activated protein kinase/extracellular regulated protein kinases) pathway via activating Rac1 activity. These findings suggest that FDPS could be of great value for the regulation of ovarian granulosa cell function and the treatment of PCOS.


Assuntos
MicroRNAs , Síndrome do Ovário Policístico , Humanos , Feminino , Camundongos , Animais , Síndrome do Ovário Policístico/genética , Geraniltranstransferase/metabolismo , Proteômica , Células da Granulosa/metabolismo , Proliferação de Células , MicroRNAs/metabolismo , Apoptose , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
9.
J Exp Clin Cancer Res ; 43(1): 65, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424547

RESUMO

BACKGROUND: Cingulin (CGN) is a pivotal cytoskeletal adaptor protein located at tight junctions. This study investigates the link between CGN mutation and increased cancer susceptibility through genetic and mechanistic analyses and proposes a potential targeted therapeutic approach. METHODS: In a high-cancer-density family without known pathogenic variants, we performed tumor-targeted and germline whole-genome sequencing to identify novel cancer-associated variants. Subsequently, these variants were validated in a 222 cancer patient cohort, and CGN c.3560C > T was identified as a potential cancer-risk allele. Both wild-type (WT) (c.3560C > C) and variant (c.3560C > T) were transfected into cancer cell lines and incorporated into orthotopic xenograft mice model for evaluating their effects on cancer progression. Western blot, immunofluorescence analysis, migration and invasion assays, two-dimensional gel electrophoresis with mass spectrometry, immunoprecipitation assays, and siRNA applications were used to explore the biological consequence of CGN c.3560C > T. RESULTS: In cancer cell lines and orthotopic animal models, CGN c.3560C > T enhanced tumor progression with reduced sensitivity to oxaliplatin compared to the CGN WT. The variant induced downregulation of epithelial marker, upregulation of mesenchymal marker and transcription factor, which converged to initiate epithelial-mesenchymal transition (EMT). Proteomic analysis was conducted to investigate the elements driving EMT in CGN c.3560C > T. This exploration unveiled overexpression of IQGAP1 induced by the variant, contrasting the levels observed in CGN WT. Immunoprecipitation assay confirmed a direct interaction between CGN and IQGAP1. IQGAP1 functions as a regulator of multiple GTPases, particularly the Rho family. This overexpressed IQGAP1 was consistently associated with the activation of Rac1, as evidenced by the analysis of the cancer cell line and clinical sample harboring CGN c.3560C > T. Notably, activated Rac1 was suppressed following the downregulation of IQGAP1 by siRNA. Treatment with NSC23766, a selective inhibitor for Rac1-GEF interaction, resulted in the inactivation of Rac1. This intervention mitigated the EMT program in cancer cells carrying CGN c.3560C > T. Consistently, xenograft tumors with WT CGN showed no sensitivity to NSC23766 treatment, but NSC23766 demonstrated the capacity to attenuate tumor growth harboring c.3560C > T. CONCLUSIONS: CGN c.3560C > T leads to IQGAP1 overexpression, subsequently triggering Rac1-dependent EMT. Targeting activated Rac1 is a strategy to impede the advancement of cancers carrying this specific variant.


Assuntos
Neoplasias , Proteínas de Junções Íntimas , Animais , Humanos , Camundongos , Movimento Celular , Proteínas do Citoesqueleto/metabolismo , Transição Epitelial-Mesenquimal/genética , Neoplasias/genética , Proteômica , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , RNA Interferente Pequeno/farmacologia , Proteínas de Junções Íntimas/metabolismo
10.
Cell Death Dis ; 15(2): 155, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378644

RESUMO

Mitochondrial transfer plays an important role in various diseases, and many mitochondrial biological functions can be regulated by HMGB1. To explore the role of mitochondrial transfer in hepatocellular carcinoma (HCC) and its relationship with HMGB1, field emission scanning electron microscopy, immunofluorescence, and flow cytometry were used to detect the mitochondrial transfer between HCC cells. We found that mitochondrial transfer between HCC cells was confirmed using tunnel nanotubes (TNTs). The transfer of mitochondria from the highly invasive HCC cells to the less invasive HCC cells could enhance the migration and invasion ability of the latter. The hypoxic conditions increased the mitochondrial transfer between HCC cells. Then the mechanism was identified using co-immunoprecipitation, luciferase reporter assay, and chromatin immunoprecipitation. We found that RHOT1, a mitochondrial transport protein, promoted mitochondrial transfer and the migration and metastasis of HCC cells during this process. Under hypoxia, HMGB1 further regulated RHOT1 expression by increasing the expression of NFYA and NFYC subunits of the NF-Y complex. RAC1, a protein associated with TNTs formation, promoted mitochondrial transfer and HCC development. Besides, HMGB1 regulated RAC1 aggregation to the cell membrane under hypoxia. Finally, the changes and significance of related molecules in clinical samples of HCC were analyzed using bioinformatics and tissue microarray analyses. We found that HCC patients with high HMGB1, RHOT1, or RAC1 expression exhibited a relatively shorter overall survival period. In conclusion, under hypoxic conditions, HMGB1 promoted mitochondrial transfer and migration and invasion of HCC cells by increasing the expression of mitochondrial transport protein RHOT1 and TNTs formation-related protein RAC1.


Assuntos
Carcinoma Hepatocelular , Proteína HMGB1 , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Hipóxia/genética , Neoplasias Hepáticas/patologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
11.
Nat Struct Mol Biol ; 31(2): 364-377, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38332367

RESUMO

Ubiquitin ligases (E3s) are pivotal specificity determinants in the ubiquitin system by selecting substrates and decorating them with distinct ubiquitin signals. However, structure determination of the underlying, specific E3-substrate complexes has proven challenging owing to their transient nature. In particular, it is incompletely understood how members of the catalytic cysteine-driven class of HECT-type ligases (HECTs) position substrate proteins for modification. Here, we report a cryogenic electron microscopy (cryo-EM) structure of the full-length human HECT HACE1, along with solution-based conformational analyses by small-angle X-ray scattering and hydrogen-deuterium exchange mass spectrometry. Structure-based functional analyses in vitro and in cells reveal that the activity of HACE1 is stringently regulated by dimerization-induced autoinhibition. The inhibition occurs at the first step of the catalytic cycle and is thus substrate-independent. We use mechanism-based chemical crosslinking to reconstitute a complex of activated, monomeric HACE1 with its major substrate, RAC1, determine its structure by cryo-EM and validate the binding mode by solution-based analyses. Our findings explain how HACE1 achieves selectivity in ubiquitinating the active, GTP-loaded state of RAC1 and establish a framework for interpreting mutational alterations of the HACE1-RAC1 interplay in disease. More broadly, this work illuminates central unexplored aspects in the architecture, conformational dynamics, regulation and specificity of full-length HECTs.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Humanos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
12.
Life Sci ; 342: 122510, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387701

RESUMO

Rac1 is a member of the Rho GTPase family which plays major roles in cell mobility, polarity and migration, as a fundamental regulator of actin cytoskeleton. Signal transduction by Rac1 occurs through interaction with multiple effector proteins, and its activity is regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). The small protein is mainly anchored to the inner side of the plasma membrane but it can be found in endocellular compartments, notably endosomes and cell nuclei. The protein localizes also into mitochondria where it contributes to the regulation of mitochondrial dynamics, including both mitobiogenesis and mitophagy, in addition to signaling processes via different protein partners, such as the proapoptotic protein Bcl-2 and chaperone sigma-1 receptor (σ-1R). The mitochondrial form of Rac1 (mtRac1) has been understudied thus far, but it is as essential as the nuclear or plasma membrane forms, via its implication in regulation of oxidative stress and DNA damages. Rac1 is subject to diverse post-translational modifications, notably to a geranylgeranylation which contributes importantly to its mitochondrial import and its anchorage to mitochondrial membranes. In addition, Rac1 contributes to the mitochondrial translocation of other proteins, such as p53. The mitochondrial localization and functions of Rac1 are discussed here, notably in the context of human diseases such as cancers. Inhibitors of Rac1 have been identified (NSC-23766, EHT-1864) and some are being developed for the treatment of cancer (MBQ-167) or central nervous system diseases (JK-50561). Their effects on mtRac1 warrant further investigations. An overview of mtRac1 is provided here.


Assuntos
Transdução de Sinais , Proteínas rac1 de Ligação ao GTP , Humanos , Proteínas rac1 de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Mitocôndrias/metabolismo
13.
Sci Rep ; 14(1): 1218, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216638

RESUMO

Vascular permeability is mediated by Cortactin (Cttn) and regulated by several molecules including cyclic-adenosine-monophosphate, small Rho family GTPases and the actin cytoskeleton. However, it is unclear whether Cttn directly interacts with any of the junctional components or if Cttn intervenes with signaling pathways affecting the intercellular contacts and the cytoskeleton. To address these questions, we employed immortalized microvascular myocardial endothelial cells derived from wild-type and Cttn-knock-out mice. We found that lack of Cttn compromised barrier integrity due to fragmented membrane distribution of different junctional proteins. Moreover, immunoprecipitations revealed that Cttn is within the VE-cadherin-based adherens junction complex. In addition, lack of Cttn slowed-down barrier recovery after Ca2+ repletion. The role of Cttn for cAMP-mediated endothelial barrier regulation was analyzed using Forskolin/Rolipram. In contrast to Cttn-KO, WT cells reacted with increased transendothelial electrical resistance. Absence of Cttn disturbed Rap1 and Rac1 activation in Cttn-depleted cells. Surprisingly, despite the absence of Cttn, direct activation of Rac1/Cdc42/RhoA by CN04 increased barrier resistance and induced well-defined cortical actin and intracellular actin bundles. In summary, our data show that Cttn is required for basal barrier integrity by allowing proper membrane distribution of junctional proteins and for cAMP-mediated activation of the Rap1/Rac1 signaling pathway.


Assuntos
Junções Aderentes , Antígenos CD , Células Endoteliais , Camundongos , Animais , Junções Aderentes/metabolismo , Células Endoteliais/metabolismo , Actinas/metabolismo , Cortactina/genética , Cortactina/metabolismo , Caderinas/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
14.
Cell Signal ; 114: 110972, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37984604

RESUMO

BACKGROUND: Spinal astrocyte-mediated neuroinflammation is an important mechanism for the maintenance of chronic inflammatory pain. Previous studies have investigated that Ras-related C3 botulinum toxin substrate 1 (Rac1) is closely related to astrocyte activation after central nervous system injury. However, the role of Rac1 in astrocyte activation in chronic inflammatory pain has not been reported. METHODS: Complete Freund's adjuvant (CFA)-induced chronic inflammatory pain model and LPS-stimulated astrocytes were used to investigate the role of Rac1 in astrocyte activation and the underlying mechanism. Rac1-interfering adeno-associated virus (AAV) targeting astrocytes was delivered to spinal astrocytes by intrathecal administration and a Rac1 specific inhibitor, NSC23766, was used to block cultured astrocytes. The glial fibrillary acidic protein (GFAP), proinflammatory cytokines, p-NF-κB, and nod-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome were detected by RT-qPCR, Western blotting, and immunofluorescence to investigate the activation of astrocytes. RESULTS: CFA induced spinal astrocyte activation and increased the expression of active Rac1 in spinal astrocytes. Knockdown of astrocyte Rac1 alleviated chronic inflammatory pain and inhibited astrocyte activation. Inhibition of Rac1 activation in cultured astrocytes decreased the expression of GFAP and proinflammatory cytokines. Knockdown of Rac1 inhibited the increase of expression of NLRP3 inflammasome and phosphorylation of NF-κB in the spinal lumbar enlargement after CFA injection. Similarly, the inhibition of Rac1 suppressed the increase of NLRP3 inflammasome and p-NF-κB protein level after LPS stimulation. CONCLUSION: Knockdown of astrocyte Rac1 attenuated CFA-induced hyperalgesia and astrocyte activation possibly by blocking the expression of NLRP3 inflammasome and phosphorylation of NF-κB.


Assuntos
Dor Crônica , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas rac1 de Ligação ao GTP , Astrócitos/metabolismo , Dor Crônica/tratamento farmacológico , Dor Crônica/metabolismo , Citocinas/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Ratos , Ratos Sprague-Dawley , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/metabolismo
15.
Mol Biol Cell ; 35(1): br1, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910204

RESUMO

Fibroblasts migrate discontinuously by generating transient leading-edge protrusions and irregular, abrupt retractions of a narrow trailing edge. In contrast, keratinocytes migrate persistently and directionally via a single, stable, broad protrusion paired with a stable trailing-edge. The Rho GTPases Rac1, Cdc42 and RhoA are key regulators of cell protrusions and retractions. However, how these molecules mediate cell-type specific migration modes is still poorly understood. In fibroblasts, all three Rho proteins are active at the leading edge, suggesting short-range coordination of protrusive Rac1 and Cdc42 signals with RhoA retraction signals. Here, we show that Cdc42 was surprisingly active in the trailing-edge of migrating keratinocytes. Elevated Cdc42 activity colocalized with the effectors MRCK and N-WASP suggesting that Cdc42 controls both myosin activation and actin polymerization in the back. Indeed, Cdc42 was required to maintain the highly dynamic contractile acto-myosin retrograde flow at the trailing edge of keratinocytes, and its depletion induced ectopic protrusions in the back, leading to decreased migration directionality. These findings suggest that Cdc42 is required to stabilize the dynamic cytoskeletal polarization in keratinocytes, to enable persistent, directional migration.


Assuntos
Movimento Celular , Queratinócitos , Proteína cdc42 de Ligação ao GTP , Proteínas rho de Ligação ao GTP , Proteína cdc42 de Ligação ao GTP/metabolismo , Fibroblastos/metabolismo , Queratinócitos/fisiologia , Miosinas/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Humanos
16.
Mol Oncol ; 18(3): 620-640, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38098337

RESUMO

The small GTPase Rac1 (Ras-related C3 botulinum toxin substrate 1) has been implicated in cancer progression and in the poor prognosis of various types of tumors. Rac1 SUMOylation occurs during epithelial-mesenchymal transition (EMT), and it is required for tumor cell migration and invasion. Here we identify POTEE (POTE Ankyrin domain family member E) as a novel Rac1-SUMO1 effector involved in breast cancer malignancy that controls invadopodium formation through the activation of Rac1-SUMO1. POTEE activates Rac1 in the invadopodium by recruiting TRIO-GEF (triple functional domain protein), and it induces tumor cell proliferation and metastasis in vitro and in vivo. We found that the co-localization of POTEE with Rac1 is correlated with more aggressive breast cancer subtypes. Given its role in tumor dissemination, the leading cause of cancer-related deaths, POTEE could represent a potential therapeutic target for these types of cancer.


Assuntos
Neoplasias da Mama , Podossomos , Humanos , Feminino , Transdução de Sinais , Podossomos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Movimento Celular , Linhagem Celular Tumoral
17.
J Transl Med ; 21(1): 876, 2023 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041179

RESUMO

BACKGROUND: Despite recent advances in locoregional, systemic, and novel checkpoint inhibitor treatment, hepatocellular carcinoma (HCC) is still associated with poor prognosis. The feasibility of potentially curative liver resection (LR) and transplantation (LT) is limited by the underlying liver disease and a shortage of organ donors. Especially after LR, high recurrence rates present a problem and circulating tumor cells are a major cause of extrahepatic recurrence. Tigecycline, a commonly used glycylcycline antibiotic, has been shown to have antitumorigenic effects and could be used as a perioperative and adjuvant therapeutic strategy to target circulating tumor cells. We aimed to investigate the effect of tigecycline on HCC cell lines and its mechanisms of action. METHODS: Huh7, HepG2, Hep3B, and immortalized hepatocytes underwent incubation with clinically relevant tigecycline concentrations, and the influence on proliferation, migration, and invasion was assessed in two- and three-dimensional in vitro assays, respectively. Bioinformatic analysis was used to identify specific targets of tigecycline. The expression of RAC1 was detected using western blot, RT-PCR and RNA sequencing. ELISA and flow cytometry were utilized to measure reactive oxygen species (ROS) generation upon tigecycline treatment and flow cytometry to detect alterations in cell cycle. Changes in mitochondrial function were detected via seahorse analysis. RNA sequencing was performed to examine involved pathways. RESULTS: Tigecycline treatment resulted in a significant reduction of mitochondrial function with concomitantly preserved mitochondrial size, which preceded the observed decrease in HCC cell viability. The sensitivity of HCC cells to tigecycline treatment was higher than that of immortalized non-cancerous THLE-2 hepatocytes. Tigecycline inhibited both migratory and invasive properties. Tigecycline application led to an increase of detected ROS and an S-phase cell cycle arrest. Bioinformatic analysis identified RAC1 as a likely target for tigecycline and the expression of this molecule was increased in HCC cells as a result of tigecycline treatment. CONCLUSION: Our study provides evidence for the antiproliferative effect of tigecycline in HCC. We show for the first time that this effect, likely to be mediated by reduced mitochondrial function, is associated with increased expression of RAC1. The reported effects of tigecycline with clinically relevant and achievable doses on HCC cells lay the groundwork for a conceivable use of this agent in cancer treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Neoplásicas Circulantes , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Tigeciclina/farmacologia , Tigeciclina/metabolismo , Tigeciclina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular , Células Neoplásicas Circulantes/metabolismo , Proliferação de Células/genética , Células Hep G2 , Mitocôndrias/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Apoptose , Regulação Neoplásica da Expressão Gênica , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/farmacologia
18.
Proc Natl Acad Sci U S A ; 120(52): e2305684120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38113258

RESUMO

Metastasis is a major cause of cancer therapy failure and mortality. However, targeting metastatic seeding and colonization remains a significant challenge. In this study, we identified NSD2, a histone methyltransferase responsible for dimethylating histone 3 at lysine 36, as being overexpressed in metastatic tumors. Our findings suggest that NSD2 overexpression enhances tumor metastasis both in vitro and in vivo. Further analysis revealed that NSD2 promotes tumor metastasis by activating Rac1 signaling. Mechanistically, NSD2 combines with and activates Tiam1 (T lymphoma invasion and metastasis 1) and promotes Rac1 signaling by methylating Tiam1 at K724. In vivo and in vitro studies revealed that Tiam1 K724 methylation could be a predictive factor for cancer prognosis and a potential target for metastasis inhibition. Furthermore, we have developed inhibitory peptide which was proved to inhibit tumor metastasis through blocking the interaction between NSD2 and Tiam1. Our results demonstrate that NSD2-methylated Tiam1 promotes Rac1 signaling and cancer metastasis. These results provide insights into the inhibition of tumor metastasis.


Assuntos
Neoplasias do Colo , Fatores de Troca do Nucleotídeo Guanina , Humanos , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Transdução de Sinais/fisiologia , Invasividade Neoplásica/patologia , Metilação , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
19.
Proc Natl Acad Sci U S A ; 120(52): e2310221120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109551

RESUMO

The 21kD GTPase Rac is an evolutionarily ancient regulator of cell shape and behavior. Rac2 is predominantly expressed in hematopoietic cells where it is essential for survival and motility. The hyperactivating mutation Rac2E62K also causes human immunodeficiency, although the mechanism remains unexplained. Here, we report that in Drosophila, hyperactivating Rac stimulates ovarian cells to cannibalize neighboring cells, destroying the tissue. We then show that hyperactive Rac2E62K stimulates human HL60-derived macrophage-like cells to engulf and kill living T cell leukemia cells. Primary mouse Rac2+/E62K bone-marrow-derived macrophages also cannibalize primary Rac2+/E62K T cells due to a combination of macrophage hyperactivity and T cell hypersensitivity to engulfment. Additionally, Rac2+/E62K macrophages non-autonomously stimulate wild-type macrophages to engulf T cells. Rac2E62K also enhances engulfment of target cancer cells by chimeric antigen receptor-expressing macrophages (CAR-M) in a CAR-dependent manner. We propose that Rac-mediated cell cannibalism may contribute to Rac2+/E62K human immunodeficiency and enhance CAR-M cancer immunotherapy.


Assuntos
Síndromes de Imunodeficiência , Neoplasias , Receptores de Antígenos Quiméricos , Animais , Camundongos , Humanos , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Canibalismo , Macrófagos/metabolismo , Síndromes de Imunodeficiência/genética , Morte Celular
20.
Elife ; 122023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37787041

RESUMO

Anti-tumor drug resistance is a challenge for human triple-negative breast cancer (TNBC) treatment. Our previous work demonstrated that TNFAIP2 activates RAC1 to promote TNBC cell proliferation and migration. However, the mechanism by which TNFAIP2 activates RAC1 is unknown. In this study, we found that TNFAIP2 interacts with IQGAP1 and Integrin ß4. Integrin ß4 activates RAC1 through TNFAIP2 and IQGAP1 and confers DNA damage-related drug resistance in TNBC. These results indicate that the Integrin ß4/TNFAIP2/IQGAP1/RAC1 axis provides potential therapeutic targets to overcome DNA damage-related drug resistance in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Integrina beta4/genética , Integrina beta4/metabolismo , Linhagem Celular Tumoral , Resistência a Medicamentos , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Citocinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA