Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 295(49): 16562-16571, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32948655

RESUMO

Phospholipase Cε (PLCε) is activated downstream of G protein-coupled receptors and receptor tyrosine kinases through direct interactions with small GTPases, including Rap1A and Ras. Although Ras has been reported to allosterically activate the lipase, it is not known whether Rap1A has the same ability or what its molecular mechanism might be. Rap1A activates PLCε in response to the stimulation of ß-adrenergic receptors, translocating the complex to the perinuclear membrane. Because the C-terminal Ras association (RA2) domain of PLCε was proposed to the primary binding site for Rap1A, we first confirmed using purified proteins that the RA2 domain is indeed essential for activation by Rap1A. However, we also showed that the PLCε pleckstrin homology (PH) domain and first two EF hands (EF1/2) are required for Rap1A activation and identified hydrophobic residues on the surface of the RA2 domain that are also necessary. Small-angle X-ray scattering showed that Rap1A binding induces and stabilizes discrete conformational states in PLCε variants that can be activated by the GTPase. These data, together with the recent structure of a catalytically active fragment of PLCε, provide the first evidence that Rap1A, and by extension Ras, allosterically activate the lipase by promoting and stabilizing interactions between the RA2 domain and the PLCε core.


Assuntos
Fosfoinositídeo Fosfolipase C/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Regulação Alostérica , GTP Fosfo-Hidrolases/metabolismo , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fosfoinositídeo Fosfolipase C/química , Fosfoinositídeo Fosfolipase C/genética , Domínios de Homologia à Plecstrina , Ligação Proteica , Domínios Proteicos , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espalhamento a Baixo Ângulo , Difração de Raios X , Proteínas rap1 de Ligação ao GTP/química , Proteínas rap1 de Ligação ao GTP/genética
2.
J Biol Chem ; 293(47): 18110-18122, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30282804

RESUMO

Multifunctional autoprocessing repeats-in-toxin (MARTX) toxins are secreted by Gram-negative bacteria and function as primary virulence-promoting macromolecules that deliver multiple cytopathic and cytotoxic effector domains into the host cytoplasm. Among these effectors, Ras/Rap1-specific endopeptidase (RRSP) catalyzes the sequence-specific cleavage of the Switch I region of the cellular substrates Ras and Rap1 that are crucial for host innate immune defenses during infection. To dissect the molecular basis underpinning RRSP-mediated substrate inactivation, we determined the crystal structure of an RRSP from the sepsis-causing bacterial pathogen Vibrio vulnificus (VvRRSP). Structural and biochemical analyses revealed that VvRRSP is a metal-independent TIKI family endopeptidase composed of an N-terminal membrane-localization and substrate-recruitment domain (N lobe) connected via an inter-lobe linker to the C-terminal active site-coordinating core ß-sheet-containing domain (C lobe). Structure-based mutagenesis identified the 2His/2Glu catalytic residues in the core catalytic domain that are shared with other TIKI family enzymes and that are essential for Ras processing. In vitro KRas cleavage assays disclosed that deleting the N lobe in VvRRSP causes complete loss of enzymatic activity. Endogenous Ras cleavage assays combined with confocal microscopy analysis of HEK293T cells indicated that the N lobe functions both in membrane localization via the first α-helix and in substrate assimilation by altering the functional conformation of the C lobe to facilitate recruitment of cellular substrates. Collectively, these results indicate that RRSP is a critical virulence factor that robustly inactivates Ras and Rap1 and augments the pathogenicity of invading bacteria via the combined effects of its N and C lobes.


Assuntos
Proteínas de Bactérias/metabolismo , Endopeptidases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sepse/enzimologia , Sepse/microbiologia , Vibrio vulnificus/enzimologia , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Toxinas Bacterianas , Endopeptidases/química , Endopeptidases/genética , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Domínios Proteicos , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Sepse/genética , Vibrio vulnificus/química , Vibrio vulnificus/genética , Proteínas rap1 de Ligação ao GTP/química , Proteínas rap1 de Ligação ao GTP/genética
3.
Int J Mol Sci ; 19(10)2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241315

RESUMO

This review addresses the issue of the numerous roles played by Rap1 GTPase (guanosine triphosphatase) in different cell types, in terms of both physiology and pathology. It is one among a myriad of small G proteins with endogenous GTP-hydrolyzing activity that is considerably stimulated by posttranslational modifications (geranylgeranylation) or guanine nucleotide exchange factors (GEFs), and inhibited by GTPase-activating proteins (GAPs). Rap1 is a ubiquitous protein that plays an essential role in the control of metabolic processes, such as signal transduction from plasma membrane receptors, cytoskeleton rearrangements necessary for cell division, intracellular and substratum adhesion, as well as cell motility, which is needed for extravasation or fusion. We present several examples of how Rap1 affects cells and organs, pointing to possible molecular manipulations that could have application in the therapy of several diseases.


Assuntos
Proteínas rap1 de Ligação ao GTP/fisiologia , Imunidade Adaptativa , Diferenciação Celular , Transformação Celular Neoplásica , Modelos Moleculares , Prenilação , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Proteínas rap1 de Ligação ao GTP/química , Proteínas rap1 de Ligação ao GTP/metabolismo
4.
Sci Rep ; 8(1): 12976, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154518

RESUMO

The effects of phosphorylation of a serine residue on the structural and dynamic properties of Ras-like protein, Rap, and its interactions with effector protein Ras binding domain (RBD) of Raf kinase, in the presence of GTP, are investigated via molecular dynamics simulations. The simulations show that phosphorylation significantly effects the dynamics of functional loops of Rap which participate in the stability of the complex with effector proteins. The effects of phosphorylation on Rap are significant and detailed conformational analysis suggest that the Rap protein, when phosphorylated and with GTP ligand, samples different conformational space as compared to non-phosphorylated protein. In addition, phosphorylation of SER11 opens up a new cavity in the Rap protein which can be further explored for possible drug interactions. Residue network analysis shows that the phosphorylation of Rap results in a community spanning both Rap and RBD and strongly suggests transmission of allosteric effects of local alterations in Rap to distal regions of RBD, potentially affecting the downstream signalling. Binding free energy calculations suggest that phosphorylation of SER11 residue increases the binding between Rap and Raf corroborating the network analysis results. The increased binding of the Rap-Raf complex can have cascading effects along the signalling pathways where availability of Raf can influence the oncogenic effects of Ras proteins. These simulations underscore the importance of post translational modifications like phosphorylation on the functional dynamics in proteins and can be an alternative to drug-targeting, especially in notoriously undruggable oncoproteins belonging to Ras-like GTPase family.


Assuntos
Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas c-raf/química , Proteínas rap1 de Ligação ao GTP/química , Regulação Alostérica , Humanos , Fosforilação , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo
5.
Nat Commun ; 6: 7396, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-26051945

RESUMO

Ras (Rat sarcoma) protein is a central regulator of cell growth and proliferation. Mutations in the RAS gene are known to occur in human cancers and have been shown to contribute to carcinogenesis. In this study, we show that the multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin-effector domain DUF5(Vv) from Vibrio vulnificus to be a site-specific endopeptidase that cleaves within the Switch 1 region of Ras and Rap1. DUF5(Vv) processing of Ras, which occurs both biochemically and in mammalian cell culture, inactivates ERK1/2, thereby inhibiting cell proliferation. The ability to cleave Ras and Rap1 is shared by DUF5(Vv) homologues found in other bacteria. In addition, DUF5(Vv )can cleave all Ras isoforms and KRas with mutations commonly implicated in malignancies. Therefore, we speculate that this new family of Ras/Rap1-specific endopeptidases (RRSPs) has potential to inactivate both wild-type and mutant Ras proteins expressed in malignancies.


Assuntos
Toxinas Bacterianas/metabolismo , Vibrio vulnificus/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo , Sequência de Aminoácidos , Células HeLa , Humanos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Proteínas rap1 de Ligação ao GTP/química , Proteínas ras/química
6.
J Exp Clin Cancer Res ; 34: 8, 2015 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-25636908

RESUMO

OBJECTIVE: Evidence supports an important role for miR-203 in the regulation of the proliferation, migration and invasion of prostate cancer (PCa) cells. However, the exact mechanisms of miR-203 in PCa are not entirely clear. METHODS: We examined the expression of miR-203 in prostate cancer tissues, adjacent normal tissues, PCa cell lines and normal prostate epithelial cells by qRT-PCR. Then, the effects of miR-203 or Rap1A on proliferation, adhesion and invasion of PCa cells were assayed using CKK-8, adhesion analysis, and transwell invasion assays. Luciferase reporter assay was performed to assess miR-203 binding to Rap1A mRNA. Tumor growth was assessed by subcutaneous inoculation of cells into BALB/c nude mice. RESULTS: Here, we confirmed that the expression of miR-203 was significantly downregulated in prostate cancer specimens compared with matched adjacent normal prostate specimens. Mechanistic dissection revealed that miR-203 mediated cell proliferation, adhesion and invasion in vitro, and tumor growth in vivo, as evidenced by reduced RAC1, p-PAK1, and p-MEK1 expression. In addition, we identified Rap1A as a direct target suppressed by miR-203, and there was an inverse relationship between the expression of miR-203 and Rap1A in PCa. Knockdown of Rap1A phenocopied the effects of miR-203 on PCa cell growth and invasion. Furthermore, Rap1A over-expression in PCa cells partially reversed the effects of miR-203-expression on cell adhesion and invasion. CONCLUSIONS: These findings provide further evidence that a crucial role for miR-203 in inhibiting metastasis of PCa through the suppression of Rap1A expression.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas rap1 de Ligação ao GTP/genética , Animais , Sequência de Bases , Sítios de Ligação , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Modelos Animais de Doenças , Regulação para Baixo , Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Reporter , Humanos , Masculino , MicroRNAs/química , Interferência de RNA , RNA Mensageiro/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas rap1 de Ligação ao GTP/química
7.
J Biol Chem ; 290(8): 4908-4927, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25533468

RESUMO

synGAP is a neuron-specific Ras and Rap GTPase-activating protein (GAP) found in high concentrations in the postsynaptic density (PSD) fraction from the mammalian forebrain. We have previously shown that, in situ in the PSD fraction or in recombinant form in Sf9 cell membranes, synGAP is phosphorylated by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), another prominent component of the PSD. Here, we show that recombinant synGAP (r-synGAP), lacking 102 residues at the N terminus, can be purified in soluble form and is phosphorylated by cyclin-dependent kinase 5 (CDK5) as well as by CaMKII. Phosphorylation of r-synGAP by CaMKII increases its HRas GAP activity by 25% and its Rap1 GAP activity by 76%. Conversely, phosphorylation by CDK5 increases r-synGAP's HRas GAP activity by 98% and its Rap1 GAP activity by 20%. Thus, phosphorylation by both kinases increases synGAP activity; CaMKII shifts the relative GAP activity toward inactivation of Rap1, and CDK5 shifts the relative activity toward inactivation of HRas. GAP activity toward Rap2 is not altered by phosphorylation by either kinase. CDK5 phosphorylates synGAP primarily at two sites, Ser-773 and Ser-802. Phosphorylation at Ser-773 inhibits r-synGAP activity, and phosphorylation at Ser-802 increases it. However, the net effect of concurrent phosphorylation of both sites, Ser-773 and Ser-802, is an increase in GAP activity. synGAP is phosphorylated at Ser-773 and Ser-802 in the PSD fraction, and its phosphorylation by CDK5 and CaMKII is differentially regulated by activation of NMDA-type glutamate receptors in cultured neurons.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Quinase 5 Dependente de Ciclina , Proteínas Ativadoras de GTPase , Proteínas Oncogênicas , Proteínas Proto-Oncogênicas p21(ras) , Sinapses/enzimologia , Proteínas rap de Ligação ao GTP , Proteínas rap1 de Ligação ao GTP , Proteínas Ativadoras de ras GTPase , Proteínas ras , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Quinase 5 Dependente de Ciclina/química , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Neurônios/citologia , Neurônios/enzimologia , Proteínas Oncogênicas/química , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas rap1 de Ligação ao GTP/química , Proteínas rap1 de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas Ativadoras de ras GTPase/química , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo , Proteínas ras/química , Proteínas ras/genética , Proteínas ras/metabolismo
8.
J Biol Chem ; 288(39): 27712-23, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23946483

RESUMO

The small G protein Rap1 can mediate "inside-out signaling" by recruiting effectors to the plasma membrane that signal to pathways involved in cell adhesion and cell migration. This action relies on the membrane association of Rap1, which is dictated by post-translational prenylation as well as by a stretch of basic residues within its carboxyl terminus. One feature of this stretch of acidic residues is that it lies adjacent to a functional phosphorylation site for the cAMP-dependent protein kinase PKA. This phosphorylation has two effects on Rap1 action. One, it decreases the level of Rap1 activity as measured by GTP loading and the coupling of Rap1 to RapL, a Rap1 effector that couples Rap1 GTP loading to integrin activation. Two, it destabilizes the membrane localization of Rap1, promoting its translocation into the cytoplasm. These two actions, decreased GTP loading and decreased membrane localization, are related, as the translocation of Rap1-GTP into the cytoplasm is associated with its increased GTP hydrolysis and inactivation. The consequences of this phosphorylation in Rap1-dependent cell adhesion and cell migration were also examined. Active Rap1 mutants that lack this phosphorylation site had a minimal effect on cell adhesion but strongly reduced cell migration, when compared with an active Rap1 mutant that retained the phosphorylation site. This suggests that optimal cell migration is associated with cycles of Rap1 activation, membrane egress, and inactivation, and requires the regulated phosphorylation of Rap1 by PKA.


Assuntos
Movimento Celular , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas rap1 de Ligação ao GTP/química , Sequência de Aminoácidos , Animais , Bovinos , Adesão Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Ativação Enzimática , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Microscopia Confocal , Dados de Sequência Molecular , Mutação , Fosforilação , Transdução de Sinais
9.
Proc Natl Acad Sci U S A ; 109(10): 3814-9, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22343288

RESUMO

Epac1 is a cAMP-regulated guanine nucleotide exchange factor for the small G protein Rap. Upon cAMP binding, Epac1 undergoes a conformational change that results in its release from autoinhibition. In addition, cAMP induces the translocation of Epac1 from the cytosol to the plasma membrane. This relocalization of Epac1 is required for efficient activation of plasma membrane-located Rap and for cAMP-induced cell adhesion. This translocation requires the Dishevelled, Egl-10, Pleckstrin (DEP) domain, but the molecular entity that serves as the plasma membrane anchor and the possible mechanism of regulated binding remains elusive. Here we show that Epac1 binds directly to phosphatidic acid. Similar to the cAMP-induced Epac1 translocation, this binding is regulated by cAMP and requires the DEP domain. Furthermore, depletion of phosphatidic acid by inhibition of phospholipase D1 prevents cAMP-induced translocation of Epac1 as well as the subsequent activation of Rap at the plasma membrane. Finally, mutation of a single basic residue within a polybasic stretch of the DEP domain, which abolishes translocation, also prevents binding to phosphatidic acid. From these results we conclude that cAMP induces a conformational change in Epac1 that enables DEP domain-mediated binding to phosphatidic acid, resulting in the tethering of Epac1 at the plasma membrane and subsequent activation of Rap.


Assuntos
Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Ácidos Fosfatídicos/química , Fatores de Troca do Nucleotídeo Guanina/química , Células HEK293 , Humanos , Lipídeos/química , Lipossomos/química , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes/química , Proteínas rap1 de Ligação ao GTP/química
10.
Trends Cell Biol ; 21(10): 615-23, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21820312

RESUMO

Signaling by the small G-protein Rap is under tight regulation by its GEFs and GAPs. These are multi-domain proteins that are themselves controlled by distinct upstream pathways, and thus couple different extra- and intracellular cues to Rap. The individual RapGEFs and RapGAPs are, in addition, targeted to specific cellular locations by numerous anchoring mechanisms and, consequently, may control different pools of Rap. Here, we review the various activating signals and targeting mechanisms of these proteins and discuss their contribution to the spatiotemporal regulation and biological functions of the Rap proteins.


Assuntos
AMP Cíclico/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas rap de Ligação ao GTP/metabolismo , AMP Cíclico/química , Proteínas Ativadoras de GTPase/química , Fatores de Troca do Nucleotídeo Guanina/química , Proteínas Monoméricas de Ligação ao GTP/química , Transdução de Sinais , Proteínas rap de Ligação ao GTP/química , Proteínas rap1 de Ligação ao GTP/química , Proteínas rap1 de Ligação ao GTP/metabolismo
11.
Mol Biol Cell ; 22(14): 2509-19, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21633110

RESUMO

Activation of Rap1 small GTPases stabilizes cell--cell junctions, and this activity requires Krev Interaction Trapped gene 1 (KRIT1). Loss of KRIT1 disrupts cardiovascular development and causes autosomal dominant familial cerebral cavernous malformations. Here we report that native KRIT1 protein binds the effector loop of Rap1A but not H-Ras in a GTP-dependent manner, establishing that it is an authentic Rap1-specific effector. By modeling the KRIT1-Rap1 interface we designed a well-folded KRIT1 mutant that exhibited a ~40-fold-reduced affinity for Rap1A and maintained other KRIT1-binding functions. Direct binding of KRIT1 to Rap1 stabilized endothelial cell-cell junctions in vitro and was required for cardiovascular development in vivo. Mechanistically, Rap1 binding released KRIT1 from microtubules, enabling it to locate to cell--cell junctions, where it suppressed Rho kinase signaling and stabilized the junctions. These studies establish that the direct physical interaction of Rap1 with KRIT1 enables the translocation of microtubule-sequestered KRIT1 to junctions, thereby supporting junctional integrity and cardiovascular development.


Assuntos
Junções Intercelulares/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Musculares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Proteínas rap1 de Ligação ao GTP/metabolismo , Animais , Sistema Cardiovascular/crescimento & desenvolvimento , Sistema Cardiovascular/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Expressão Gênica , Vetores Genéticos , Células HEK293 , Humanos , Junções Intercelulares/metabolismo , Proteína KRIT1 , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Musculares/genética , Proteínas Musculares/fisiologia , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , RNA Interferente Pequeno , Transdução de Sinais , Relação Estrutura-Atividade , Veias Umbilicais/citologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia , Proteínas rap1 de Ligação ao GTP/química , Proteínas rap1 de Ligação ao GTP/genética
12.
J Phys Chem B ; 114(46): 15331-44, 2010 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-20964430

RESUMO

Electrostatic fields at the interface of the Ras binding domain of the protein Ral guanine nucleotide dissociation stimulator (RalGDS) with the structurally analogous GTPases Ras and Rap1A were measured with vibrational Stark effect (VSE) spectroscopy. Eleven residues on the surface of RalGDS that participate in this protein-protein interaction were systematically mutated to cysteine and subsequently converted to cyanocysteine in order to introduce a nitrile VSE probe in the form of the thiocyanate (SCN) functional group. The measured SCN absorption energy on the monomeric protein was compared with solvent-accessible surface area (SASA) calculations and solutions to the Poisson-Boltzmann equation using Boltzmann-weighted structural snapshots from molecular dynamics simulations. We found a weak negative correlation between SASA and measured absorption energy, indicating that water exposure of protein surface amino acids can be estimated from experimental measurement of the magnitude of the thiocyanate absorption energy. We found no correlation between calculated field and measured absorption energy. These results highlight the complex structural and electrostatic nature of the protein-water interface. The SCN-labeled RalGDS was incubated with either wild-type Ras or wild-type Rap1A, and the formation of the docked complex was confirmed by measurement of the dissociation constant of the interaction. The change in absorption energy of the thiocyanate functional group due to complex formation was related to the change in electrostatic field experienced by the nitrile functional group when the protein-protein interface forms. At some locations, the nitrile experiences the same shift in field when bound to Ras and Rap1A, but at others, the change in field is dramatically different. These differences identify residues on the surface of RalGDS that direct the specificity of RalGDS binding to its in vivo binding partner, Rap1A, through an electrostatic mechanism.


Assuntos
Análise Espectral/métodos , Fator ral de Troca do Nucleotídeo Guanina/química , Proteínas rap1 de Ligação ao GTP/química , Proteínas ras/química , Sítios de Ligação , Modelos Moleculares , Simulação de Dinâmica Molecular , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Eletricidade Estática , Tiocianatos/química , Vibração , Fator ral de Troca do Nucleotídeo Guanina/genética , Fator ral de Troca do Nucleotídeo Guanina/metabolismo , Proteínas rap1 de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
13.
BMC Evol Biol ; 10: 55, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20170508

RESUMO

BACKGROUND: Retrotransposition of mRNA transcripts gives occasionally rise to functional retrogenes. Through acquiring tempero-spatial expression patterns distinct from their parental genes and/or functional mutations in their coding sequences, such retrogenes may in principle reshape signalling networks. RESULTS: Here we present evidence for such a scenario, involving retrogenes of Rap1 belonging to the Ras family of small GTPases. We identified two murine and one human-specific retrogene of Rap1A and Rap1B, which encode proteins that differ by only a few amino acids from their parental Rap1 proteins. Markedly, human hRap1B-retro and mouse mRap1A-retro1 acquired mutations in the 12th and 59th amino acids, respectively, corresponding to residues mutated in constitutively active oncogenic Ras proteins. Statistical and structural analyses support a functional evolution scenario, where Rap1 isoforms of retrogenic origin are functionally distinct from their parental proteins. Indeed, all retrogene-encoded GTPases have an increased GTP/GDP binding ratio in vivo, indicating that their conformations resemble that of active GTP-bound Rap1. We furthermore demonstrate that these three Rap1 isoforms exhibit distinct affinities for the Ras-binding domain of RalGDS. Finally, when tested for their capacity to induce key cellular processes like integrin-mediated cell adhesion or cell spreading, marked differences are seen. CONCLUSIONS: Together, these data lend strong support for an evolution scenario, where retrotransposition and subsequent mutation events generated species-specific Rap1 isoforms with differential signaling potential. Expression of the constitutively active human Rap1B-retro in cells like those derived from Ramos Burkitt's lymphoma and bone marrow from a patient with myelodysplastic syndrome (MDS) warrants further investigation into its role in disease development.


Assuntos
Proteínas rap1 de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/metabolismo , Animais , Humanos , Camundongos , Modelos Moleculares , Retroelementos , Transcrição Reversa , Proteínas rap1 de Ligação ao GTP/química
14.
Exp Cell Res ; 315(2): 285-303, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18992740

RESUMO

KRIT1 is a disease gene responsible for Cerebral Cavernous Malformations (CCM). It encodes for a protein containing distinct protein-protein interaction domains, including three NPXY/F motifs and a FERM domain. Previously, we isolated KRIT1B, an isoform characterized by the alternative splicing of the 15th coding exon and suspected to cause CCM when abnormally expressed. Combining homology modeling and docking methods of protein-structure and ligand binding prediction with the yeast two-hybrid assay of in vivo protein-protein interaction and cellular biology analyses we identified both structural and functional differences between KRIT1A and KRIT1B isoforms. We found that the 15th exon encodes for the distal beta-sheet of the F3/PTB-like subdomain of KRIT1A FERM domain, demonstrating that KRIT1B is devoid of a functional PTB binding pocket. As major functional consequence, KRIT1B is unable to bind Rap1A, while the FERM domain of KRIT1A is even sufficient for this function. Furthermore, we found that a functional PTB subdomain enables the nucleocytoplasmic shuttling of KRIT1A, while its alteration confers a restricted cytoplasmic localization and a dominant negative role to KRIT1B. Importantly, we also demonstrated that KRIT1A, but not KRIT1B, may adopt a closed conformation through an intramolecular interaction involving the third NPXY/F motif at the N-terminus and the PTB subdomain of the FERM domain, and proposed a mechanism whereby an open/closed conformation switch regulates KRIT1A nuclear translocation and interaction with Rap1A in a mutually exclusive manner. As most mutations found in CCM patients affect the KRIT1 FERM domain, the new insights into the structure-function relationship of this domain may constitute a useful framework for understanding molecular mechanisms underlying CCM pathogenesis.


Assuntos
Malformações Vasculares do Sistema Nervoso Central/fisiopatologia , Hemangioma Cavernoso do Sistema Nervoso Central/fisiopatologia , Proteínas Associadas aos Microtúbulos/fisiologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Animais , Células COS , Linhagem Celular , Malformações Vasculares do Sistema Nervoso Central/genética , Chlorocebus aethiops , Simulação por Computador , Células HeLa , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína KRIT1 , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Modelos Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Mutação Puntual , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Proteínas rap1 de Ligação ao GTP/química , Proteínas rap1 de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/metabolismo
15.
Biophys J ; 95(11): 5412-23, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18708470

RESUMO

Förster resonance energy transfer (FRET)-based biosensors for the quantitative analysis of intracellular signaling, including sensors for monitoring cyclic adenosine monophosphate (cAMP), are of increasing interest. The measurement of the donor/acceptor emission ratio in tandem biosensors excited at the donor excitation wavelength is a commonly used technique. A general problem, however, is that this ratio varies not only with the changes in cAMP concentration but also with the changes of the ionic environment or other factors affecting the folding probability of the fluorophores. Here, we use a spectral FRET analysis on the basis of two excitation wavelengths to obtain a reliable measure of the absolute cAMP concentrations with high temporal and spatial resolution by using an "exchange protein directly activated by cAMP". In this approach, FRET analysis is simplified and does not require additional calibration routines. The change in FRET efficiency (E) of the biosensor caused by [cAMP] changes was determined as DeltaE = 15%, whereas E varies between 35% at low and 20% at high [cAMP], allowing quantitative measurement of cAMP concentration in the range from 150 nM to 15 microM. The method described is also suitable for other FRET-based biosensors with a 1:1 donor/acceptor stoichiometry. As a proof of principle, we measured the specially resolved cAMP concentration within living cells and determined the dynamic changes of cAMP levels after stimulation of the Gs-coupled serotonin receptor subtype 7 (5-HT7).


Assuntos
Técnicas Biossensoriais/métodos , AMP Cíclico/análise , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas/metabolismo , Adenilil Ciclases/metabolismo , Animais , Calibragem , Linhagem Celular , AMP Cíclico/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Espaço Intracelular/metabolismo , Camundongos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas/química , Receptores de Serotonina/metabolismo , Fatores de Tempo , Proteínas rap1 de Ligação ao GTP/química , Proteínas rap1 de Ligação ao GTP/metabolismo
16.
J Biol Chem ; 283(28): 19691-703, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18411261

RESUMO

Exchange proteins directly activated by cAMP (EPACs) are guanine nucleotide-exchange factors for the small GTPases Rap1 and Rap2 and represent a key receptor for the ubiquitous cAMP second messenger in eukaryotes. The cAMP-dependent activation of apoEPAC is typically rationalized in terms of a preexisting equilibrium between inactive and active states. Structural and mutagenesis analyses have shown that one of the critical determinants of the EPAC activation equilibrium is a cluster of salt bridges formed between the catalytic core and helices alpha1 and alpha2 at the N terminus of the cAMP binding domain and commonly referred to as ionic latch (IL). The IL stabilizes the inactive states in a closed topology in which access to the catalytic domain is sterically occluded by the regulatory moiety. However, it is currently not fully understood how the IL is allosterically controlled by cAMP. Chemical shift mapping studies consistently indicate that cAMP does not significantly perturb the structure of the IL spanning sites within the regulatory region, pointing to cAMP-dependent dynamic modulations as a key allosteric carrier of the cAMP-signal to the IL sites. Here, we have therefore investigated the dynamic profiles of the EPAC1 cAMP binding domain in its apo, cAMP-bound, and Rp-cAMPS phosphorothioate antagonist-bound forms using several 15N relaxation experiments. Based on the comparative analysis of dynamics in these three states, we have proposed a model of EPAC activation that incorporates the dynamic features allosterically modulated by cAMP and shows that cAMP binding weakens the IL by increasing its entropic penalty due to dynamic enhancements.


Assuntos
AMP Cíclico/química , Fatores de Troca do Nucleotídeo Guanina/química , Modelos Moleculares , Regulação Alostérica/fisiologia , AMP Cíclico/genética , AMP Cíclico/metabolismo , Entropia , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Estrutura Secundária de Proteína/fisiologia , Estrutura Terciária de Proteína/fisiologia , Sistemas do Segundo Mensageiro/fisiologia , Proteínas rap de Ligação ao GTP/química , Proteínas rap de Ligação ao GTP/genética , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/química , Proteínas rap1 de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/metabolismo
17.
EMBO J ; 27(7): 1145-53, 2008 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-18309292

RESUMO

The GTP-binding protein Rap1 regulates integrin-mediated and other cell adhesion processes. Unlike most other Ras-related proteins, it contains a threonine in switch II instead of a glutamine (Gln61 in Ras), a residue crucial for the GTPase reaction of most G proteins. Furthermore, unlike most other GTPase-activating proteins (GAPs) for small G proteins, which supply a catalytically important Arg-finger, no arginine residue of RapGAP makes a significant contribution to the GTPase reaction of Rap1. For a detailed understanding of the reaction mechanism, we have solved the structure of Rap1 in complex with Rap1GAP. It shows that the Thr61 of Rap is away from the active site and that an invariant asparagine of RapGAPs, the Asn-thumb, takes over the role of the cis-glutamine of Ras, Rho or Ran. The structure and biochemical data allow to further explain the mechanism and to define the important role of a conserved tyrosine. The structure and biochemical data furthermore show that the RapGAP homologous region of the tumour suppressor Tuberin is sufficient for catalysis on Rheb.


Assuntos
Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas rap1 de Ligação ao GTP/química , Proteínas rap1 de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Arginina/genética , Arginina/metabolismo , Sítios de Ligação , Catálise , Cristalografia por Raios X , Glutamina/genética , Glutamina/metabolismo , Hidrólise , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/metabolismo
18.
J Am Chem Soc ; 129(46): 14482-92, 2007 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-17973384

RESUMO

cAMP (adenosine 3',5'-cyclic monophosphate) is a ubiquitous second messenger that activates a multitude of essential cellular responses. Two key receptors for cAMP in eukaryotes are protein kinase A (PKA) and the exchange protein directly activated by cAMP (EPAC), which is a recently discovered guanine nucleotide exchange factor (GEF) for the small GTPases Rap1 and Rap2. Previous attempts to investigate the mechanism of allosteric activation of eukaryotic cAMP-binding domains (CBDs) at atomic or residue resolution have been hampered by the instability of the apo form, which requires the use of mixed apo/holo systems, that have provided only a partial picture of the CBD apo state and of the allosteric networks controlled by cAMP. Here, we show that, unlike other eukaryotic CBDs, both apo and cAMP-bound states of the EPAC1 CBD are stable under our experimental conditions, providing a unique opportunity to define at an unprecedented level of detail the allosteric interactions linking two critical functional sites of this CBD. These are the phosphate binding cassette (PBC), where cAMP binds, and the N-terminal helical bundle (NTHB), which is the site of the inhibitory interactions between the regulatory and catalytic regions of EPAC. Specifically, the combined analysis of the cAMP-dependent changes in chemical shifts, 2 degrees structure probabilities, hydrogen/hydrogen exchange (H/H) and hydrogen/deuterium exchange (H/D) protection factors reveals that the long-range communication between the PBC and the NTHB is implemented by two distinct intramolecular cAMP-signaling pathways, respectively, mediated by the beta2-beta3 loop and the alpha6 helix. Docking of cAMP into the PBC perturbs the NTHB inner core packing and the helical probabilities of selected NTHB residues. The proposed model is consistent with the allosteric role previously hypothesized for L273 and F300 based on site-directed mutagenesis; however, our data show that such a contact is part of a significantly more extended allosteric network that, unlike PKA, involves a tight coupling between the alpha- and beta-subdomains of the EPAC CBD. The proposed mechanism of allosteric activation will serve as a basis to understand agonism and antagonism in the EPAC system and provides also a general paradigm for how small ligands control protein-protein interfaces.


Assuntos
Apoproteínas/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Receptores de AMP Cíclico/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Regulação Alostérica , Apoproteínas/química , Domínio Catalítico , AMP Cíclico/química , Deutério/química , Células Eucarióticas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Hidrogênio/química , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Fosfatos/química , Fosfatos/metabolismo , Receptores de AMP Cíclico/química , Proteínas rap de Ligação ao GTP/química , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/química , Proteínas rap1 de Ligação ao GTP/metabolismo
19.
Proteins ; 65(1): 87-102, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16856180

RESUMO

To investigate roles of electrostatic interactions in protein binding stability, electrostatic calculations were carried out on a set of 64 mutations over six protein-protein complexes. These mutations alter polar interactions across the interface and were selected for putative dominance of electrostatic contributions to the binding stability. Three protocols of implementing the Poisson-Boltzmann model were tested. In vdW4 the dielectric boundary between the protein low dielectric and the solvent high dielectric is defined as the protein van der Waals surface and the protein dielectric constant is set to 4. In SE4 and SE20, the dielectric boundary is defined as the surface of the protein interior inaccessible to a 1.4-A solvent probe, and the protein dielectric constant is set to 4 and 20, respectively. In line with earlier studies on the barnase-barstar complex, the vdW4 results on the large set of mutations showed the closest agreement with experimental data. The agreement between vdW4 and experiment supports the contention of dominant electrostatic contributions for the mutations, but their differences also suggest van der Waals and hydrophobic contributions. The results presented here will serve as a guide for future refinement in electrostatic calculation and inclusion of nonelectrostatic effects.


Assuntos
Ligação Proteica , Eletricidade Estática , Acetilcolinesterase/química , Acetilcolinesterase/genética , Antígenos CD2/química , Antígenos CD2/genética , Antígenos CD58/química , Antígenos CD58/genética , Colicinas/química , Colicinas/genética , Venenos Elapídicos/química , Venenos Elapídicos/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Interleucina-4/química , Interleucina-4/genética , Modelos Moleculares , Concentração Osmolar , Mutação Puntual , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/genética , Receptores de Interleucina-4/química , Receptores de Interleucina-4/genética , Solventes , Tacrolimo/química , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/genética , Termodinâmica , Proteínas rap1 de Ligação ao GTP/química , Proteínas rap1 de Ligação ao GTP/genética
20.
Structure ; 14(5): 881-8, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16698549

RESUMO

The novel Ras effector mNore1, capable of inducing apoptosis, is a multidomain protein. It comprises a C1 domain homologous to PKC and an RA domain similar to the Ras effectors AF-6 and RalGDS. Here, we determine the affinity of these two domains to the active forms of Ras and Rap1 using isothermal calorimetric titration. The interaction of Ras/Rap1-GTP with the RA domain of mNore1 is weakened significantly by direct binding of the C1 domain to the RA domain. In order to analyze this observation in atomic detail, we solved the C1 solution structure by NMR. By determining chemical shifts and relaxation rates, we can show an intramolecular complex of C1-RA. GTP-Ras titration and binding to RA disrupts this complex and displaces the C1 domain. Once the C1 domain tumbles freely in solution, a lipid binding interface becomes accessible. Furthermore, we provide evidence of phosphatidylinositol 3-phosphate binding of the free C1 domain.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas rap1 de Ligação ao GTP/química , Proteínas ras/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose , Lipídeos/química , Camundongos , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Fosfatos de Fosfatidilinositol/química , Conformação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA