Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.872
Filtrar
1.
Acta Neuropathol ; 147(1): 86, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758288

RESUMO

Dominantly inherited mutation D395G in the gene encoding valosin-containing protein causes vacuolar tauopathy, a type of behavioural-variant frontotemporal dementia, with marked vacuolation and abundant filamentous tau inclusions made of all six brain isoforms. Here we report that tau inclusions were concentrated in layers II/III of the frontotemporal cortex in a case of vacuolar tauopathy. By electron cryomicroscopy, tau filaments had the chronic traumatic encephalopathy (CTE) fold. Tau inclusions of vacuolar tauopathy share this cortical location and the tau fold with CTE, subacute sclerosing panencephalitis and amyotrophic lateral sclerosis/parkinsonism-dementia complex, which are believed to be environmentally induced. Vacuolar tauopathy is the first inherited disease with the CTE tau fold.


Assuntos
Encefalopatia Traumática Crônica , Mutação , Tauopatias , Proteína com Valosina , Proteínas tau , Humanos , Tauopatias/genética , Tauopatias/patologia , Encefalopatia Traumática Crônica/patologia , Encefalopatia Traumática Crônica/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Proteína com Valosina/genética , Vacúolos/patologia , Vacúolos/ultraestrutura , Masculino , Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/genética , Pessoa de Meia-Idade , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Encéfalo/patologia , Feminino
2.
Acta Neuropathol Commun ; 12(1): 70, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698465

RESUMO

The majority of patients with Parkinson disease (PD) experience a loss in their sense of smell and accumulate insoluble α-synuclein aggregates in their olfactory bulbs (OB). Subjects affected by a SARS-CoV-2-linked illness (COVID-19) also frequently experience hyposmia. We previously postulated that microglial activation as well as α-synuclein and tau misprocessing can occur during host responses following microbial encounters. Using semiquantitative measurements of immunohistochemical signals, we examined OB and olfactory tract specimens collected serially at autopsies between 2020 and 2023. Deceased subjects comprised 50 adults, which included COVID19 + patients (n = 22), individuals with Lewy body disease (e.g., PD; dementia with Lewy bodies (n = 6)), Alzheimer disease (AD; n = 3), and other neurodegenerative disorders (e.g., progressive supranuclear palsy (n = 2); multisystem atrophy (n = 1)). Further, we included neurologically healthy controls (n = 9), and added subjects with an inflammation-rich brain disorder as neurological controls (NCO; n = 7). When probing for microglial and histiocytic reactivity in the anterior olfactory nuclei (AON) by anti-CD68 immunostaining, scores were consistently elevated in NCO and AD cases. In contrast, microglial signals on average were not significantly altered in COVID19 + patients relative to healthy controls, although anti-CD68 reactivity in their OB and tracts declined with progression in age. Mild-to-moderate increases in phospho-α-synuclein and phospho-tau signals were detected in the AON of tauopathy- and synucleinopathy-afflicted brains, respectively, consistent with mixed pathology, as described by others. Lastly, when both sides were available for comparison in our case series, we saw no asymmetry in the degree of pathology of the left versus right OB and tracts. We concluded from our autopsy series that after a fatal course of COVID-19, microscopic changes in the rostral, intracranial portion of the olfactory circuitry -when present- reflected neurodegenerative processes seen elsewhere in the brain. In general, microglial reactivity correlated best with the degree of Alzheimer's-linked tauopathy and declined with progression of age in COVID19 + patients.


Assuntos
COVID-19 , Microglia , Bulbo Olfatório , Humanos , COVID-19/patologia , COVID-19/complicações , Bulbo Olfatório/patologia , Bulbo Olfatório/metabolismo , Idoso , Masculino , Feminino , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Microglia/patologia , Microglia/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , SARS-CoV-2 , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/metabolismo
3.
Biomolecules ; 14(5)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38786010

RESUMO

Cholesterol, a crucial component of cell membranes, influences various biological processes, including membrane trafficking, signal transduction, and host-pathogen interactions. Disruptions in cholesterol homeostasis have been linked to congenital and acquired conditions, including neurodegenerative disorders such as Alzheimer's disease (AD). Previous research from our group has demonstrated that herpes simplex virus type I (HSV-1) induces an AD-like phenotype in several cell models of infection. This study explores the interplay between cholesterol and HSV-1-induced neurodegeneration. The impact of cholesterol was determined by modulating its levels with methyl-beta-cyclodextrin (MßCD) using the neuroblastoma cell lines SK-N-MC and N2a. We have found that HSV-1 infection triggers the intracellular accumulation of cholesterol in structures resembling endolysosomal/autophagic compartments, a process reversible upon MßCD treatment. Moreover, MßCD exhibits inhibitory effects at various stages of HSV-1 infection, underscoring the importance of cellular cholesterol levels, not only in the viral entry process but also in subsequent post-entry stages. MßCD also alleviated several features of AD-like neurodegeneration induced by viral infection, including lysosomal impairment and intracellular accumulation of amyloid-beta peptide (Aß) and phosphorylated tau. In conclusion, these findings highlight the connection between cholesterol, neurodegeneration, and HSV-1 infection, providing valuable insights into the underlying mechanisms of AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Colesterol , Herpes Simples , Herpesvirus Humano 1 , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/fisiologia , Colesterol/metabolismo , Humanos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/virologia , Doença de Alzheimer/patologia , Doença de Alzheimer/tratamento farmacológico , Herpes Simples/virologia , Herpes Simples/metabolismo , Herpes Simples/tratamento farmacológico , Herpes Simples/patologia , Linhagem Celular Tumoral , Animais , beta-Ciclodextrinas/farmacologia , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Proteínas tau/metabolismo , Fenótipo , Camundongos
4.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731881

RESUMO

Aging and age-related diseases are associated with a decline in the capacity of protein turnover. Intrinsically disordered proteins, as well as proteins misfolded and oxidatively damaged, prone to aggregation, are preferentially digested by the ubiquitin-independent proteasome system (UIPS), a major component of which is the 20S proteasome. Therefore, boosting 20S activity constitutes a promising strategy to counteract a decrease in total proteasome activity during aging. One way to enhance the proteolytic removal of unwanted proteins appears to be the use of peptide-based activators of the 20S. In this study, we synthesized a series of peptides and peptidomimetics based on the C-terminus of the Rpt5 subunit of the 19S regulatory particle. Some of them efficiently stimulated human 20S proteasome activity. The attachment of the cell-penetrating peptide TAT allowed them to penetrate the cell membrane and stimulate proteasome activity in HEK293T cells, which was demonstrated using a cell-permeable substrate of the proteasome, TAS3. Furthermore, the best activator enhanced the degradation of aggregation-prone α-synuclein and Tau-441. The obtained compounds may therefore have the potential to compensate for the unbalanced proteostasis found in aging and age-related diseases.


Assuntos
Envelhecimento , Complexo de Endopeptidases do Proteassoma , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Células HEK293 , Envelhecimento/metabolismo , Agregados Proteicos/efeitos dos fármacos , Proteólise/efeitos dos fármacos , alfa-Sinucleína/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/metabolismo , Proteínas tau/metabolismo , Agregação Patológica de Proteínas/metabolismo , Peptidomiméticos/farmacologia , Peptidomiméticos/química
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167213, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714266

RESUMO

Cytidine deaminase (CDA) is a pyrimidine salvage pathway enzyme that catalyzes the hydrolytic deamination of free cytidine and deoxycytidine to uridine and deoxyuridine, respectively. Our team discovered that CDA deficiency is associated with several aspects of genetic instability, such as increased sister chromatid exchange and ultrafine anaphase bridge frequencies. Based on these results, we sought (1) to determine how CDA deficiency contributes to genetic instability, (2) to explore the possible relationships between CDA deficiency and carcinogenesis, and (3) to develop a new anticancer treatment targeting CDA-deficient tumors. This review summarizes our major findings indicating that CDA deficiency is associated with a genetic instability that does not confer an increased cancer risk. In light of our results and published data, I propose a novel hypothesis that loss of CDA, by reducing basal PARP-1 activity and increasing Tau levels, may reflect an attempt to prevent, slow or reverse the process of carcinogenesis.


Assuntos
Carcinogênese , Citidina Desaminase , Poli(ADP-Ribose) Polimerase-1 , Humanos , Citidina Desaminase/metabolismo , Citidina Desaminase/genética , Carcinogênese/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Animais , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Proteínas tau/metabolismo , Proteínas tau/genética , Instabilidade Genômica
6.
J Alzheimers Dis ; 99(2): 639-656, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728184

RESUMO

Background: Familial Alzheimer's disease (FAD) presenilin 1 E280A (PSEN 1 E280A) is characterized by functional impairment and the death of cholinergic neurons as a consequence of amyloid-ß (Aß) accumulation and abnormal phosphorylation of the tau protein. Currently, there are no available therapies that can cure FAD. Therefore, new therapies are urgently needed for treating this disease. Objective: To assess the effect of sildenafil (SIL) on cholinergic-like neurons (ChLNs) harboring the PSEN 1 E280A mutation. Methods: Wild-type (WT) and PSEN 1 E280A ChLNs were cultured in the presence of SIL (25µM) for 24 h. Afterward, proteinopathy, cell signaling, and apoptosis markers were evaluated via flow cytometry and fluorescence microscopy. Results: We found that SIL was innocuous toward WT PSEN 1 ChLNs but reduced the accumulation of intracellular Aß fragments by 87%, decreased the non-physiological phosphorylation of the protein tau at residue Ser202/Thr205 by 35%, reduced the phosphorylation of the proapoptotic transcription factor c-JUN at residue Ser63/Ser73 by 63%, decreased oxidized DJ-1 at Cys106-SO3 by 32%, and downregulated transcription factor TP53 (tumor protein p53), BH-3-only protein PUMA (p53 upregulated modulator of apoptosis), and cleaved caspase 3 (CC3) expression by 20%, 32%, and 22%, respectively, compared with untreated mutant ChLNs. Interestingly, SIL also ameliorated the dysregulation of acetylcholine-induced calcium ion (Ca2+) influx in PSEN 1 E280A ChLNs. Conclusions: Although SIL showed no antioxidant capacity in the oxygen radical absorbance capacity and ferric ion reducing antioxidant power assays, it might function as an anti-amyloid and antiapoptotic agent and functional neuronal enhancer in PSEN 1 E280A ChLNs. Therefore, the SIL has therapeutic potential for treating FAD.


Assuntos
Doença de Alzheimer , Neurônios Colinérgicos , Mutação , Presenilina-1 , Citrato de Sildenafila , Presenilina-1/genética , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Mutação/genética , Animais , Citrato de Sildenafila/farmacologia , Peptídeos beta-Amiloides/metabolismo , Humanos , Células Cultivadas , Camundongos , Proteínas tau/metabolismo , Proteínas tau/genética , Fosforilação/efeitos dos fármacos , Fenótipo
7.
Sci Adv ; 10(18): eadl2991, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38691615

RESUMO

Amyloid fibrils of tau are increasingly accepted as a cause of neuronal death and brain atrophy in Alzheimer's disease (AD). Diminishing tau aggregation is a promising strategy in the search for efficacious AD therapeutics. Previously, our laboratory designed a six-residue, nonnatural amino acid inhibitor D-TLKIVW peptide (6-DP), which can prevent tau aggregation in vitro. However, it cannot block cell-to-cell transmission of tau aggregation. Here, we find D-TLKIVWC (7-DP), a d-cysteine extension of 6-DP, not only prevents tau aggregation but also fragments tau fibrils extracted from AD brains to neutralize their seeding ability and protect neuronal cells from tau-induced toxicity. To facilitate the transport of 7-DP across the blood-brain barrier, we conjugated it to magnetic nanoparticles (MNPs). The MNPs-DP complex retains the inhibition and fragmentation properties of 7-DP alone. Ten weeks of MNPs-DP treatment appear to reverse neurological deficits in the PS19 mouse model of AD. This work offers a direction for development of therapies to target tau fibrils.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Nanopartículas de Magnetita , Proteínas tau , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Proteínas tau/metabolismo , Proteínas tau/química , Camundongos , Humanos , Nanopartículas de Magnetita/química , Amiloide/metabolismo , Amiloide/química , Camundongos Transgênicos , Comportamento Animal/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Agregação Patológica de Proteínas/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/efeitos dos fármacos
8.
Commun Biol ; 7(1): 569, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750228

RESUMO

Accumulation of amyloid-ß (Aß) and tau tangles are hallmarks of Alzheimer's disease. Aß is extracellular while tau tangles are typically intracellular, and it is unknown how these two proteinopathies are connected. Here, we use data of 1206 elders and test that RNA expression levels of GPER1, a transmembrane protein, modify the association of Aß with tau tangles. GPER1 RNA expression is related to more tau tangles (p = 0.001). Moreover, GPER1 expression modifies the association of immunohistochemistry-derived Aß load with tau tangles (p = 0.044). Similarly, GPER1 expression modifies the association between Aß proteoforms and tau tangles: total Aß protein (p = 0.030) and Aß38 peptide (p = 0.002). Using single nuclei RNA-seq indicates that GPER1 RNA expression in astrocytes modifies the relation of Aß load with tau tangles (p = 0.002), but not GPER1 in excitatory neurons or endothelial cells. We conclude that GPER1 may be a link between Aß and tau tangles driven mainly by astrocytic GPER1 expression.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Receptores de Estrogênio , Receptores Acoplados a Proteínas G , Proteínas tau , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Proteínas tau/metabolismo , Proteínas tau/genética , Feminino , Masculino , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética , Idoso , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Idoso de 80 Anos ou mais , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Astrócitos/metabolismo
9.
Biomolecules ; 14(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38672412

RESUMO

Alzheimer's disease (AD) is a neurodegenerative olfactory disorder affecting millions of people worldwide. Alterations in the hexosamine- or glucose-related pathways have been described through AD progression. Specifically, an alteration in glucosamine 6 phosphate isomerase 2 (GNPDA2) protein levels has been observed in olfactory areas of AD subjects. However, the biological role of GNPDA2 in neurodegeneration remains unknown. Using mass spectrometry, multiple GNPDA2 interactors were identified in human nasal epithelial cells (NECs) mainly involved in intraciliary transport. Moreover, GNPDA2 overexpression induced an increment in NEC proliferation rates, accompanied by transcriptomic alterations in Type II interferon signaling or cellular stress responses. In contrast, the presence of beta-amyloid or mutated Tau-P301L in GNPDA2-overexpressing NECs induced a slowdown in the proliferative capacity in parallel with a disruption in protein processing. The proteomic characterization of Tau-P301L transgenic zebrafish embryos demonstrated that GNPDA2 overexpression interfered with collagen biosynthesis and RNA/protein processing, without inducing additional changes in axonal outgrowth defects or neuronal cell death. In humans, a significant increase in serum GNPDA2 levels was observed across multiple neurological proteinopathies (AD, Lewy body dementia, progressive supranuclear palsy, mixed dementia and amyotrophic lateral sclerosis) (n = 215). These data shed new light on GNPDA2-dependent mechanisms associated with the neurodegenerative process beyond the hexosamine route.


Assuntos
Aldose-Cetose Isomerases , Doença de Alzheimer , Peptídeos beta-Amiloides , Peixe-Zebra , Proteínas tau , Animais , Humanos , Aldose-Cetose Isomerases/metabolismo , Aldose-Cetose Isomerases/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais Geneticamente Modificados , Proliferação de Células , Células Epiteliais/metabolismo , Proteômica , Proteínas tau/metabolismo , Proteínas tau/genética , Peixe-Zebra/metabolismo
10.
Cell Stem Cell ; 31(5): 676-693.e10, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38626772

RESUMO

Frontotemporal dementia (FTD) is an incurable group of early-onset dementias that can be caused by the deposition of hyperphosphorylated tau in patient brains. However, the mechanisms leading to neurodegeneration remain largely unknown. Here, we combined single-cell analyses of FTD patient brains with a stem cell culture and transplantation model of FTD. We identified disease phenotypes in FTD neurons carrying the MAPT-N279K mutation, which were related to oxidative stress, oxidative phosphorylation, and neuroinflammation with an upregulation of the inflammation-associated protein osteopontin (OPN). Human FTD neurons survived less and elicited an increased microglial response after transplantation into the mouse forebrain, which we further characterized by single nucleus RNA sequencing of microdissected grafts. Notably, downregulation of OPN in engrafted FTD neurons resulted in improved engraftment and reduced microglial infiltration, indicating an immune-modulatory role of OPN in patient neurons, which may represent a potential therapeutic target in FTD.


Assuntos
Demência Frontotemporal , Neurônios , Osteopontina , Proteínas tau , Osteopontina/metabolismo , Osteopontina/genética , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Demência Frontotemporal/metabolismo , Humanos , Neurônios/metabolismo , Neurônios/patologia , Animais , Proteínas tau/metabolismo , Camundongos , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Microglia/metabolismo , Microglia/patologia , Mutação/genética
11.
Biophys Chem ; 310: 107237, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38640598

RESUMO

Understanding the formation of ß-fibrils over the gold surface is of paramount interest in nano-bio-medicinal Chemistry. The intricate mechanism of self-assembly of neurofibrillogenic peptides and their growth over the gold surface remains elusive, as experiments are limited in unveiling the microscopic dynamic details, in particular, at the early stage of the peptide aggregation. In this work, we carried out equilibrium molecular dynamics and enhanced sampling simulations to elucidate the underlying mechanism of the growth of an amyloid-forming sequence of tau fragments over the gold surface. Our results disclose that the collective intermolecular interactions between the peptide chains and peptides with the gold surface facilitate the peptide adsorption, followed by integration, finally leading to the fibril formation.


Assuntos
Amiloide , Ouro , Simulação de Dinâmica Molecular , Propriedades de Superfície , Ouro/química , Amiloide/química , Peptídeos/química , Proteínas tau/química , Proteínas tau/metabolismo , Adsorção
12.
Bioorg Chem ; 146: 107324, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569322

RESUMO

Recently, glycogen synthase kinase-3ß (GSK-3ß) has been considered as a critical factor implicated in Alzheimer's disease (AD). In a previous work, a 3D pharmacophore model for GSK-3ß inhibitors was created and the results suggested that derivative ZINC67773573, VIII, may provide a promising lead for developing novel GSK-3ß inhibitors for the AD's treatment. Consequently, in this work, novel series of quinolin-2-one derivatives were synthesized and assessed for their GSK-3ß inhibitory properties. In vitro screening identified three compounds: 7c, 7e and 7f as promising GSK-3ß inhibitors. Compounds 7c, 7e and 7f were found to exhibit superior inhibitory effect on GSK-3ß with IC50 value ranges between 4.68 ± 0.59 to 8.27 ± 0.60 nM compared to that of staurosporine (IC50 = 6.12 ± 0.74 nM). Considerably, compounds 7c, 7e and 7f effectively lowered tau hyperphosphorylated aggregates and proving their safety towards the SH-SY5Y and THLE2 normal cell lines. The most promising compound 7c alleviated cognitive impairments in the scopolamine-induced model in mice. Compound 7c's activity profile, while not highly selective, may provide a starting point and valuable insights into the design of multi-target inhibitors. According to the ADME prediction results, compounds 7c, 7e and 7f followed Lipinski's rule of five and could almost permeate through the BBB. Molecular docking simulations showed that these compounds are well accommodated in the ATP binding site interacting by its quinoline-2-one ring through hydrogen bonding with the key amino acids Asp133 and Val135 at the hinge region. The findings of this study suggested that these new compounds may have potential as anti-AD drugs targeting GSK-3ß.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Simulação de Acoplamento Molecular , Glicogênio Sintase Quinase 3 beta/metabolismo , Farmacóforo , Fosforilação , Proteínas tau/metabolismo
13.
Alzheimers Res Ther ; 16(1): 70, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575959

RESUMO

BACKGROUND: Cathepsin D (CatD) is a lysosomal protease that degrades both the amyloid-ß protein (Aß) and the microtubule-associated protein, tau, which accumulate pathognomonically in Alzheimer disease (AD), but few studies have examined the role of CatD in the development of Aß pathology and tauopathy in vivo. METHODS: CatD knockout (KO) mice were crossed to human amyloid precursor protein (hAPP) transgenic mice, and amyloid burden was quantified by ELISA and immunohistochemistry (IHC). Tauopathy in CatD-KO mice, as initially suggested by Gallyas silver staining, was further characterized by extensive IHC and biochemical analyses. Controls included human tau transgenic mice (JNPL3) and another mouse model of a disease (Krabbe A) characterized by pronounced lysosomal dysfunction. Additional experiments examined the effects of CatD inhibition on tau catabolism in vitro and in cultured neuroblastoma cells with inducible expression of human tau. RESULTS: Deletion of CatD in hAPP transgenic mice triggers large increases in cerebral Aß, manifesting as intense, exclusively intracellular aggregates; extracellular Aß deposition, by contrast, is neither triggered by CatD deletion, nor affected in older, haploinsufficient mice. Unexpectedly, CatD-KO mice were found to develop prominent tauopathy by just ∼ 3 weeks of age, accumulating sarkosyl-insoluble, hyperphosphorylated tau exceeding the pathology present in aged JNPL3 mice. CatD-KO mice exhibit pronounced perinuclear Gallyas silver staining reminiscent of mature neurofibrillary tangles in human AD, together with widespread phospho-tau immunoreactivity. Striking increases in sarkosyl-insoluble phospho-tau (∼ 1250%) are present in CatD-KO mice but notably absent from Krabbe A mice collected at an identical antemortem interval. In vitro and in cultured cells, we show that tau catabolism is slowed by blockade of CatD proteolytic activity, including via competitive inhibition by Aß42. CONCLUSIONS: Our findings support a major role for CatD in the proteostasis of both Aß and tau in vivo. To our knowledge, the CatD-KO mouse line is the only model to develop detectable Aß accumulation and profound tauopathy in the absence of overexpression of hAPP or human tau with disease-associated mutations. Given that tauopathy emerges from disruption of CatD, which can itself be potently inhibited by Aß42, our findings suggest that impaired CatD activity may represent a key mechanism linking amyloid accumulation and tauopathy in AD.


Assuntos
Doença de Alzheimer , Tauopatias , Idoso , Animais , Humanos , Camundongos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Catepsina D , Modelos Animais de Doenças , Camundongos Knockout , Camundongos Transgênicos , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/genética , Tauopatias/metabolismo
14.
Mol Brain ; 17(1): 21, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38685105

RESUMO

Dopamine plays important roles in cognitive function and inflammation and therefore is involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). Drugs that increase or maintain dopamine levels in the brain could be a therapeutic strategy for AD. However, the effects of dopamine and its precursor levodopa (L-DOPA) on Aß/tau pathology in vivo and the underlying molecular mechanisms have not been studied in detail. Here, we investigated whether L-DOPA treatment alters neuroinflammation, Aß pathology, and tau phosphorylation in 5xFAD mice, a model of AD. We found that L-DOPA administration significantly reduced microgliosis and astrogliosis in 5xFAD mice. In addition, L-DOPA treatment significantly decreased Aß plaque number by upregulating NEP and ADAM17 levels in 5xFAD mice. However, L-DOPA-treated 5xFAD mice did not exhibit changes in tau hyperphosphorylation or tau kinase levels. These data suggest that L-DOPA alleviates neuroinflammatory responses and Aß pathology but not tau pathology in this mouse model of AD.


Assuntos
Proteína ADAM17 , Doença de Alzheimer , Peptídeos beta-Amiloides , Modelos Animais de Doenças , Levodopa , Camundongos Transgênicos , Doenças Neuroinflamatórias , Proteínas tau , Animais , Levodopa/farmacologia , Doença de Alzheimer/patologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Proteína ADAM17/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/metabolismo , Fosforilação/efeitos dos fármacos , Placa Amiloide/patologia , Placa Amiloide/metabolismo , Camundongos , Encéfalo/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo
15.
Neuromolecular Med ; 26(1): 15, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653878

RESUMO

Lycium barbarum polysaccharide (LBP) have a certain curative effect on hypoglycemic and neuroprotective effects, but the specific mechanism is unclear and needs to be further explored. This study aimed to clarify the mechanisms of LBP in the treatment of ICV-STZ mice model of AD from the perspectives of insulin resistance, IRS1/PI3K/AKT signaling pathway, and synaptic protein expression. We used male C57BL/6J mice injected with STZ (3 mg/kg) in the lateral ventricle as an AD model. After treatment with LBP, the learning and memory abilities of ICV-STZ mice were enhanced, and the pathological changes in brain tissue were alleviated. LBP can regulate the expression of proteins related to the IRS1/PI3K/AKT signaling pathway and thereby reducing Aß deposition and tau protein phosphorylation in the brain of ICV-STZ mice. In addition, LBP also can up-regulate the expression of synaptic proteins. The results indicated that LBP played a neuroprotective role by regulating the IRS1/PI3K/AKT pathway, inhibiting tau protein hyperphosphorylation and improving the expression levels of synapse-related proteins.


Assuntos
Doença de Alzheimer , Medicamentos de Ervas Chinesas , Proteínas Substratos do Receptor de Insulina , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Proteínas tau , Animais , Masculino , Camundongos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Plasticidade Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estreptozocina , Sinapses/efeitos dos fármacos , Proteínas tau/metabolismo
16.
Proc Natl Acad Sci U S A ; 121(15): e2320456121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568974

RESUMO

Prion-like spread of disease-specific tau conformers is a hallmark of all tauopathies. A 19-residue probe peptide containing a P301L mutation and spanning the R2/R3 splice junction of tau folds and stacks into seeding-competent fibrils and induces aggregation of 4R, but not 3R tau. These tau peptide fibrils propagate aggregated intracellular tau over multiple generations, have a high ß-sheet content, a colocalized lipid signal, and adopt a well-defined U-shaped fold found in 4R tauopathy brain-derived fibrils. Fully atomistic replica exchange molecular dynamics (MD) simulations were used to compute the free energy landscapes of the conformational ensemble of the peptide monomers. These identified an aggregation-prohibiting ß-hairpin structure and an aggregation-competent U-fold unique to 4R tauopathy fibrils. Guided by MD simulations, we identified that the N-terminal-flanking residues to PHF6, which slightly vary between 4R and 3R isoforms, modulate seeding. Strikingly, when a single amino acid switch at position 305 replaced the serine of 4R tau with a lysine from the corresponding position in the first repeat of 3R tau, the seeding induced by the 19-residue peptide was markedly reduced. Conversely, a 4R tau mimic with three repeats, prepared by replacing those amino acids in the first repeat with those amino acids uniquely present in the second repeat, recovered aggregation when exposed to the 19-residue peptide. These peptide fibrils function as partial prions to recruit naive 4R tau-ten times the length of the peptide-and serve as a critical template for 4R tauopathy propagation. These results hint at opportunities for tau isoform-specific therapeutic interventions.


Assuntos
Príons , Tauopatias , Humanos , Proteínas tau/metabolismo , Tauopatias/metabolismo , Isoformas de Proteínas/metabolismo , Príons/metabolismo , Peptídeos , Aminoácidos
17.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673855

RESUMO

Iron accumulation in the brain is a common feature of many neurodegenerative diseases. Its involvement spans across the main proteinopathies involving tau, amyloid-beta, alpha-synuclein, and TDP-43. Accumulating evidence supports the contribution of iron in disease pathologies, but the delineation of its pathogenic role is yet challenged by the complex involvement of iron in multiple neurotoxicity mechanisms and evidence supporting a reciprocal influence between accumulation of iron and protein pathology. Here, we review the major proteinopathy-specific observations supporting four distinct hypotheses: (1) iron deposition is a consequence of protein pathology; (2) iron promotes protein pathology; (3) iron protects from or hinders protein pathology; and (4) deposition of iron and protein pathology contribute parallelly to pathogenesis. Iron is an essential element for physiological brain function, requiring a fine balance of its levels. Understanding of disease-related iron accumulation at a more intricate and systemic level is critical for advancements in iron chelation therapies.


Assuntos
Ferro , Doenças Neurodegenerativas , Humanos , Ferro/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , alfa-Sinucleína/metabolismo , Proteínas de Ligação a DNA/metabolismo , Quelantes de Ferro/uso terapêutico
18.
Pflugers Arch ; 476(5): 779-795, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38536493

RESUMO

The American Diabetes Association guidelines (2021) confirmed the importance of raising public awareness of diabetes-induced cognitive impairment, highlighting the links between poor glycemic control and cognitive impairment. The characteristic brain lesions of cognitive dysfunction are neurofibrillary tangles (NFT) and senile plaques formed of amyloid-ß deposition, glycogen synthase kinase 3 beta (GSK3ß), and highly homologous kinase tau tubulin kinase 1 (TTBK1) can phosphorylate Tau proteins at different sites, overexpression of these enzymes produces extensive phosphorylation of Tau proteins making them insoluble and enhance NFT formation, which impairs cognitive functions. The current study aimed to investigate the potential contribution of liraglutide and pramlintide in the prevention of diabetes-induced cognitive dysfunction and their effect on the PI3K/AKT/GSK-3ß/TTBK1 pathway in type 2 diabetic (T2D) rat model. T2D was induced by administration of a high-fat diet for 10 weeks, then injection of a single dose of streptozotocin (STZ); treatment was started with either pramlintide (200 µg/kg/day sc) or liraglutide (0.6 mg/kg/day sc) for 6 weeks in addition to the HFD. At the end of the study, cognitive functions were assessed by novel object recognition and T-maze tests. Then, rats were sacrificed for biochemical and histological assessment of the hippocampal tissue. Both pramlintide and liraglutide treatment revealed equally adequate control of diabetes, prevented the decline in memory function, and increased PI3K/AKT expression while decreasing GSK-3ß/TTBK1 expression; however, liraglutide significantly decreased the number of Tau positive cells better than pramlintide did. This study confirmed that pramlintide and liraglutide are promising antidiabetic medications that could prevent associated cognitive disorders in different mechanisms.


Assuntos
Disfunção Cognitiva , Dieta Hiperlipídica , Glicogênio Sintase Quinase 3 beta , Liraglutida , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Proteínas tau , Animais , Proteínas tau/metabolismo , Ratos , Glicogênio Sintase Quinase 3 beta/metabolismo , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Masculino , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Ratos Sprague-Dawley , Estreptozocina , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico
19.
Int J Biol Macromol ; 266(Pt 2): 130802, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492709

RESUMO

Tau protein is an intrinsically disordered protein that plays a key role in Alzheimer's disease (AD). In brains of AD patients, Tau occurs abnormally phosphorylated and aggregated in neurofibrillary tangles (NFTs). Together with Tau, 14-3-3 proteins - abundant cytosolic dimeric proteins - were found colocalized in the NFTs. However, so far, the molecular mechanism of the process leading to pathological changes in Tau structure as well as the direct involvement of 14-3-3 proteins are not well understood. Here, we aimed to reveal the effects of phosphorylation by protein kinase A (PKA) on Tau structural preferences and provide better insight into the interaction between Tau and 14-3-3 proteins. We also addressed the impact of monomerization-inducing phosphorylation of 14-3-3 at S58 on the binding to Tau protein. Using multidimensional nuclear magnetic resonance spectroscopy (NMR), chemical cross-linking analyzed by mass spectrometry (MS) and PAGE, we unveiled differences in their binding affinity, stoichiometry, and interfaces with single-residue resolution. We revealed that the interaction between 14-3-3 and Tau proteins is mediated not only via the 14-3-3 amphipathic binding grooves, but also via less specific interactions with 14-3-3 protein surface and, in the case of monomeric 14-3-3, also partially via the exposed dimeric interface. In addition, the hyperphosphorylation of Tau changes its affinity to 14-3-3 proteins. In conclusion, we propose quite complex interaction mode between the Tau and 14-3-3 proteins.


Assuntos
Proteínas 14-3-3 , Ligação Proteica , Proteínas tau , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/química , Proteínas tau/metabolismo , Proteínas tau/química , Humanos , Fosforilação , Multimerização Proteica , Doença de Alzheimer/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Moleculares
20.
Biomolecules ; 14(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38540715

RESUMO

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by cognitive decline and neuropathological hallmarks, including ß-amyloid (Aß) plaques, Tau tangles, synaptic dysfunction and neurodegeneration. Emerging evidence suggests that abnormal iron (Fe) metabolism plays a role in AD pathogenesis, but the precise spatial distribution of the Fe and its transporters, such as ferroportin (FPN), within affected brain regions remains poorly understood. This study investigates the distribution of Fe and FPN in the CA1 region of the human hippocampus in AD patients with a micrometer lateral resolution using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). For this purpose, we visualized and quantified Fe and FPN in three separated CA1 layers: stratum molecular-radial (SMR), stratum pyramidal (SP) and stratum oriens (SO). Additionally, chromogenic immunohistochemistry was used to examine the distribution and colocalization with Tau and Aß proteins. The results show that Fe accumulation was significantly higher in AD brains, particularly in SMR and SO. However, FPN did not present significantly changes in AD, although it showed a non-uniform distribution across CA1 layers, with elevated levels in SP and SO. Interestingly, minimal overlap was observed between Fe and FPN signals, and none between Fe and areas rich in neurofibrillary tangles (NFTs) or neuritic plaques (NP). In conclusion, the lack of correlation between Fe and FPN signals suggests complex regulatory mechanisms in AD Fe metabolism and deposition. These findings highlight the complexity of Fe dysregulation in AD and its potential role in disease progression.


Assuntos
Doença de Alzheimer , Proteínas de Transporte de Cátions , Terapia a Laser , Humanos , Doença de Alzheimer/metabolismo , Ferro/metabolismo , Hipocampo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA