Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 492
Filtrar
1.
Protein Sci ; 33(7): e5080, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38896002

RESUMO

The Gag-Pol polyprotein in human immunodeficiency virus type I (HIV-1) encodes enzymes that are essential for virus replication: protease (PR), reverse transcriptase (RT), and integrase (IN). The mature forms of PR, RT and IN are homodimer, heterodimer and tetramer, respectively. The precise mechanism underlying the formation of dimer or tetramer is not yet understood. Here, to gain insight into the dimerization of PR and RT in the precursor, we prepared a model precursor, PR-RT, incorporating an inactivating mutation at the PR active site, D25A, and including two residues in the p6* region, fused to a SUMO-tag, at the N-terminus of the PR region. We also prepared two mutants of PR-RT containing a dimer dissociation mutation either in the PR region, PR(T26A)-RT, or in the RT region, PR-RT(W401A). Size exclusion chromatography showed both monomer and dimer fractions in PR-RT and PR(T26A)-RT, but only monomer in PR-RT(W401A). SEC experiments of PR-RT in the presence of protease inhibitor, darunavir, significantly enhanced the dimerization. Additionally, SEC results suggest an estimated PR-RT dimer dissociation constant that is higher than that of the mature RT heterodimer, p66/p51, but slightly lower than the premature RT homodimer, p66/p66. Reverse transcriptase assays and RT maturation assays were performed as tools to assess the effects of the PR dimer-interface on these functions. Our results consistently indicate that the RT dimer-interface plays a crucial role in the dimerization in PR-RT, whereas the PR dimer-interface has a lesser role.


Assuntos
Protease de HIV , Transcriptase Reversa do HIV , HIV-1 , Multimerização Proteica , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/metabolismo , Transcriptase Reversa do HIV/genética , Protease de HIV/química , Protease de HIV/genética , Protease de HIV/metabolismo , HIV-1/enzimologia , HIV-1/genética , HIV-1/química , Humanos , Modelos Moleculares , Dimerização
2.
Antimicrob Agents Chemother ; 68(4): e0137323, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38380945

RESUMO

Protease inhibitors (PIs) remain an important component of antiretroviral therapy for the treatment of HIV-1 infection due to their high genetic barrier to resistance development. Nevertheless, the two most commonly prescribed HIV PIs, atazanavir and darunavir, still require co-administration with a pharmacokinetic boosting agent to maintain sufficient drug plasma levels which can lead to undesirable drug-drug interactions. Herein, we describe GS-9770, a novel investigational non-peptidomimetic HIV PI with unboosted once-daily oral dosing potential due to improvements in its metabolic stability and its pharmacokinetic properties in preclinical animal species. This compound demonstrates potent inhibitory activity and high on-target selectivity for recombinant HIV-1 protease versus other aspartic proteases tested. In cell culture, GS-9770 inhibits Gag polyprotein cleavage and shows nanomolar anti-HIV-1 potency in primary human cells permissive to HIV-1 infection and against a broad range of HIV subtypes. GS-9770 demonstrates an improved resistance profile against a panel of patient-derived HIV-1 isolates with resistance to atazanavir and darunavir. In resistance selection experiments, GS-9770 prevented the emergence of breakthrough HIV-1 variants at all fixed drug concentrations tested and required multiple protease substitutions to enable outgrowth of virus exposed to escalating concentrations of GS-9770. This compound also remained fully active against viruses resistant to drugs from other antiviral classes and showed no in vitro antagonism when combined pairwise with drugs from other antiretroviral classes. Collectively, these preclinical data identify GS-9770 as a potent, non-peptidomimetic once-daily oral HIV PI with potential to overcome the persistent requirement for pharmacological boosting with this class of antiretroviral agents.


Assuntos
Infecções por HIV , Inibidores da Protease de HIV , HIV-1 , Humanos , Inibidores da Protease de HIV/farmacologia , Inibidores da Protease de HIV/uso terapêutico , Darunavir/farmacologia , Darunavir/uso terapêutico , Sulfato de Atazanavir/farmacologia , Sulfato de Atazanavir/uso terapêutico , Farmacorresistência Viral , HIV-1/genética , Antirretrovirais/uso terapêutico , Infecções por HIV/tratamento farmacológico , Protease de HIV/genética , Protease de HIV/metabolismo
3.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339086

RESUMO

Acquired immunodeficiency syndrome (AIDS) is caused by human immunodeficiency virus (HIV). HIV protease, reverse transcriptase, and integrase are targets of current drugs to treat the disease. However, anti-viral drug-resistant strains have emerged quickly due to the high mutation rate of the virus, leading to the demand for the development of new drugs. One attractive target is Gag-Pol polyprotein, which plays a key role in the life cycle of HIV. Recently, we found that a combination of M50I and V151I mutations in HIV-1 integrase can suppress virus release and inhibit the initiation of Gag-Pol autoprocessing and maturation without interfering with the dimerization of Gag-Pol. Additional mutations in integrase or RNase H domain in reverse transcriptase can compensate for the defect. However, the molecular mechanism is unknown. There is no tertiary structure of the full-length HIV-1 Pol protein available for further study. Therefore, we developed a workflow to predict the tertiary structure of HIV-1 NL4.3 Pol polyprotein. The modeled structure has comparable quality compared with the recently published partial HIV-1 Pol structure (PDB ID: 7SJX). Our HIV-1 NL4.3 Pol dimer model is the first full-length Pol tertiary structure. It can provide a structural platform for studying the autoprocessing mechanism of HIV-1 Pol and for developing new potent drugs. Moreover, the workflow can be used to predict other large protein structures that cannot be resolved via conventional experimental methods.


Assuntos
Infecções por HIV , HIV-1 , Produtos do Gene pol do Vírus da Imunodeficiência Humana , Humanos , Produtos do Gene pol/genética , Produtos do Gene pol/metabolismo , Infecções por HIV/tratamento farmacológico , Protease de HIV/genética , Protease de HIV/metabolismo , HIV-1/genética , HIV-1/metabolismo , Poliproteínas/genética , DNA Polimerase Dirigida por RNA/metabolismo , Produtos do Gene pol do Vírus da Imunodeficiência Humana/química
4.
Sci Rep ; 14(1): 3639, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351065

RESUMO

The prevalence of HIV-1 infection continues to pose a significant global public health issue, highlighting the need for antiretroviral drugs that target viral proteins to reduce viral replication. One such target is HIV-1 protease (PR), responsible for cleaving viral polyproteins, leading to the maturation of viral proteins. While darunavir (DRV) is a potent HIV-1 PR inhibitor, drug resistance can arise due to mutations in HIV-1 PR. To address this issue, we developed a novel approach using the fragment molecular orbital (FMO) method and structure-based drug design to create DRV analogs. Using combinatorial programming, we generated novel analogs freely accessible via an on-the-cloud mode implemented in Google Colab, Combined Analog generator Tool (CAT). The designed analogs underwent cascade screening through molecular docking with HIV-1 PR wild-type and major mutations at the active site. Molecular dynamics (MD) simulations confirmed the assess ligand binding and susceptibility of screened designed analogs. Our findings indicate that the three designed analogs guided by FMO, 19-0-14-3, 19-8-10-0, and 19-8-14-3, are superior to DRV and have the potential to serve as efficient PR inhibitors. These findings demonstrate the effectiveness of our approach and its potential to be used in further studies for developing new antiretroviral drugs.


Assuntos
Infecções por HIV , Inibidores da Protease de HIV , HIV-1 , Humanos , Darunavir/farmacologia , Inibidores da Protease de HIV/farmacologia , Inibidores da Protease de HIV/química , HIV-1/genética , Simulação de Acoplamento Molecular , Sulfonamidas/farmacologia , Proteínas Virais/genética , Protease de HIV/metabolismo , Mutação , Farmacorresistência Viral/genética
5.
Viruses ; 15(3)2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36992421

RESUMO

Human immunodeficiency virus 1 (HIV-1) viral protease (PR) is one of the most studied viral enzymes and a crucial antiviral target. Despite its well-characterized role in virion maturation, an increasing body of research is starting to focus on its ability to cleave host cell proteins. Such findings are apparently in contrast with the dogma of HIV-1 PR activity being restricted to the interior of nascent virions and suggest catalytic activity within the host cell environment. Given the limited amount of PR present in the virion at the time of infection, such events mainly occur during late viral gene expression, mediated by newly synthesized Gag-Pol polyprotein precursors, rather than before proviral integration. HIV-1 PR mainly targets proteins involved in three different processes: those involved in translation, those controlling cell survival, and restriction factors responsible for innate/intrinsic antiviral responses. Indeed, by cleaving host cell translation initiation factors, HIV-1 PR can impair cap-dependent translation, thus promoting IRES-mediated translation of late viral transcripts and viral production. By targeting several apoptotic factors, it modulates cell survival, thus promoting immune evasion and viral dissemination. Additionally, HIV-1 PR counteracts restriction factors incorporated in the virion that would otherwise interfere with nascent virus vitality. Thus, HIV-1 PR appears to modulate host cell function at different times and locations during its life cycle, thereby ensuring efficient viral persistency and propagation. However, we are far from having a complete picture of PR-mediated host cell modulation, which is emerging as a field that needs further investigation.


Assuntos
Proteínas de Fusão gag-pol , Protease de HIV , Humanos , Protease de HIV/genética , Protease de HIV/metabolismo , Proteólise , Proteínas de Fusão gag-pol/metabolismo , Endopeptidases/metabolismo , Vírion/metabolismo , Antivirais
6.
PLoS One ; 17(7): e0271671, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35867649

RESUMO

The retropepsin (PR) of the Bovine leukemia virus (BLV) plays, as in other retroviruses, a crucial role in the transition from the non-infective viral particle to the infective virion by processing the polyprotein Gag. PR is expressed as an immature precursor associated with Gag, after an occasional -1 ribosomal frameshifting event. Self-hydrolysis of PR at specific N- and C-terminal sites releases the monomer that dimerizes giving rise to the active protease. We designed a strategy to express BLV PR in E. coli as a fusion protein with maltose binding protein, with a six-histidine tag at its N-terminal end, and bearing a tobacco etch virus protease hydrolysis site. This allowed us to obtain soluble and mature recombinant PR in relatively good yields, with exactly the same amino acid composition as the native protein. As PR presents relative promiscuity for the hydrolysis sites we designed four fluorogenic peptide substrates based on Förster resonance energy transfer (FRET) in order to characterize the activity of the recombinant enzyme. These substrates opened the way to perform kinetic studies, allowing us to characterize the dimer-monomer equilibrium. Furthermore, we obtained kinetic evidence for the existence of a conformational change that enables the interaction with the substrate. These results constitute a starting point for the elucidation of the kinetic properties of BLV-PR, and may be relevant not only to improve the chemical warfare against this virus but also to better understand other viral PRs.


Assuntos
Ácido Aspártico Proteases , Vírus da Leucemia Bovina , Dimerização , Escherichia coli/genética , Escherichia coli/metabolismo , Protease de HIV/metabolismo , Cinética , Vírus da Leucemia Bovina/genética , Vírus da Leucemia Bovina/metabolismo , Peptídeo Hidrolases/metabolismo
7.
Viruses ; 14(6)2022 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35746649

RESUMO

HIV-1 protease (PR) is a viral enzyme that cleaves the Gag and Gag-Pol polyprotein precursors to convert them into their functional forms, a process which is essential to generate infectious viral particles. Due to its broad substrate specificity, HIV-1 PR can also cleave certain host cell proteins. Several studies have identified host cell substrates of HIV-1 PR and described the potential impact of their cleavage on HIV-1-infected cells. Of particular interest is the interaction between PR and the caspase recruitment domain-containing protein 8 (CARD8) inflammasome. A recent study demonstrated that CARD8 can sense HIV-1 PR activity and induce cell death. While PR typically has low levels of intracellular activity prior to viral budding, premature PR activation can be achieved using certain non-nucleoside reverse transcriptase inhibitors (NNRTIs), resulting in CARD8 cleavage and downstream pyroptosis. Used together with latency reversal agents, the induction of premature PR activation to trigger CARD8-mediated cell killing may help eliminate latent reservoirs in people living with HIV. This represents a novel strategy of utilizing PR as an antiviral target through premature activation rather than inhibition. In this review, we discuss the viral and host substrates of HIV-1 protease and highlight potential applications and advantages of targeting CARD8 sensing of HIV-1 PR.


Assuntos
Protease de HIV , HIV-1 , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas de Fusão gag-pol/metabolismo , Protease de HIV/metabolismo , HIV-1/fisiologia , Humanos , Proteínas de Neoplasias/metabolismo , Inibidores da Transcriptase Reversa/farmacologia
8.
Protein Sci ; 31(7): e4366, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35762719

RESUMO

The infectivity of HIV-1 requires its protease (PR) cleave multiple cut-sites with low sequence similarity. The diversity of cleavage sites has made it challenging to investigate the underlying sequence properties that determine binding and turnover of substrates by PR. We engineered a mutational scanning approach utilizing yeast display, flow cytometry, and deep sequencing to systematically measure the impacts of all individual amino acid changes at 12 positions in three different cut-sites (MA/CA, NC/p1, and p1/p6). The resulting fitness landscapes revealed common physical features that underlie cutting of all three cut-sites at the amino acid positions closest to the scissile bond. In contrast, positions more than two amino acids away from the scissile bond exhibited a strong dependence on the sequence background of the rest of the cut-site. We observed multiple amino acid changes in cut-sites that led to faster cleavage rates, including a preference for negative charge five and six amino acids away from the scissile bond at locations where the surface of protease is positively charged. Analysis of individual cut sites using full-length matrix-capsid proteins indicate that long-distance sequence context can contribute to cutting efficiency such that analyses of peptides or shorter engineered constructs including those in this work should be considered carefully. This work provides a framework for understanding how diverse substrates interact with HIV-1 PR and can be extended to investigate other viral PRs with similar properties.


Assuntos
Protease de HIV , HIV-1 , Aminoácidos/metabolismo , Endopeptidases , Protease de HIV/metabolismo , HIV-1/genética , Peptídeos
9.
Biochem J ; 479(4): 479-501, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35089310

RESUMO

A genetic selection system for activity of HIV protease is described that is based on a synthetic substrate constructed as a modified AraC regulatory protein that when cleaved stimulate l-arabinose metabolism in an Escherichia coli araC strain. Growth stimulation on selective plates was shown to depend on active HIV protease and the scissile bond in the substrate. In addition, the growth of cells correlated well with the established cleavage efficiency of the sites in the viral polyprotein, Gag, when these sites were individually introduced into the synthetic substrate of the selection system. Plasmids encoding protease variants selected based on stimulation of cell growth in the presence of saquinavir or cleavage of a site not cleaved by wild-type protease, were indistinguishable with respect to both phenotypes. Also, both groups of selected plasmids encoded side chain substitutions known from clinical isolates or displayed different side chain substitutions but at identical positions. One highly frequent side chain substitution, E34V, not regarded as a major drug resistance substitution was found in variants obtained under both selective conditions and is suggested to improve protease processing of the synthetic substrate. This substitution is away from the substrate-binding cavity and together with other substitutions in the selected reading frames supports the previous suggestion of a substrate-binding site extended from the active site binding pocket itself.


Assuntos
Fármacos Anti-HIV/farmacocinética , Farmacorresistência Viral/genética , Protease de HIV/genética , Substituição de Aminoácidos , Fator de Transcrição AraC/genética , Arabinose/metabolismo , Quimosina/metabolismo , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Fusão gag-pol/metabolismo , Produtos do Gene gag/metabolismo , Genes araC , Protease de HIV/química , Protease de HIV/isolamento & purificação , Protease de HIV/metabolismo , Modelos Moleculares , Mutação de Sentido Incorreto , Mutação Puntual , Conformação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saquinavir/antagonistas & inibidores , Saquinavir/farmacologia , Seleção Genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Especificidade por Substrato
10.
Langmuir ; 37(49): 14407-14418, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34851643

RESUMO

HIV-1 protease (PR) is considered to be the main targets of anti-AIDS drug design because of its role in the proteolytic processing of viral polyproteins. However, the emergence of drug-resistant HIV has become a major problem in the therapy of HIV-1-infected patients. Focused on the complexes of wild type (WT) PR and two mutant PRs (V32I/L33F/I54M/V82I and V32I/L33F/I54M/I84 V) with inhibitors Darunavir (DRV) and KNI-1657 (KNI), respectively, we have conducted research on the conformational dynamics and the resistance mechanism caused by residue mutations through multiple molecular dynamics (MD) simulations combined with an energy (MM-PBSA and solvated interaction energy (SIE)) prediction. The results indicate that mutated residues of PR alter the distance between flap regions and catalytic sites, the volume of the inner catalytic site, and the curling degree of the flap tips, thereby affecting DRV and KNI inhibitor binding to PR. These mutated residues reduced the binding affinity of the two mutant PRs to DRV, resulting in drug resistance, whereas the two mutant PRs increase the binding affinity with KNI, indicating they enhance the sensitivity to KNI. Compared with the WT PR, the changes in van der Waals interaction and electrostatic interaction in the two variant PRs play a vital part in the binding of PR with DRV and KNI. These results may supply valuable guidance for the design of anti-AIDS drugs targeting PR.


Assuntos
Inibidores da Protease de HIV , Simulação de Dinâmica Molecular , Sítios de Ligação , Darunavir , Protease de HIV/genética , Protease de HIV/metabolismo , Inibidores da Protease de HIV/farmacologia , Humanos , Mutação
11.
Bioorg Med Chem Lett ; 49: 128267, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34271071

RESUMO

In the present study, we newly synthesized four types of novel fullerene derivatives: pyridinium/ethyl ester-type derivatives 3b-3l, pyridinium/carboxylic acid-type derivatives 4a, 4e, 4f, pyridinium/amide-type derivative 5a, and pyridinium/2-morpholinone-type derivative 6a. Among the assessed compounds, cis-3c, cis-3d, trans-3e, trans-3h, cis-3l, cis-4e, cis-4f, trans-4f, and cis-5a were found to inhibit HIV-1 reverse transcriptase (HIV-RT), HIV-1 protease (HIV-PR), and HCV NS5B polymerase (HCV NS5B), with IC50 values observed in the micromolar range. Cellular uptake of pyridinium/ethyl ester-type derivatives was higher than that of corresponding pyridinium/carboxylic acid-type derivatives and pyridinium/amide-type derivatives. This result might indicate that pyridinium/ethyl ester-type derivatives are expected to be lead compounds for multitargeting drugs to treat HIV/HCV coinfection.


Assuntos
Fármacos Anti-HIV/farmacologia , Fulerenos/farmacologia , Inibidores da Protease de HIV/farmacologia , Compostos de Piridínio/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/toxicidade , Linhagem Celular Tumoral , Fulerenos/química , Fulerenos/toxicidade , Protease de HIV/metabolismo , Inibidores da Protease de HIV/síntese química , Inibidores da Protease de HIV/toxicidade , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/enzimologia , Hepacivirus/enzimologia , Humanos , Camundongos , Estrutura Molecular , Células NIH 3T3 , Compostos de Piridínio/síntese química , Compostos de Piridínio/toxicidade , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/toxicidade , Relação Estrutura-Atividade
12.
J Med Chem ; 64(10): 6706-6719, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34006103

RESUMO

Cryptococcosis is an invasive infection that accounts for 15% of AIDS-related fatalities. Still, treating cryptococcosis remains a significant challenge due to the poor availability of effective antifungal therapies and emergence of drug resistance. Interestingly, protease inhibitor components of antiretroviral therapy regimens have shown some clinical benefits in these opportunistic infections. We investigated Major aspartyl peptidase 1 (May1), a secreted Cryptococcus neoformans protease, as a possible target for the development of drugs that act against both fungal and retroviral aspartyl proteases. Here, we describe the biochemical characterization of May1, present its high-resolution X-ray structure, and provide its substrate specificity analysis. Through combinatorial screening of 11,520 compounds, we identified a potent inhibitor of May1 and HIV protease. This dual-specificity inhibitor exhibits antifungal activity in yeast culture, low cytotoxicity, and low off-target activity against host proteases and could thus serve as a lead compound for further development of May1 and HIV protease inhibitors.


Assuntos
Antifúngicos/química , Ácido Aspártico Proteases/antagonistas & inibidores , Cryptococcus neoformans/enzimologia , Proteínas Fúngicas/antagonistas & inibidores , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/efeitos dos fármacos , HIV/enzimologia , Protease de HIV/química , Protease de HIV/metabolismo , Simulação de Dinâmica Molecular , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Relação Estrutura-Atividade , Especificidade por Substrato
13.
Nat Commun ; 12(1): 1362, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649317

RESUMO

Therapeutic application of RNA viruses as oncolytic agents or gene vectors requires a tight control of virus activity if toxicity is a concern. Here we present a regulator switch for RNA viruses using a conditional protease approach, in which the function of at least one viral protein essential for transcription and replication is linked to autocatalytical, exogenous human immunodeficiency virus (HIV) protease activity. Virus activity can be en- or disabled by various HIV protease inhibitors. Incorporating the HIV protease dimer in the genome of vesicular stomatitis virus (VSV) into the open reading frame of either the P- or L-protein resulted in an ON switch. Here, virus activity depends on co-application of protease inhibitor in a dose-dependent manner. Conversely, an N-terminal VSV polymerase tag with the HIV protease dimer constitutes an OFF switch, as application of protease inhibitor stops virus activity. This technology may also be applicable to other potentially therapeutic RNA viruses.


Assuntos
Vírus de RNA/genética , Vírus de RNA/fisiologia , Replicação Viral/genética , Animais , Linhagem Celular Tumoral , Genoma Viral , Protease de HIV/química , Protease de HIV/metabolismo , Inibidores da Protease de HIV/farmacologia , Humanos , Camundongos Endogâmicos NOD , Fosfoproteínas/metabolismo , Multimerização Proteica , Vírus de RNA/efeitos dos fármacos , Vesiculovirus/efeitos dos fármacos , Vesiculovirus/genética , Vesiculovirus/fisiologia , Replicação Viral/efeitos dos fármacos
14.
Science ; 371(6535)2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33542150

RESUMO

HIV-1 has high mutation rates and exists as mutant swarms within the host. Rapid evolution of HIV-1 allows the virus to outpace the host immune system, leading to viral persistence. Approaches to targeting immutable components are needed to clear HIV-1 infection. Here, we report that the caspase recruitment domain-containing protein 8 (CARD8) inflammasome senses HIV-1 protease activity. HIV-1 can evade CARD8 sensing because its protease remains inactive in infected cells before viral budding. Premature intracellular activation of the viral protease triggered CARD8 inflammasome-mediated pyroptosis of HIV-1-infected cells. This strategy led to the clearance of latent HIV-1 in patient CD4+ T cells after viral reactivation. Thus, our study identifies CARD8 as an inflammasome sensor of HIV-1, which holds promise as a strategy for the clearance of persistent HIV-1 infection.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Infecções por HIV/virologia , Protease de HIV/metabolismo , HIV-1/fisiologia , Inflamassomos/metabolismo , Proteínas de Neoplasias/metabolismo , Piroptose , Alcinos/farmacologia , Fármacos Anti-HIV/farmacologia , Benzoxazinas/farmacologia , Proteínas Adaptadoras de Sinalização CARD/química , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD4-Positivos/virologia , Caspase 1/metabolismo , Ciclopropanos/farmacologia , Ativação Enzimática , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Humanos , Macrófagos/fisiologia , Macrófagos/virologia , Proteínas de Neoplasias/química , Inibidores da Transcriptase Reversa/farmacologia , Rilpivirina/farmacologia , Células THP-1 , Latência Viral
15.
Sci Rep ; 10(1): 18101, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093566

RESUMO

HIV encodes an aspartyl protease that is activated during, or shortly after, budding of viral particles from the surface of infected cells. Protease-mediated cleavage of viral polyproteins is essential to generating infectious viruses, a process known as 'maturation' that is the target of FDA-approved antiretroviral drugs. Most assays to monitor protease activity rely on bulk analysis of millions of viruses and obscure potential heterogeneity of protease activation within individual particles. In this study we used nanoscale flow cytometry in conjunction with an engineered FRET reporter called VIral ProteasE Reporter (VIPER) to investigate heterogeneity of protease activation in individual, patient-derived viruses. We demonstrate previously unappreciated interpatient variation in HIV protease processing efficiency that impacts viral infectivity. Additionally, monitoring of protease activity in individual virions distinguishes between drug sensitivity or resistance to protease inhibitors in patient-derived samples. These findings demonstrate the feasibility of monitoring enzymatic processes using nanoscale flow cytometry and highlight the potential of this technology for translational clinical discovery, not only for viruses but also other submicron particles including exosomes, microvesicles, and bacteria.


Assuntos
Farmacorresistência Viral , Citometria de Fluxo/métodos , Infecções por HIV/virologia , Inibidores da Protease de HIV/farmacologia , Protease de HIV/metabolismo , HIV-1/enzimologia , Vírion/enzimologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/enzimologia , HIV-1/efeitos dos fármacos , HIV-1/isolamento & purificação , Humanos , Células Jurkat , Vírion/efeitos dos fármacos , Vírion/isolamento & purificação
16.
Molecules ; 25(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899354

RESUMO

Peptidyl fluoromethyl ketones occupy a pivotal role in the current scenario of synthetic chemistry, thanks to their numerous applications as inhibitors of hydrolytic enzymes. The insertion of one or more fluorine atoms adjacent to a C-terminal ketone moiety greatly modifies the physicochemical properties of the overall substrate, especially by increasing the reactivity of this functionalized carbonyl group toward nucleophiles. The main application of these peptidyl α-fluorinated ketones in medicinal chemistry relies in their ability to strongly and selectively inhibit serine and cysteine proteases. These compounds can be used as probes to study the proteolytic activity of the aforementioned proteases and to elucidate their role in the insurgence and progress on several diseases. Likewise, if the fluorinated methyl ketone moiety is suitably connected to a peptidic backbone, it may confer to the resulting structure an excellent substrate peculiarity and the possibility of being recognized by a specific subclass of human or pathogenic proteases. Therefore, peptidyl fluoromethyl ketones are also currently highly exploited for the target-based design of compounds for the treatment of topical diseases such as various types of cancer and viral infections.


Assuntos
Clorometilcetonas de Aminoácidos/síntese química , Fenilalanina/análogos & derivados , Inibidores de Serina Proteinase/síntese química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Clorometilcetonas de Aminoácidos/farmacologia , Química Farmacêutica/métodos , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , HIV/efeitos dos fármacos , HIV/enzimologia , Protease de HIV/química , Protease de HIV/metabolismo , Humanos , Cinética , Fenilalanina/síntese química , Fenilalanina/farmacologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Inibidores de Serina Proteinase/farmacologia , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
17.
Bioorg Med Chem ; 28(16): 115623, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32690263

RESUMO

Newly designed HIV-1 protease inhibitors that maximize interactions with the protein backbone, especially in the form of hydrogen bonds, may enhance the antiviral potency of these compounds and minimize acquisition of drug-resistant mutations. Herein, we described a series of new HIV-1 PIs containing phenols as the P2 ligands and chiral isopropanol as the P1' ligands, in combination with 4-trifluoromethylphenylsulfonamide or 4-nitrophenylsulfonamide as the P2' ligands. And most of these compounds exhibited nanomolar inhibitory potency. In particular, inhibitors 13c and 13e with 4-trifluoromethylphenylsulfonamide as the P2' ligand and (R) - isopropanol as the P1' ligand, exhibited antiviral IC50 values of 1.64 nM and 2.33 nM, respectively. Furthermore, they also showed remarkable activity against wild-type and DRV-resistant HIV-1 variants that raised the prospect of designing more effective PIs further.


Assuntos
Desenho de Fármacos , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/farmacologia , Protease de HIV/metabolismo , HIV-1/efeitos dos fármacos , 2-Propanol/química , 2-Propanol/farmacologia , Células HEK293 , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Protease de HIV/química , HIV-1/enzimologia , Humanos , Ligantes , Fenóis/química , Fenóis/farmacologia
18.
J Chem Inf Model ; 60(12): 5771-5780, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-32530282

RESUMO

The novel coronavirus (SARS-CoV-2) has infected several million people and caused thousands of deaths worldwide since December 2019. As the disease is spreading rapidly all over the world, it is urgent to find effective drugs to treat the virus. The main protease (Mpro) of SARS-CoV-2 is one of the potential drug targets. Therefore, in this context, we used rigorous computational methods, including molecular docking, fast pulling of ligand (FPL), and free energy perturbation (FEP), to investigate potential inhibitors of SARS-CoV-2 Mpro. We first tested our approach with three reported inhibitors of SARS-CoV-2 Mpro, and our computational results are in good agreement with the respective experimental data. Subsequently, we applied our approach on a database of ∼4600 natural compounds, as well as 8 available HIV-1 protease (PR) inhibitors and an aza-peptide epoxide. Molecular docking resulted in a short list of 35 natural compounds, which was subsequently refined using the FPL scheme. FPL simulations resulted in five potential inhibitors, including three natural compounds and two available HIV-1 PR inhibitors. Finally, FEP, the most accurate and precise method, was used to determine the absolute binding free energy of these five compounds. FEP results indicate that two natural compounds, cannabisin A and isoacteoside, and an HIV-1 PR inhibitor, darunavir, exhibit a large binding free energy to SARS-CoV-2 Mpro, which is larger than that of 13b, the most reliable SARS-CoV-2 Mpro inhibitor recently reported. The binding free energy largely arises from van der Waals interaction. We also found that Glu166 forms H-bonds to all of the inhibitors. Replacing Glu166 by an alanine residue leads to ∼2.0 kcal/mol decreases in the affinity of darunavir to SARS-CoV-2 Mpro. Our results could contribute to the development of potential drugs inhibiting SARS-CoV-2.


Assuntos
Antivirais/química , Tratamento Farmacológico da COVID-19 , Inibidores da Protease de HIV/química , Protease de HIV/metabolismo , SARS-CoV-2/efeitos dos fármacos , Sequência de Aminoácidos , Antivirais/metabolismo , Antivirais/farmacologia , Sítios de Ligação , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Darunavir/química , Darunavir/farmacologia , Bases de Dados Factuais , Desenho de Fármacos , Glucosídeos/química , Glucosídeos/farmacologia , Inibidores da Protease de HIV/metabolismo , Inibidores da Protease de HIV/farmacologia , Humanos , Simulação de Acoplamento Molecular , Peptídeos/química , Fenóis/química , Fenóis/farmacologia , Ligação Proteica , Relação Estrutura-Atividade , Termodinâmica
19.
Chembiochem ; 21(21): 3051-3055, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32558168

RESUMO

Following excision from the Gag-Pol polyprotein, HIV-1 reverse transcriptase is released as an asymmetric homodimer comprising two p66 subunits that are structurally dissimilar but identical in amino acid sequence. Subsequent cleavage of the RNase H domain from only one of the subunits, denoted p66', results in the formation of the mature p66/p51 enzyme in which catalytic activity resides in the p66 subunit, and the p51 subunit (derived from p66') provides a supporting structural scaffold. Here, we probe the interaction of the p66/p66' asymmetric reverse transcriptase precursor with HIV-1 protease by pulsed Q-band double electron-electron resonance EPR spectroscopy to measure distances between nitroxide labels introduced at surface-engineered cysteine residues. The data suggest that the flexible, exposed linker between the RNaseH and connection domains in the open state of the p66' subunit binds to the active site of protease in a configuration that is similar to that of extended peptide substrates.


Assuntos
Protease de HIV/química , Transcriptase Reversa do HIV/química , Espectroscopia de Ressonância de Spin Eletrônica , Protease de HIV/metabolismo , Transcriptase Reversa do HIV/metabolismo , Modelos Moleculares
20.
J Med Chem ; 63(9): 4867-4879, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32348139

RESUMO

We describe here design, synthesis, and biological evaluation of a series of highly potent HIV-1 protease inhibitors containing stereochemically defined and unprecedented tricyclic furanofuran derivatives as P2 ligands in combination with a variety of sulfonamide derivatives as P2' ligands. These inhibitors were designed to enhance the ligand-backbone binding and van der Waals interactions in the protease active site. A number of inhibitors containing the new P2 ligand, an aminobenzothiazole as the P2' ligand and a difluorophenylmethyl as the P1 ligand, displayed very potent enzyme inhibitory potency and also showed excellent antiviral activity against a panel of highly multidrug-resistant HIV-1 variants. The tricyclic P2 ligand has been synthesized efficiently in an optically active form using enzymatic desymmetrization of meso-1,2-(dihydroxymethyl)cyclohex-4-ene as the key step. We determined high-resolution X-ray structures of inhibitor-bound HIV-1 protease. These structures revealed extensive interactions with the backbone atoms of HIV-1 protease and provided molecular insights into the binding properties of these new inhibitors.


Assuntos
Furanos/farmacologia , Inibidores da Protease de HIV/farmacologia , HIV-1/efeitos dos fármacos , Compostos Heterocíclicos de Anel em Ponte/farmacologia , Substituição de Aminoácidos , Domínio Catalítico , Linhagem Celular Tumoral , Cristalografia por Raios X , Desenho de Fármacos , Furanos/síntese química , Furanos/metabolismo , Protease de HIV/química , Protease de HIV/genética , Protease de HIV/metabolismo , Inibidores da Protease de HIV/síntese química , Inibidores da Protease de HIV/metabolismo , HIV-1/enzimologia , Compostos Heterocíclicos de Anel em Ponte/síntese química , Compostos Heterocíclicos de Anel em Ponte/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ligação Proteica , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA