Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
1.
Protein Sci ; 33(7): e5080, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38896002

RESUMO

The Gag-Pol polyprotein in human immunodeficiency virus type I (HIV-1) encodes enzymes that are essential for virus replication: protease (PR), reverse transcriptase (RT), and integrase (IN). The mature forms of PR, RT and IN are homodimer, heterodimer and tetramer, respectively. The precise mechanism underlying the formation of dimer or tetramer is not yet understood. Here, to gain insight into the dimerization of PR and RT in the precursor, we prepared a model precursor, PR-RT, incorporating an inactivating mutation at the PR active site, D25A, and including two residues in the p6* region, fused to a SUMO-tag, at the N-terminus of the PR region. We also prepared two mutants of PR-RT containing a dimer dissociation mutation either in the PR region, PR(T26A)-RT, or in the RT region, PR-RT(W401A). Size exclusion chromatography showed both monomer and dimer fractions in PR-RT and PR(T26A)-RT, but only monomer in PR-RT(W401A). SEC experiments of PR-RT in the presence of protease inhibitor, darunavir, significantly enhanced the dimerization. Additionally, SEC results suggest an estimated PR-RT dimer dissociation constant that is higher than that of the mature RT heterodimer, p66/p51, but slightly lower than the premature RT homodimer, p66/p66. Reverse transcriptase assays and RT maturation assays were performed as tools to assess the effects of the PR dimer-interface on these functions. Our results consistently indicate that the RT dimer-interface plays a crucial role in the dimerization in PR-RT, whereas the PR dimer-interface has a lesser role.


Assuntos
Protease de HIV , Transcriptase Reversa do HIV , HIV-1 , Multimerização Proteica , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/metabolismo , Transcriptase Reversa do HIV/genética , Protease de HIV/química , Protease de HIV/genética , Protease de HIV/metabolismo , HIV-1/enzimologia , HIV-1/genética , HIV-1/química , Humanos , Modelos Moleculares , Dimerização
2.
J Biomol Struct Dyn ; 41(3): 1000-1017, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34919029

RESUMO

Human immunodeficiency virus-1 (HIV-1) protease is one of the important targets in AIDS therapy. The majority of HIV infections are caused due to non-B subtypes in developing countries. The co-occurrence of mutations along with naturally occurring polymorphisms in HIV-1 protease cause resistance to the FDA approved drugs, thereby posing a major challenge in the treatment of antiretroviral therapy. In this work, the resistance mechanism against SQV due to active site mutations G48V and V82F in CRF01_AE (AE) protease was explored. The binding free energy calculations showed that the direct substitution of valine at position 48 introduces a bulkier side chain, directly impairing the interaction with SQV in the binding pocket. Also, the intramolecular hydrogen bonding network of the neighboring residues is altered, indirectly affecting the binding of SQV. Interestingly, the substitution of phenylalanine at position 82 induces conformational changes in the 80's loop and the flap region, thereby favoring the binding of SQV. The V82F mutant structure also maintains similar intramolecular hydrogen bond interactions as observed in AE-WT.Communicated by Ramaswamy H. Sarma.


Assuntos
Infecções por HIV , Inibidores da Protease de HIV , Humanos , Saquinavir/química , Saquinavir/farmacologia , Simulação de Dinâmica Molecular , Inibidores da Protease de HIV/química , HIV/metabolismo , Peptídeo Hidrolases/metabolismo , Protease de HIV/química , Mutação , Resistência a Medicamentos , Farmacorresistência Viral/genética
3.
Chem Commun (Camb) ; 58(84): 11762-11782, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36200462

RESUMO

We report our recent development of a conceptually new generation of exceptionally potent non-peptidic HIV-1 protease inhibitors that displayed excellent pharmacological and drug-resistance profiles. Our X-ray structural studies of darunavir and other designed inhibitors from our laboratories led us to create a variety of inhibitors incorporating fused ring polycyclic ethers and aromatic heterocycles to promote hydrogen bonding interactions with the backbone atoms of HIV-1 protease as well as van der Waals interactions with residues in the S2 and S2' subsites. We have also incorporated specific functionalities to enhance van der Waals interactions in the S1 and S1' subsites. The combined effects of these structural templates are critical to the inhibitors' exceptional potency and drug-like properties. We highlight here our molecular design strategies to promote backbone hydrogen bonding interactions to combat drug-resistance and specific design of polycyclic ether templates to mimic peptide-like bonds in the HIV-1 protease active site. Our medicinal chemistry and drug development efforts led to the development of new generation inhibitors significantly improved over darunavir and displaying unprecedented antiviral activity against multidrug-resistant HIV-1 variants.


Assuntos
Inibidores da Protease de HIV , HIV-1 , Darunavir/farmacologia , Darunavir/química , Inibidores da Protease de HIV/farmacologia , Éter/farmacologia , Desenho de Fármacos , Protease de HIV/química , Protease de HIV/farmacologia , Resistência a Medicamentos , Peptídeos/farmacologia , Cristalografia por Raios X , Farmacorresistência Viral
4.
Biochem J ; 479(4): 479-501, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35089310

RESUMO

A genetic selection system for activity of HIV protease is described that is based on a synthetic substrate constructed as a modified AraC regulatory protein that when cleaved stimulate l-arabinose metabolism in an Escherichia coli araC strain. Growth stimulation on selective plates was shown to depend on active HIV protease and the scissile bond in the substrate. In addition, the growth of cells correlated well with the established cleavage efficiency of the sites in the viral polyprotein, Gag, when these sites were individually introduced into the synthetic substrate of the selection system. Plasmids encoding protease variants selected based on stimulation of cell growth in the presence of saquinavir or cleavage of a site not cleaved by wild-type protease, were indistinguishable with respect to both phenotypes. Also, both groups of selected plasmids encoded side chain substitutions known from clinical isolates or displayed different side chain substitutions but at identical positions. One highly frequent side chain substitution, E34V, not regarded as a major drug resistance substitution was found in variants obtained under both selective conditions and is suggested to improve protease processing of the synthetic substrate. This substitution is away from the substrate-binding cavity and together with other substitutions in the selected reading frames supports the previous suggestion of a substrate-binding site extended from the active site binding pocket itself.


Assuntos
Fármacos Anti-HIV/farmacocinética , Farmacorresistência Viral/genética , Protease de HIV/genética , Substituição de Aminoácidos , Fator de Transcrição AraC/genética , Arabinose/metabolismo , Quimosina/metabolismo , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Fusão gag-pol/metabolismo , Produtos do Gene gag/metabolismo , Genes araC , Protease de HIV/química , Protease de HIV/isolamento & purificação , Protease de HIV/metabolismo , Modelos Moleculares , Mutação de Sentido Incorreto , Mutação Puntual , Conformação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saquinavir/antagonistas & inibidores , Saquinavir/farmacologia , Seleção Genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Especificidade por Substrato
5.
Int J Mol Sci ; 22(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199858

RESUMO

The approval of the first HIV-1 protease inhibitors (HIV-1 PRIs) marked a fundamental step in the control of AIDS, and this class of agents still represents the mainstay therapy for this illness. Despite the undisputed benefits, the necessary lifelong treatment led to numerous severe side-effects (metabolic syndrome, hepatotoxicity, diabetes, etc.). The HIV-1 PRIs are capable of interacting with "secondary" targets (off-targets) characterized by different biological activities from that of HIV-1 protease. In this scenario, the in-silico techniques undoubtedly contributed to the design of new small molecules with well-fitting selectivity against the main target, analyzing possible undesirable interactions that are already in the early stages of the research process. The present work is focused on a new mixed-hierarchical, ligand-structure-based protocol, which is centered on an on/off-target approach, to identify the new selective inhibitors of HIV-1 PR. The use of the well-established, ligand-based tools available in the DRUDIT web platform, in combination with a conventional, structure-based molecular docking process, permitted to fast screen a large database of active molecules and to select a set of structure with optimal on/off-target profiles. Therefore, the method exposed herein, could represent a reliable help in the research of new selective targeted small molecules, permitting to design new agents without undesirable interactions.


Assuntos
Desenho de Fármacos , Descoberta de Drogas , Infecções por HIV/tratamento farmacológico , Inibidores da Protease de HIV/farmacologia , Protease de HIV/química , HIV-1/efeitos dos fármacos , Domínio Catalítico , Simulação por Computador , Infecções por HIV/enzimologia , Infecções por HIV/virologia , HIV-1/enzimologia , Humanos , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Conformação Proteica , Relação Estrutura-Atividade
6.
J Med Chem ; 64(10): 6706-6719, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34006103

RESUMO

Cryptococcosis is an invasive infection that accounts for 15% of AIDS-related fatalities. Still, treating cryptococcosis remains a significant challenge due to the poor availability of effective antifungal therapies and emergence of drug resistance. Interestingly, protease inhibitor components of antiretroviral therapy regimens have shown some clinical benefits in these opportunistic infections. We investigated Major aspartyl peptidase 1 (May1), a secreted Cryptococcus neoformans protease, as a possible target for the development of drugs that act against both fungal and retroviral aspartyl proteases. Here, we describe the biochemical characterization of May1, present its high-resolution X-ray structure, and provide its substrate specificity analysis. Through combinatorial screening of 11,520 compounds, we identified a potent inhibitor of May1 and HIV protease. This dual-specificity inhibitor exhibits antifungal activity in yeast culture, low cytotoxicity, and low off-target activity against host proteases and could thus serve as a lead compound for further development of May1 and HIV protease inhibitors.


Assuntos
Antifúngicos/química , Ácido Aspártico Proteases/antagonistas & inibidores , Cryptococcus neoformans/enzimologia , Proteínas Fúngicas/antagonistas & inibidores , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/efeitos dos fármacos , HIV/enzimologia , Protease de HIV/química , Protease de HIV/metabolismo , Simulação de Dinâmica Molecular , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Relação Estrutura-Atividade , Especificidade por Substrato
7.
Nat Commun ; 12(1): 1362, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649317

RESUMO

Therapeutic application of RNA viruses as oncolytic agents or gene vectors requires a tight control of virus activity if toxicity is a concern. Here we present a regulator switch for RNA viruses using a conditional protease approach, in which the function of at least one viral protein essential for transcription and replication is linked to autocatalytical, exogenous human immunodeficiency virus (HIV) protease activity. Virus activity can be en- or disabled by various HIV protease inhibitors. Incorporating the HIV protease dimer in the genome of vesicular stomatitis virus (VSV) into the open reading frame of either the P- or L-protein resulted in an ON switch. Here, virus activity depends on co-application of protease inhibitor in a dose-dependent manner. Conversely, an N-terminal VSV polymerase tag with the HIV protease dimer constitutes an OFF switch, as application of protease inhibitor stops virus activity. This technology may also be applicable to other potentially therapeutic RNA viruses.


Assuntos
Vírus de RNA/genética , Vírus de RNA/fisiologia , Replicação Viral/genética , Animais , Linhagem Celular Tumoral , Genoma Viral , Protease de HIV/química , Protease de HIV/metabolismo , Inibidores da Protease de HIV/farmacologia , Humanos , Camundongos Endogâmicos NOD , Fosfoproteínas/metabolismo , Multimerização Proteica , Vírus de RNA/efeitos dos fármacos , Vesiculovirus/efeitos dos fármacos , Vesiculovirus/genética , Vesiculovirus/fisiologia , Replicação Viral/efeitos dos fármacos
8.
Viruses ; 12(11)2020 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-33171603

RESUMO

Multidrug resistance continues to be a barrier to the effectiveness of highly active antiretroviral therapy in the treatment of human immunodeficiency virus 1 (HIV-1) infection. Darunavir (DRV) is a highly potent protease inhibitor (PI) that is oftentimes effective when drug resistance has emerged against first-generation inhibitors. Resistance to darunavir does evolve and requires 10-20 amino acid substitutions. The conformational landscapes of six highly characterized HIV-1 protease (PR) constructs that harbor up to 19 DRV-associated mutations were characterized by distance measurements with pulsed electron double resonance (PELDOR) paramagnetic resonance spectroscopy, namely double electron-electron resonance (DEER). The results show that the accumulated substitutions alter the conformational landscape compared to PI-naïve protease where the semi-open conformation is destabilized as the dominant population with open-like states becoming prevalent in many cases. A linear correlation is found between values of the DRV inhibition parameter Ki and the open-like to closed-state population ratio determined from DEER. The nearly 50% decrease in occupancy of the semi-open conformation is associated with reduced enzymatic activity, characterized previously in the literature.


Assuntos
Darunavir/farmacologia , Farmacorresistência Viral Múltipla , Inibidores da Protease de HIV/farmacologia , Protease de HIV/química , HIV/efeitos dos fármacos , Substituição de Aminoácidos , Variação Genética , HIV/genética , Protease de HIV/genética , Mutação , Conformação Proteica
9.
Molecules ; 25(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899354

RESUMO

Peptidyl fluoromethyl ketones occupy a pivotal role in the current scenario of synthetic chemistry, thanks to their numerous applications as inhibitors of hydrolytic enzymes. The insertion of one or more fluorine atoms adjacent to a C-terminal ketone moiety greatly modifies the physicochemical properties of the overall substrate, especially by increasing the reactivity of this functionalized carbonyl group toward nucleophiles. The main application of these peptidyl α-fluorinated ketones in medicinal chemistry relies in their ability to strongly and selectively inhibit serine and cysteine proteases. These compounds can be used as probes to study the proteolytic activity of the aforementioned proteases and to elucidate their role in the insurgence and progress on several diseases. Likewise, if the fluorinated methyl ketone moiety is suitably connected to a peptidic backbone, it may confer to the resulting structure an excellent substrate peculiarity and the possibility of being recognized by a specific subclass of human or pathogenic proteases. Therefore, peptidyl fluoromethyl ketones are also currently highly exploited for the target-based design of compounds for the treatment of topical diseases such as various types of cancer and viral infections.


Assuntos
Clorometilcetonas de Aminoácidos/síntese química , Fenilalanina/análogos & derivados , Inibidores de Serina Proteinase/síntese química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Clorometilcetonas de Aminoácidos/farmacologia , Química Farmacêutica/métodos , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , HIV/efeitos dos fármacos , HIV/enzimologia , Protease de HIV/química , Protease de HIV/metabolismo , Humanos , Cinética , Fenilalanina/síntese química , Fenilalanina/farmacologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Inibidores de Serina Proteinase/farmacologia , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
10.
Bioorg Med Chem ; 28(16): 115623, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32690263

RESUMO

Newly designed HIV-1 protease inhibitors that maximize interactions with the protein backbone, especially in the form of hydrogen bonds, may enhance the antiviral potency of these compounds and minimize acquisition of drug-resistant mutations. Herein, we described a series of new HIV-1 PIs containing phenols as the P2 ligands and chiral isopropanol as the P1' ligands, in combination with 4-trifluoromethylphenylsulfonamide or 4-nitrophenylsulfonamide as the P2' ligands. And most of these compounds exhibited nanomolar inhibitory potency. In particular, inhibitors 13c and 13e with 4-trifluoromethylphenylsulfonamide as the P2' ligand and (R) - isopropanol as the P1' ligand, exhibited antiviral IC50 values of 1.64 nM and 2.33 nM, respectively. Furthermore, they also showed remarkable activity against wild-type and DRV-resistant HIV-1 variants that raised the prospect of designing more effective PIs further.


Assuntos
Desenho de Fármacos , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/farmacologia , Protease de HIV/metabolismo , HIV-1/efeitos dos fármacos , 2-Propanol/química , 2-Propanol/farmacologia , Células HEK293 , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Protease de HIV/química , HIV-1/enzimologia , Humanos , Ligantes , Fenóis/química , Fenóis/farmacologia
11.
Chembiochem ; 21(21): 3051-3055, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32558168

RESUMO

Following excision from the Gag-Pol polyprotein, HIV-1 reverse transcriptase is released as an asymmetric homodimer comprising two p66 subunits that are structurally dissimilar but identical in amino acid sequence. Subsequent cleavage of the RNase H domain from only one of the subunits, denoted p66', results in the formation of the mature p66/p51 enzyme in which catalytic activity resides in the p66 subunit, and the p51 subunit (derived from p66') provides a supporting structural scaffold. Here, we probe the interaction of the p66/p66' asymmetric reverse transcriptase precursor with HIV-1 protease by pulsed Q-band double electron-electron resonance EPR spectroscopy to measure distances between nitroxide labels introduced at surface-engineered cysteine residues. The data suggest that the flexible, exposed linker between the RNaseH and connection domains in the open state of the p66' subunit binds to the active site of protease in a configuration that is similar to that of extended peptide substrates.


Assuntos
Protease de HIV/química , Transcriptase Reversa do HIV/química , Espectroscopia de Ressonância de Spin Eletrônica , Protease de HIV/metabolismo , Transcriptase Reversa do HIV/metabolismo , Modelos Moleculares
12.
J Med Chem ; 63(9): 4867-4879, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32348139

RESUMO

We describe here design, synthesis, and biological evaluation of a series of highly potent HIV-1 protease inhibitors containing stereochemically defined and unprecedented tricyclic furanofuran derivatives as P2 ligands in combination with a variety of sulfonamide derivatives as P2' ligands. These inhibitors were designed to enhance the ligand-backbone binding and van der Waals interactions in the protease active site. A number of inhibitors containing the new P2 ligand, an aminobenzothiazole as the P2' ligand and a difluorophenylmethyl as the P1 ligand, displayed very potent enzyme inhibitory potency and also showed excellent antiviral activity against a panel of highly multidrug-resistant HIV-1 variants. The tricyclic P2 ligand has been synthesized efficiently in an optically active form using enzymatic desymmetrization of meso-1,2-(dihydroxymethyl)cyclohex-4-ene as the key step. We determined high-resolution X-ray structures of inhibitor-bound HIV-1 protease. These structures revealed extensive interactions with the backbone atoms of HIV-1 protease and provided molecular insights into the binding properties of these new inhibitors.


Assuntos
Furanos/farmacologia , Inibidores da Protease de HIV/farmacologia , HIV-1/efeitos dos fármacos , Compostos Heterocíclicos de Anel em Ponte/farmacologia , Substituição de Aminoácidos , Domínio Catalítico , Linhagem Celular Tumoral , Cristalografia por Raios X , Desenho de Fármacos , Furanos/síntese química , Furanos/metabolismo , Protease de HIV/química , Protease de HIV/genética , Protease de HIV/metabolismo , Inibidores da Protease de HIV/síntese química , Inibidores da Protease de HIV/metabolismo , HIV-1/enzimologia , Compostos Heterocíclicos de Anel em Ponte/síntese química , Compostos Heterocíclicos de Anel em Ponte/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ligação Proteica , Estereoisomerismo
13.
J Comput Chem ; 41(9): 862-873, 2020 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-31960470

RESUMO

Obtaining reactivity information from the molecular electronic structure of a chemical system is a computationally intensive process. As a way of probing reactivity information around that, there exist electron density response variables, such as the Fukui functions (FFs), which are well-established descriptors that summarize the local susceptibility to react. These properties only require few single-point quantum chemical calculations, but even then, the intrinsic high cost and unfavorable computational complexity with respect to the number of atoms in the system makes this approach available only to small fragments and systems. In this study, we explore the computation of FFs, showing that semiempirical quantum chemical methods can be used to obtain the reactivity information equivalent to that of a Density Functional Theory (DFT) functional, for the eight entire polypeptide chains. The combination of semiempirical methods with the frozen orbital approximation allows for the obtention of these reactivity descriptors for biological systems with reasonable accuracy and speed, unlocking the utilization of these methods for such systems. These results for the frozen orbital approximation can be additionally improved when other molecular orbitals from the frontier band are employed in the computation. We also show the potential of this computational protocol in the ligand-protein complexes of HIV-1 protease, predicting which of those ligands are active inhibitors.


Assuntos
Teoria da Densidade Funcional , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/farmacologia , Protease de HIV/química , Elétrons , Protease de HIV/metabolismo , Ligantes , Modelos Moleculares
14.
J Phys Chem B ; 123(45): 9584-9591, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31640343

RESUMO

HIV-1 protease (PR) is the viral protein responsible for virion maturation, and its mechanisms of action remain incompletely understood. PR is dimeric and contains two flexible, symmetry-related flaps, which act as a gate to inhibit access to the binding pocket and hold the polypeptide substrate in the binding pocket once bound. Wide flap opening, a conformational change assumed to be necessary for substrate binding, is a rare event in the closed and bound form. In this study, we use molecular dynamics (MD) simulations and advanced MD techniques including temperature acceleration and string method in collective variables to study the conformational changes associated with substrate unbinding of both wild-type and F99Y mutant PR. The F99Y mutation is shown via MD to decouple the closing of previously unrecognized distal pockets from substrate unbinding. To determine whether or not the F99Y mutation affects the energetic cost of wide flap opening, we use string method in collective variables to determine the minimum free-energy mechanism for wide flap opening in concert with distal pocket closing. The results indicate that the major energetic cost in flap opening is disengagement of the two flap-tip Ile50 residues from each other and is not affected by the F99Y mutation.


Assuntos
Protease de HIV/metabolismo , Sítios de Ligação , Proteínas de Fusão gag-pol/química , Proteínas de Fusão gag-pol/metabolismo , Protease de HIV/química , Protease de HIV/genética , HIV-1/enzimologia , Simulação de Dinâmica Molecular , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Termodinâmica
15.
J Phys Chem B ; 123(44): 9302-9311, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31597039

RESUMO

Guanidinium cation (Gdm+) interacts strongly with amino acids of different polarities modulating protein structure and function. Using density functional theory calculations and molecular dynamics simulations, we studied the interaction of Gdm+ with carboxylate ions mimicking its interaction with acidic amino acids and explored its effect in enzymatic folding and activity. We show that, in low concentrations, Gdm+ stabilizes carboxylate ion dimers by acting as a bridge between them, thereby reducing the electrostatic repulsion. We further show that this carboxylate-Gdm+-carboxylate interaction can have an effect on the structure-activity relationship in enzymes with active sites containing two acidic residues. Using five enzymes (hen egg white lysozyme, T4 lysozyme, HIV-1 protease, pepsin, and creatine kinase), which have two acidic amino acids in their active sites, we show that, in low concentrations (<0.5 M), Gdm+ strongly binds to the enzyme active site, thereby potentially inhibiting its activity without unfolding it. This can lead to misleading conclusions in experiments, which infer the extent of enzyme unfolding from activity measurements. However, the carboxylate-Gdm+-carboxylate specific interaction can be exploited in drug discovery as drugs based on guanidinium derivatives are already being used to treat various maladies related to muscle weakness, cancer, diabetes etc. Guanidinium derivatives can be designed as potential drug molecules to inhibit activity or functioning of enzymes, which have binding pockets with two acidic residues in close vicinity.


Assuntos
Ácidos Carboxílicos/química , Enzimas/química , Enzimas/metabolismo , Guanidina/química , Domínio Catalítico , Creatina Quinase/química , Creatina Quinase/metabolismo , Teoria da Densidade Funcional , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Guanidina/metabolismo , Guanidina/farmacologia , Protease de HIV/química , Protease de HIV/metabolismo , Íons , Simulação de Dinâmica Molecular , Muramidase/antagonistas & inibidores , Muramidase/química , Muramidase/metabolismo , Pepsina A/química , Pepsina A/metabolismo , Conformação Proteica , Eletricidade Estática
16.
J Phys Chem B ; 123(30): 6389-6400, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31283878

RESUMO

The Human Immunodeficiency Virus type 1 (HIV-1) protease is a crucial target for HIV/AIDS treatment, and understanding its catalytic mechanism is the basis on which HIV-1 enzyme inhibitors are developed. Several experimental studies have indicated that HIV-1 protease facilitates the cleavage of the Gag and Gag-Pol polyproteins and it is highly selective with regard to the cleaved amino acid precursors and physical parameters. However, the main theoretical principles of substrate specificity and recognition remain poorly understood theoretically. By means of a one-step concerted transition state modeling, the recognition of natural substrates by HIV-1 PR subtypes (B and C-SA) was studied. This was carried out to compare the activation free energies at varying peptide bond regions (scissile and nonscissile) within the polypeptide sequence using ONIOM calculations. We studied both P3-P3' and P5-P5' natural substrate systems. For P3-P3' substrates, excellent recognition was observed for the MA-CA family but not for the RH-IN substrates. Satisfactory recognition for the latter was only observed for the longer sequence (P5-P5') after the substrate was subjected to an MD run to maximize the interaction between the enzyme and the substrate. These results indicate that both sequence and structure are important for correct scissile bond recognition of these natural substrates.


Assuntos
Protease de HIV/química , HIV-1/enzimologia , Sequência de Aminoácidos , Protease de HIV/metabolismo , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato , Termodinâmica
17.
Biochem J ; 476(2): 375-384, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30573649

RESUMO

HIV protease is essential for processing the Gag polyprotein to produce infectious virions and is a major target in antiretroviral therapy. We have identified an unusual HIV-1 subtype C variant that contains insertions of leucine and asparagine (L38↑N↑L) in the hinge region of protease at position 38. This was isolated from a protease inhibitor naïve infant. Isothermal titration calorimetry showed that 10% less of L38↑N↑L protease was in the active conformation as compared with a reference strain. L38↑N↑L protease displayed a ±50% reduction in KM and kcat The catalytic efficiency (kcat/KM) of L38↑N↑L protease was not significantly different from that of wild type although there was a 42% reduction in specific activity for the variant. An in vitro phenotypic assay showed the L38↑N↑L protease to be susceptible to lopinavir (LPV), atazanavir (ATV) and darunavir in the context of an unrelated Gag. However, in the presence of the related Gag, L38↑N↑L showed reduced susceptibility to darunavir while remaining susceptible to LPV and ATV. Furthermore, a reduction in viral replication capacity (RC) was observed in combination with the related Gag. The reduced susceptibility to darunavir and decrease in RC may be due to PTAPP duplication in the related Gag. The present study shows the importance of considering the Gag region when looking at drug susceptibility of HIV-1 protease variants.


Assuntos
Darunavir/química , Inibidores da Protease de HIV/química , Protease de HIV/química , Protease de HIV/genética , HIV-1 , Lopinavir/química , Mutagênese Insercional , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Darunavir/farmacologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/enzimologia , Infecções por HIV/genética , Protease de HIV/metabolismo , HIV-1/enzimologia , HIV-1/genética , Humanos , Lopinavir/farmacologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
18.
Acta Crystallogr D Struct Biol ; 74(Pt 7): 690-694, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29968678

RESUMO

Crystal structures of inactive variants of HIV-1 protease bound to peptides have revealed how the enzyme recognizes its endogenous substrates. The best of the known substrates is, however, a nonnatural substrate that was identified by directed evolution. The crystal structure of the complex between this substrate and the D25N variant of the protease is reported at a resolution of 1.1 Å. The structure has several unprecedented features, especially the formation of additional hydrogen bonds between the enzyme and the substrate. This work expands the understanding of molecular recognition by HIV-1 protease and informs the design of new substrates and inhibitors.


Assuntos
Protease de HIV/química , Biblioteca de Peptídeos , Sítios de Ligação , Cristalografia por Raios X , Evolução Molecular Direcionada , Variação Genética/genética , Humanos , Ligação de Hidrogênio , Peptídeos/química , Ligação Proteica , Especificidade por Substrato
19.
Int J Biol Macromol ; 118(Pt B): 1696-1707, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29990556

RESUMO

F11.2.32 is a monoclonal antibody raised against HIV-1 protease and it inhibits protease activity. While the structure of the epitope peptide in complex with the antibody is known, how protease interacts with the antibody is not known. In this study, we model the conformational features of the free and bound epitope peptide and protease-antibody interactions. We find through our simulations, that the free epitope peptide P36-46 samples conformations akin to the bound conformation of the peptide in complex with the Ab, with a ß-turn conformation sampled by the 38LPGR41 sequence highlighting the role of inherent conformational preferences of the peptide. Further, to determine the interactions present between the protease and antibody, we docked the protease in its conformation observed in the crystal structure, onto the antibody and simulated the dynamics of the complex in explicit water. We have identified the key residues involved in hydrogen-bond interactions and salt-bridges in Ag-Ab complex and examined the role of CDR flexibility in binding different conformations of the same epitope sequence in peptide and protein antigens. Thus, our results provide the basis for understanding the cross-reactivity observed between the antibody with protease and the epitope peptide from it.


Assuntos
Reações Cruzadas/imunologia , Epitopos/química , Epitopos/imunologia , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/imunologia , Protease de HIV/química , Protease de HIV/imunologia , Peptídeos/química , Peptídeos/imunologia , Antígenos Virais/química , Antígenos Virais/imunologia , Sítios de Ligação , Ligação de Hidrogênio , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
20.
PLoS One ; 13(6): e0198645, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29897971

RESUMO

Amino acid mutations in proteins are random and those mutations which are beneficial or neutral survive during the course of evolution. Conservation or co-evolution analyses are performed on the multiple sequence alignment of homologous proteins to understand how important different amino acids or groups of them are. However, these traditional analyses do not explore the directed influence of amino acid mutations, such as compensatory effects. In this work we develop a method to capture the directed evolutionary impact of one amino acid on all other amino acids, and provide a visual network representation for it. The method developed for these directed networks of inter- and intra-protein evolutionary interactions can also be used for noting the differences in amino acid evolution between the control and experimental groups. The analysis is illustrated with a few examples, where the method identifies several directed interactions of functionally critical amino acids. The impact of an amino acid is quantified as the number of amino acids that are influenced as a consequence of its mutation, and it is intended to summarize the compensatory mutations in large evolutionary sequence data sets as well as to rationally identify targets for mutagenesis when their functional significance can not be assessed using structure or conservation.


Assuntos
Aminoácidos/metabolismo , Modelos Moleculares , Aminoácidos/genética , Domínio Catalítico , Bases de Dados de Proteínas , Evolução Molecular , Produtos do Gene gag/química , Produtos do Gene gag/genética , Produtos do Gene gag/metabolismo , HIV/enzimologia , HIV/metabolismo , Protease de HIV/química , Protease de HIV/genética , Protease de HIV/metabolismo , Mutagênese , Redes Neurais de Computação , Fosfoglicerato Quinase/química , Fosfoglicerato Quinase/genética , Fosfoglicerato Quinase/metabolismo , Serina Proteases/química , Serina Proteases/genética , Serina Proteases/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA