Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Am J Ophthalmol ; 262: 114-124, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38278202

RESUMO

PURPOSE: Heterozygous mutations in the AFG3L2 gene (encoding a mitochondrial protease indirectly reflecting on OPA1 cleavage) and ACO2 gene (encoding the mitochondrial enzyme aconitase) are associated with isolated forms of Dominant Optic Atrophy (DOA). We aimed at describing their neuro-ophthalmological phenotype as compared with classic OPA1-related DOA. DESIGN: Cross-sectional study. METHODS: The following neuro-ophthalmological parameters were collected: logMAR visual acuity (VA), color vision, mean deviation and foveal threshold at visual fields, average and sectorial retinal nerve fiber layer (RNFL), and ganglion cell layer (GCL) thickness on optical coherence tomography. ACO2 and AFG3L2 patients were compared with an age- and sex-matched group of OPA1 patients with a 1:2 ratio. All eyes were analyzed using a clustered Wilcoxon rank sum test with the Rosner-Glynn-Lee method. RESULTS: A total of 44 eyes from 23 ACO2 patients and 26 eyes from 13 AFG3L2 patients were compared with 143 eyes from 72 OPA1 patients. All cases presented with bilateral temporal-predominant optic atrophy with various degree of visual impairment. Comparison between AFG3L2 and OPA1 failed to reveal any significant difference. ACO2 patients compared to both AFG3L2 and OPA1 presented overall higher values of nasal RNFL thickness (P = .029, P = .023), average thickness (P = .012, P = .0007), and sectorial GCL thickness. These results were confirmed also comparing separately affected and subclinical patients. CONCLUSIONS: Clinically, DOA remains a fairly homogeneous entity despite the growing genetic heterogeneity. ACO2 seems to be associated with an overall better preservation of retinal ganglion cells, probably depending on the different pathogenic mechanism involving mtDNA maintenance, as opposed to AFG3L2, which is involved in OPA1 processing and is virtually indistinguishable from classic OPA1-DOA.


Assuntos
GTP Fosfo-Hidrolases , Atrofia Óptica Autossômica Dominante , Células Ganglionares da Retina , Tomografia de Coerência Óptica , Acuidade Visual , Campos Visuais , Humanos , GTP Fosfo-Hidrolases/genética , Masculino , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/fisiopatologia , Atrofia Óptica Autossômica Dominante/diagnóstico , Feminino , Estudos Transversais , Acuidade Visual/fisiologia , Pessoa de Meia-Idade , Adulto , Células Ganglionares da Retina/patologia , Campos Visuais/fisiologia , Fenótipo , Fibras Nervosas/patologia , Estudos de Associação Genética , Adulto Jovem , Idoso , Proteínas Mitocondriais/genética , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Mutação , Adolescente , ATPases Associadas a Diversas Atividades Celulares/genética , Aconitato Hidratase
2.
Artigo em Inglês | MEDLINE | ID: mdl-37849306

RESUMO

OBJECTIVE: In Norway, 89% of patients with Amyotrophic lateral sclerosis (ALS) lacks a genetic diagnose. ALS genes and genes that cause other neuromuscular or neurodegenerative disorders extensively overlap. This population-based study examined whether patients with ALS have a family history of neurological disorders and explored the occurrence of rare genetic variants associated with other neurodegenerative or neuromuscular disorders. METHODS: During a two-year period, blood samples and clinical data from patients with ALS were collected from all 17 neurological departments in Norway. Our genetic analysis involved exome sequencing and bioinformatics filtering of 510 genes associated with neurodegenerative and neuromuscular disorders. The variants were interpreted using genotype-phenotype correlations and bioinformatics tools. RESULTS: A total of 279 patients from a Norwegian population-based ALS cohort participated in this study. Thirty-one percent of the patients had first- or second-degree relatives with other neurodegenerative disorders, most commonly dementia and Parkinson's disease. The genetic analysis identified 20 possible pathogenic variants, in ATL3, AFG3L2, ATP7A, BICD2, HARS1, KIF1A, LRRK2, MSTO1, NEK1, NEFH, and SORL1, in 25 patients. NEK1 risk variants were present in 2.5% of this ALS cohort. Only four of the 25 patients reported relatives with other neurodegenerative or neuromuscular disorders. CONCLUSION: Gene variants known to cause other neurodegenerative or neuromuscular disorders, most frequently in NEK1, were identified in 9% of the patients with ALS. Most of these patients had no family history of other neurodegenerative or neuromuscular disorders. Our findings indicated that AFG3L2, ATP7A, BICD2, KIF1A, and MSTO1 should be further explored as potential ALS-causing genes.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ciclo Celular , Doenças Neurodegenerativas , Humanos , Predisposição Genética para Doença/genética , Esclerose Lateral Amiotrófica/epidemiologia , Esclerose Lateral Amiotrófica/genética , Estudos de Associação Genética , Família , Doenças Neurodegenerativas/epidemiologia , Doenças Neurodegenerativas/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Proteases Dependentes de ATP/genética , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras/genética , Cinesinas/genética , Proteínas do Citoesqueleto/genética
3.
Brain ; 147(3): 1043-1056, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37804316

RESUMO

AFG3L2 is a mitochondrial protease exerting protein quality control in the inner mitochondrial membrane. Heterozygous AFG3L2 mutations cause spinocerebellar ataxia type 28 (SCA28) or dominant optic atrophy type 12 (DOA12), while biallelic AFG3L2 mutations result in the rare and severe spastic ataxia type 5 (SPAX5). The clinical spectrum of SPAX5 includes childhood-onset cerebellar ataxia, spasticity, dystonia and myoclonic epilepsy. We previously reported that the absence or mutation of AFG3L2 leads to the accumulation of mitochondria-encoded proteins, causing the overactivation of the stress-sensitive protease OMA1, which over-processes OPA1, leading to mitochondrial fragmentation. Recently, OMA1 has been identified as the pivotal player communicating mitochondrial stress to the cytosol via a pathway involving the inner mitochondrial membrane protein DELE1 and the cytosolic kinase HRI, thus eliciting the integrated stress response. In general, the integrated stress response reduces global protein synthesis and drives the expression of cytoprotective genes that allow cells to endure proteotoxic stress. However, the relevance of the OMA1-DELE1-HRI axis in vivo, and especially in a human CNS disease context, has been poorly documented thus far. In this work, we demonstrated that mitochondrial proteotoxicity in the absence/mutation of AFG3L2 activates the OMA1-DELE1-HRI pathway eliciting the integrated stress response. We found enhanced OMA1-dependent processing of DELE1 upon depletion of AFG3L2. Also, in both skin fibroblasts from SPAX5 patients (including a novel case) and in the cerebellum of Afg3l2-/- mice we detected increased phosphorylation of the α-subunit of the eukaryotic translation initiation factor 2 (eIF2α), increased levels of ATF4 and strong upregulation of its downstream targets (Chop, Chac1, Ppp1r15a and Ffg21). Silencing of DELE1 or HRI in SPAX5 fibroblasts (where OMA1 is overactivated at basal state) reduces eIF2α phosphorylation and affects cell growth. In agreement, pharmacological potentiation of integrated stress response via Sephin-1, a drug that selectively inhibits the stress-induced eIF2alpha phosphatase GADD34 (encoded by Ppp1r15a), improved cell growth of SPAX5 fibroblasts and cell survival and dendritic arborization ex vivo in primary Afg3l2-/- Purkinje neurons. Notably, Sephin-1 treatment in vivo extended the lifespan of Afg3l2-/- mice, improved Purkinje neuron morphology, mitochondrial ultrastructure and respiratory capacity. These data indicate that activation of the OMA1-DELE1-HRI pathway is protective in the context of SPAX5. Pharmacological tuning of the integrated stress response may represent a future therapeutic strategy for SPAX5 and other cerebellar ataxias caused by impaired mitochondrial proteostasis.


Assuntos
Deficiência Intelectual , Atrofia Óptica , Ataxias Espinocerebelares , Humanos , Animais , Camundongos , Criança , Ataxias Espinocerebelares/genética , Espasticidade Muscular , Peptídeo Hidrolases , ATPases Associadas a Diversas Atividades Celulares/genética , Proteases Dependentes de ATP/genética , Proteínas Mitocondriais , Metaloproteases
4.
Science ; 382(6672): 820-828, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37917749

RESUMO

Mitochondria must maintain adequate amounts of metabolites for protective and biosynthetic functions. However, how mitochondria sense the abundance of metabolites and regulate metabolic homeostasis is not well understood. In this work, we focused on glutathione (GSH), a critical redox metabolite in mitochondria, and identified a feedback mechanism that controls its abundance through the mitochondrial GSH transporter, SLC25A39. Under physiological conditions, SLC25A39 is rapidly degraded by mitochondrial protease AFG3L2. Depletion of GSH dissociates AFG3L2 from SLC25A39, causing a compensatory increase in mitochondrial GSH uptake. Genetic and proteomic analyses identified a putative iron-sulfur cluster in the matrix-facing loop of SLC25A39 as essential for this regulation, coupling mitochondrial iron homeostasis to GSH import. Altogether, our work revealed a paradigm for the autoregulatory control of metabolic homeostasis in organelles.


Assuntos
Proteases Dependentes de ATP , ATPases Associadas a Diversas Atividades Celulares , Glutationa , Mitocôndrias , Proteínas Mitocondriais , Proteínas de Transporte de Fosfato , Glutationa/metabolismo , Homeostase , Ferro/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteômica , Retroalimentação Fisiológica , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Humanos , Proteínas Ferro-Enxofre/metabolismo , Proteólise , Células HEK293 , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo
5.
Am J Hum Genet ; 110(7): 1098-1109, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37301203

RESUMO

Although the best-known spinocerebellar ataxias (SCAs) are triplet repeat diseases, many SCAs are not caused by repeat expansions. The rarity of individual non-expansion SCAs, however, has made it difficult to discern genotype-phenotype correlations. We therefore screened individuals who had been found to bear variants in a non-expansion SCA-associated gene through genetic testing, and after we eliminated genetic groups that had fewer than 30 subjects, there were 756 subjects bearing single-nucleotide variants or deletions in one of seven genes: CACNA1A (239 subjects), PRKCG (175), AFG3L2 (101), ITPR1 (91), STUB1 (77), SPTBN2 (39), or KCNC3 (34). We compared age at onset, disease features, and progression by gene and variant. There were no features that reliably distinguished one of these SCAs from another, and several genes-CACNA1A, ITPR1, SPTBN2, and KCNC3-were associated with both adult-onset and infantile-onset forms of disease, which also differed in presentation. Nevertheless, progression was overall very slow, and STUB1-associated disease was the fastest. Several variants in CACNA1A showed particularly wide ranges in age at onset: one variant produced anything from infantile developmental delay to ataxia onset at 64 years of age within the same family. For CACNA1A, ITPR1, and SPTBN2, the type of variant and charge change on the protein greatly affected the phenotype, defying pathogenicity prediction algorithms. Even with next-generation sequencing, accurate diagnosis requires dialogue between the clinician and the geneticist.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/diagnóstico , Ataxia Cerebelar/genética , Fenótipo , Ataxia/genética , Testes Genéticos , ATPases Associadas a Diversas Atividades Celulares/genética , Proteases Dependentes de ATP/genética , Ubiquitina-Proteína Ligases/genética
6.
J Biol Chem ; 299(8): 104937, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37331598

RESUMO

Mitochondria are essential organelles whose proteome is well protected by regulated protein degradation and quality control. While the ubiquitin-proteasome system can monitor mitochondrial proteins that reside at the mitochondrial outer membrane or are not successfully imported, resident proteases generally act on proteins within mitochondria. Herein, we assess the degradative pathways for mutant forms of three mitochondrial matrix proteins (mas1-1HA, mas2-11HA, and tim44-8HA) in Saccharomyces cerevisiae. The degradation of these proteins is strongly impaired by loss of either the matrix AAA-ATPase (m-AAA) (Afg3p/Yta12p) or Lon (Pim1p) protease. We determine that these mutant proteins are all bona fide Pim1p substrates whose degradation is also blocked in respiratory-deficient "petite" yeast cells, such as in cells lacking m-AAA protease subunits. In contrast, matrix proteins that are substrates of the m-AAA protease are not affected by loss of respiration. The failure to efficiently remove Pim1p substrates in petite cells has no evident relationship to Pim1p maturation, localization, or assembly. However, Pim1p's autoproteolysis is intact, and its overexpression restores substrate degradation, indicating that Pim1p retains some functionality in petite cells. Interestingly, chemical perturbation of mitochondria with oligomycin similarly prevents degradation of Pim1p substrates. Our results demonstrate that Pim1p activity is highly sensitive to mitochondrial perturbations such as loss of respiration or drug treatment in a manner that we do not observe with other proteases.


Assuntos
Proteases Dependentes de ATP , Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Respiração Celular
7.
J Transl Med ; 21(1): 81, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739437

RESUMO

BACKGROUND: Sirtuin 3 (Sirt3) is a controversial regulator of carcinogenesis. It residents in the mitochondria and gradually decays during aging. In this study, we tried to investigate the role of Sirt3 in carcinogenesis and to explore its involvement in metabolic alteration. METHODS: We generated conditional intestinal epithelium Sirt3-knockout mice by crossing ApcMin/+; Villin-Cre with Sirt3fl/fl (AVS) mice. The deacetylation site of Lon protease-1 (LONP1) was identified with Mass spectrometry. The metabolic flux phenotype was determined by Seahorse bioanalyzer. RESULTS: We found that intestinal epithelial cell-specific ablation of Sirt3 promotes primary tumor growth via stabilizing mitochondrial LONP1. Notably, we newly identified that Sirt3 deacetylates human oncogene LONP1 at N terminal residue lysine 145 (K145). The LONP1 hyperacetylation-mutant K145Q enhances oxidative phosphorylation to accelerate tumor growth, whereas the deacetylation-mutant K145R produces calorie-restriction like phenotype to restrain tumorigenesis. Sirt3 deacetylates LONP1 at K145 and subsequently facilitates the ESCRT0 complex sorting and K63-ubiquitination that resulted in the degradation of LONP1. Our results sustain the notion that Sirt3 is a tumor-suppressor to maintain the appropriate ubiquitination and degradation of oncogene LONP1. CONCLUSION: Sirt3 represents a targetable metabolic checkpoint of oncogenesis, which produces energy restriction effects via maintaining LONP1 K145 deacetylation and subsequent K63 ubiquitination.


Assuntos
Neoplasias , Protease La , Sirtuína 3 , Animais , Humanos , Camundongos , Acetilação , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Transformação Celular Neoplásica , Proteínas Mitocondriais/genética , Protease La/genética , Protease La/metabolismo , Sirtuína 3/metabolismo , Ubiquitinação
8.
Cerebellum ; 22(6): 1313-1319, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36447112

RESUMO

AFG3-like matrix AAA peptidase subunit 2 gene (AFG3L2, OMIM * 604,581) biallelic mutations lead to autosomal recessive spastic ataxia-5 SPAX5, OMIM # 614,487), a rare hereditary form of ataxia. The clinical spectrum includes early-onset cerebellar ataxia, spasticity, and progressive myoclonic epilepsy (PME). In Italy, the epidemiology of the disease is probably underestimated. The advent of next generation sequencing (NGS) technologies has speeded up the diagnosis of hereditary diseases and increased the percentage of diagnosis of rare disorders, such as the rare hereditary ataxia groups. Here, we describe two patients from two different villages in the province of Ferrara, who manifested a different clinical ataxia-plus history, although carrying the same biallelic mutation in AFG3L2 (p.Met625Ile) identified through NGS analysis.


Assuntos
Ataxia Cerebelar , Degenerações Espinocerebelares , Humanos , ATPases Associadas a Diversas Atividades Celulares/genética , Degenerações Espinocerebelares/genética , Ataxia Cerebelar/genética , Mutação/genética , Itália , Proteases Dependentes de ATP/genética
9.
Brain ; 146(2): 455-460, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36317462

RESUMO

Hereditary optic neuropathies are caused by the degeneration of retinal ganglion cells whose axons form the optic nerves, with a consistent genetic heterogeneity. As part of our diagnostic activity, we retrospectively evaluated the combination of Leber hereditary optic neuropathy mutations testing with the exon sequencing of 87 nuclear genes on 2186 patients referred for suspected hereditary optic neuropathies. The positive diagnosis rate in individuals referred for Leber hereditary optic neuropathy testing was 18% (199/1126 index cases), with 92% (184/199) carrying one of the three main pathogenic variants of mitochondrial DNA (m.11778G>A, 66.5%; m.3460G>A, 15% and m.14484T>C, 11%). The positive diagnosis rate in individuals referred for autosomal dominant or recessive optic neuropathies was 27% (451/1680 index cases), with 10 genes accounting together for 96% of this cohort. This represents an overall positive diagnostic rate of 30%. The identified top 10 nuclear genes included OPA1, WFS1, ACO2, SPG7, MFN2, AFG3L2, RTN4IP1, TMEM126A, NR2F1 and FDXR. Eleven additional genes, each accounting for less than 1% of cases, were identified in 17 individuals. Our results show that 10 major genes account for more than 96% of the cases diagnosed with our nuclear gene panel.


Assuntos
Atrofia Óptica Autossômica Dominante , Atrofia Óptica Hereditária de Leber , Doenças do Nervo Óptico , Humanos , Atrofia Óptica Hereditária de Leber/genética , Estudos Retrospectivos , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/patologia , Doenças do Nervo Óptico/genética , Mutação/genética , DNA Mitocondrial/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Proteases Dependentes de ATP/genética , Proteínas de Transporte/genética , Proteínas Mitocondriais/genética , Proteínas de Membrana/genética
10.
J Microbiol Methods ; 204: 106648, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470413

RESUMO

The efficiency with which E.coli BL21 can be modified using CRISPR-Cas9 genetic engineering is several orders of magnitude lower than that of E. coli W3110. We show that the lack of Lon protease is responsible, and demonstrate that restoration of the Lon protease or knock-out of sulA improves CRISPR-Cas9 engineering efficiency of BL21 to levels comparable to E. coli W3110.


Assuntos
Proteínas de Escherichia coli , Protease La , Escherichia coli/genética , Escherichia coli/metabolismo , Protease La/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteases Dependentes de ATP/genética , Sistemas CRISPR-Cas/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Engenharia Genética
11.
Acta Histochem ; 125(1): 151986, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36508908

RESUMO

Lon protease 1(Lonp1) is an ATP-dependent protease located in the mitochondrial matrix and plays a crucial role in preserving normal mitochondrial function. Lonp1 overexpression is associated with tumorigenesis in various cancer types, including cervical cancer. In the present study, we show that the Lonp1 content is elevated in cervical cancer tissues compared to cervical paracancerous tissues. Conversely, Lonp1 knockdown suppresses cervical cancer cell proliferation, migration and invasion but promotes apoptosis. Mechanistically, Lonp1 knockdown decreases area of mitochondrial networks and induces mitochondrial depolarization. Furthermore, Lonp1 inhibition reduces the level of LC3-II/I, PINK1 and Parkin, but promotes the level of p62. Collectively, our study suggests that the anti-cancer effect caused by Lonp1 downregulation likely contributes to mitochondrial remodeling and suppression of autophagy and mitophagy.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/genética , Mitocôndrias/metabolismo , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Autofagia , Regulação para Baixo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
12.
Cells ; 11(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36497197

RESUMO

Lonp1 is a mitochondrial protease that degrades oxidized and damaged proteins, assists protein folding, and contributes to the maintenance of mitochondrial DNA. A higher expression of LonP1 has been associated with higher tumour aggressiveness. Besides the full-length isoform (ISO1), we identified two other isoforms of Lonp1 in humans, resulting from alternative splicing: Isoform-2 (ISO2) lacking aa 42-105 and isoform-3 (ISO3) lacking aa 1-196. An inspection of the public database TSVdb showed that ISO1 was upregulated in lung, bladder, prostate, and breast cancer, ISO2 in all the cancers analysed (including rectum, colon, cervical, bladder, prostate, breast, head, and neck), ISO3 did not show significant changes between cancer and normal tissue. We overexpressed ISO1, ISO2, and ISO3 in SW620 cells and found that the ISO1 isoform was exclusively mitochondrial, ISO2 was present in the organelle and in the cytoplasm, and ISO3 was exclusively cytoplasmatic. The overexpression of ISO1 and, at a letter extent, of ISO2 enhanced basal, ATP-linked, and maximal respiration without altering the mitochondria number or network, mtDNA amount. or mitochondrial dynamics. A higher extracellular acidification rate was observed in ISO1 and ISO2, overexpressing cells, suggesting an increase in glycolysis. Cells overexpressing the different isoforms did not show a difference in the proliferation rate but showed a great increase in anchorage-independent growth. ISO1 and ISO2, but not ISO3, determined an upregulation of EMT-related proteins, which appeared unrelated to higher mitochondrial ROS production, nor due to the activation of the MEK ERK pathway, but rather to global metabolic reprogramming of cells.


Assuntos
Proteases Dependentes de ATP , Proteínas Mitocondriais , Neoplasias , Humanos , Processamento Alternativo , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Glicólise , Homeostase , Mitocôndrias/enzimologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Isoformas de Proteínas/metabolismo
13.
J Biol Chem ; 298(10): 102436, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36041628

RESUMO

In Bacillus subtilis, sporulation is a sequential and highly regulated process. Phosphorylation events by histidine kinases are key points in the phosphorelay that initiates sporulation, but serine/threonine protein kinases also play important auxiliary roles in this regulation. PrkA has been proposed to be a serine protein kinase expressed during the initiation of sporulation and involved in this differentiation process. Additionally, the role of PrkA in sporulation has been previously proposed to be mediated via the transition phase regulator ScoC, which in turn regulates the transcriptional factor σK and its regulon. However, the kinase activity of PrkA has not been clearly demonstrated, and neither its autophosphorylation nor phosphorylated substrates have been unambiguously established in B. subtilis. We demonstrated here that PrkA regulation of ScoC is likely indirect. Following bioinformatic homology searches, we revealed sequence similarities of PrkA with the ATPases associated with diverse cellular activities ATP-dependent Lon protease family. Here, we showed that PrkA is indeed able to hydrolyze α-casein, an exogenous substrate of Lon proteases, in an ATP-dependent manner. We also showed that this ATP-dependent protease activity is essential for PrkA function in sporulation since mutation in the Walker A motif leads to a sporulation defect. Furthermore, we found that PrkA protease activity is tightly regulated by phosphorylation events involving one of the Ser/Thr protein kinases of B. subtilis, PrkC. Taken together, our results clarify the key role of PrkA in the complex process of B. subtilis sporulation.


Assuntos
Proteases Dependentes de ATP , Bacillus subtilis , Proteínas de Bactérias , Esporos Bacterianos , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Serina-Treonina Quinases/genética , Esporos Bacterianos/genética , Esporos Bacterianos/fisiologia
14.
EMBO J ; 41(16): e110476, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35912435

RESUMO

Mitochondria adapt to different energetic demands reshaping their proteome. Mitochondrial proteases are emerging as key regulators of these adaptive processes. Here, we use a multiproteomic approach to demonstrate the regulation of the m-AAA protease AFG3L2 by the mitochondrial proton gradient, coupling mitochondrial protein turnover to the energetic status of mitochondria. We identify TMBIM5 (previously also known as GHITM or MICS1) as a Ca2+ /H+ exchanger in the mitochondrial inner membrane, which binds to and inhibits the m-AAA protease. TMBIM5 ensures cell survival and respiration, allowing Ca2+ efflux from mitochondria and limiting mitochondrial hyperpolarization. Persistent hyperpolarization, however, triggers degradation of TMBIM5 and activation of the m-AAA protease. The m-AAA protease broadly remodels the mitochondrial proteome and mediates the proteolytic breakdown of respiratory complex I to confine ROS production and oxidative damage in hyperpolarized mitochondria. TMBIM5 thus integrates mitochondrial Ca2+ signaling and the energetic status of mitochondria with protein turnover rates to reshape the mitochondrial proteome and adjust the cellular metabolism.


Assuntos
Proteostase , Prótons , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteoma/metabolismo
15.
Structure ; 30(9): 1254-1268.e7, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35870450

RESUMO

The mitochondrial Lon protease (LonP1) regulates mitochondrial health by removing redundant proteins from the mitochondrial matrix. We determined LonP1 in eight nucleotide-dependent conformational states by cryoelectron microscopy (cryo-EM). The flexible assembly of N-terminal domains had 3-fold symmetry, and its orientation depended on the conformational state. We show that a conserved structural motif around T803 with a high similarity to the trypsin catalytic triad is essential for proteolysis. We show that LonP1 is not regulated by redox potential, despite the presence of two conserved cysteines at disulfide-bonding distance in its unfoldase core. Our data indicate how sequential ATP hydrolysis controls substrate protein translocation in a 6-fold binding change mechanism. Substrate protein translocation, rather than ATP hydrolysis, is a rate-limiting step, suggesting that LonP1 is a Brownian ratchet with ATP hydrolysis preventing translocation reversal. 3-fold rocking motions of the flexible N-domain assembly may assist thermal unfolding of the substrate protein.


Assuntos
Protease La , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Protease La/genética , Protease La/metabolismo
16.
Mol Neurobiol ; 59(9): 5366-5378, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35699875

RESUMO

Monogenic forms of cerebral small vessel disease (CSVD) can be caused by both variants in nuclear DNA and mitochondrial DNA (mtDNA). Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is known to have a phenotype similar to Cerebral Autosomal Dominant Arteriopathy with Sub-cortical Infarcts and Leukoencephalopathy (CADASIL), and can be caused by variants in the mitochondrial genome and in several nuclear-encoded mitochondrial protein (NEMP) genes. The aim of this study was to screen for variants in the mitochondrial genome and NEMP genes in a NOTCH3-negative CADASIL cohort, to identify a potential link between mitochondrial dysfunction and CSVD pathology. Whole exome sequencing was performed for 50 patients with CADASIL-like symptomology on the Ion Torrent system. Mitochondrial sequencing was performed using an in-house designed protocol with sequencing run on the Ion GeneStudio S5 Plus (S5 +). NEMP genes and mitochondrial sequencing data were examined for rare (MAF < 0.001), non-synonymous variants that were predicted to have a deleterious effect on the protein. We identified 29 candidate NEMP variants that had links to either MELAS-, encephalopathy-, or Alzheimer's disease-related phenotypes. Based on these changes, variants affecting POLG, MTO1, LONP1, NDUFAF6, NDUFB3, and TCIRG1 were thought to play a potential role in CSVD pathology in this cohort. Overall, the exploration of the mitochondrial genome identified a potential role for mitochondrial related proteins and mtDNA variants contributing to CSVD pathologies.


Assuntos
CADASIL , Doenças de Pequenos Vasos Cerebrais , Leucoencefalopatias , Síndrome MELAS , Acidente Vascular Cerebral , ATPases Vacuolares Próton-Translocadoras , Proteases Dependentes de ATP/genética , Doenças de Pequenos Vasos Cerebrais/genética , DNA Mitocondrial/genética , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Mutação/genética
17.
Sci Rep ; 12(1): 10877, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760833

RESUMO

The coordinated communication between the mitochondria and nucleus is essential for cellular activities. Nonetheless, the pathways involved in this crosstalk are scarcely understood. The protease Lonp1 was previously believed to be exclusively located in the mitochondria, with an important role in mitochondrial morphology, mtDNA maintenance, and cellular metabolism, in both normal and neoplastic cells. However, we recently detected Lonp1 in the nuclear, where as much as 22% of all cellular Lonp1 can be found. Nuclear localization is detectable under all conditions, but the amount is dependent on a response to heat shock (HS). Lonp1 in the nucleus interacts with heat shock factor 1 (HSF1) and modulates the HS response. These findings reveal a novel extramitochondrial function for Lonp1 in response to stress.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , Proteases Dependentes de ATP/genética , Núcleo Celular/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo
18.
Plant Cell Environ ; 45(8): 2395-2409, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35610189

RESUMO

Thylakoid FtsH complex participates in PSII repair cycle during high light-induced photoinhibition. The Arabidopsis yellow variegated2 (var2) mutants are defective in the VAR2/AtFtsH2 subunit of thylakoid FtsH complex. Taking advantage of the var2 leaf variegation phenotype, dissections of genetic enhancer loci have yielded novel paradigms in understanding functions of thylakoid FtsH complex. Here, we report the isolation of a new var2 enhancer, enhancer of variegation2-1 (evr2-1). We confirmed that EVR2 encodes a chloroplast protein that was known as BALANCE OF CHLOROPHYLL METABOLISM 1 (BCM1), or CHLOROPHYLL BIOSYNTHETIC DEFECT 1 (CBD1). We showed that EVR2/BCM1/CBD1 was involved in the oligomerization of photosystem I complexes. Genetic assays indicated that general defects in chlorophyll biosynthesis and the accumulation of photosynthetic complexes do not necessarily enhance var2 leaf variegation. In addition, we found that VAR2/AtFtsH2 is required for the accumulation of photosynthetic proteins during de-etiolation. Moreover, we identified PSII core proteins D1 and PsbC as potential EVR2-associated proteins using Co-IP/MS. Furthermore, the accumulation of D1 protein was greatly compromised in the var2-5 evr2-1 double mutant during de-etiolation. Together, our findings reveal a functional link between VAR2/AtFtsH2 and EVR2/BCM1/CBD1 in regulating chloroplast development and the accumulation of PSII reaction centre D1 protein during de-etiolation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Estiolamento , Proteínas de Membrana/metabolismo , Mutação/genética , Complexo de Proteína do Fotossistema II/metabolismo
19.
Eur Rev Med Pharmacol Sci ; 26(6): 2143-2157, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35363364

RESUMO

Saudi Genome program is a revolutionary nationwide transformation initiative of Saudi Vision 2030. The program goals are to recognize and reduce the incidence of genetic diseases in the Kingdom of Saudi Arabia (KSA). Accordingly, the program will establish the foundation for personalized and genomic medicine in the KSA. Epilepsy has a high prevalence in KSA reaching around 6.54 of 1000 individuals with a subsequent massive financial burden. One of the main risk factors for this high prevalence and associated with increased risk of epilepsy development is consanguinity marriage, which is traditional in KSA. In this review, we executed a comprehensive state-of-art literature review regarding epilepsy genetics to offer a perception into the genes associated with epilepsy recognized in Saudi epileptic patients. Several genes' mutations were incorporated in this review including AFG3L2, ASPM, ATN1, ATP1A2, BMP5, CCDC88A, C12orf57, DNAJA1, EML1, ERLIN2, FRRS1L, GABRG3, NRXN3, MDH1, KCNJ10, KCNMA1, KCNT1, KIAA0226, OPHN1, PCCA, PCCB, PEX, PGAP2, PI4K2A, PODXL, PRICKLE1, PNKP, RELN, SCN2A, SCN1B, SLC2A1, SLC19A3, SLC25, SIAH1, SYNJ1, SZT2, TBCK, TMX2, TSC1, TSC2, TSEN, WDR45B, WWOX, UBR, UGDH, and YIF1B. For each of these genes, we tried to explain a little about the gene associated proteins and their roles in epilepsy development.


Assuntos
Epilepsia , Proteases Dependentes de ATP/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Enzimas Reparadoras do DNA/genética , Epilepsia/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Mutação , Proteínas do Tecido Nervoso/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Canais de Potássio Ativados por Sódio , Proteínas Serina-Treonina Quinases , Arábia Saudita
20.
Nat Cell Biol ; 24(2): 181-193, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35165413

RESUMO

The accumulation of deleterious mitochondrial DNA (∆mtDNA) causes inherited mitochondrial diseases and ageing-associated decline in mitochondrial functions such as oxidative phosphorylation. Following mitochondrial perturbations, the bZIP protein ATFS-1 induces a transcriptional programme to restore mitochondrial function. Paradoxically, ATFS-1 is also required to maintain ∆mtDNAs in heteroplasmic worms. The mechanism by which ATFS-1 promotes ∆mtDNA accumulation relative to wild-type mtDNAs is unclear. Here we show that ATFS-1 accumulates in dysfunctional mitochondria. ATFS-1 is absent in healthy mitochondria owing to degradation by the mtDNA-bound protease LONP-1, which results in the nearly exclusive association between ATFS-1 and ∆mtDNAs in heteroplasmic worms. Moreover, we demonstrate that mitochondrial ATFS-1 promotes the binding of the mtDNA replicative polymerase (POLG) to ∆mtDNAs. Interestingly, inhibition of the mtDNA-bound protease LONP-1 increased ATFS-1 and POLG binding to wild-type mtDNAs. LONP-1 inhibition in Caenorhabditis elegans and human cybrid cells improved the heteroplasmy ratio and restored oxidative phosphorylation. Our findings suggest that ATFS-1 promotes mtDNA replication in dysfunctional mitochondria by promoting POLG-mtDNA binding, which is antagonized by LONP-1.


Assuntos
Proteases Dependentes de ATP , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Replicação do DNA , DNA Mitocondrial , Heteroplasmia , Mitocôndrias , Proteínas Mitocondriais , Fosforilação Oxidativa , Fatores de Transcrição , Animais , Humanos , Animais Geneticamente Modificados , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular , DNA Polimerase gama/genética , DNA Polimerase gama/metabolismo , DNA Mitocondrial/biossíntese , DNA Mitocondrial/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteólise , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA