Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pathol Res Pract ; 229: 153705, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34872023

RESUMO

The dynamic balance between ubiquitination and deubiquitination is a key mechanism that regulates protein degradation and maintains cell protein homeostasis. Ubiquitin-specific peptidase 13 (USP13), a deubiquitinase (DUB), regulates various physiological and pathological processes, including cancer. A previous study reported that high USP13 mRNA expression confers poor prognosis in gastric cancer (GC). However, the biological function of USP13 in GC remains unknown. Here, we revealed that USP13 expression was upregulated in GC tissue samples compared to noncancerous tissues. USP13-positive expression was associated with poor differentiation, high invasiveness, and advanced tumor stage. Notably, upregulated USP13 expression was closely correlated with the reduced survival of GC patients. We also confirmed increased USP13 expression in GC cell lines. USP13 knockdown prominently suppressed MGC-803 cell migration and invasion. Conversely, USP13 overexpression markedly enhanced SGC-7901 cell motility. Furthermore, USP13 positively regulates the epithelial-mesenchymal transition (EMT) of GC cells. Interestingly, USP13 remarkably enhanced Snail protein expression but did not affect its mRNA levels in GC cells. We confirmed a positive correlation between USP13 and Snail expression in GC tissues. Mechanistically, USP13 knockdown promoted Snail degradation, which could be blocked by the proteasome inhibitor MG132. USP13 interacted with Snail to deubiquitinate and stabilize Snail in GC cells. Finally, Snail knockdown significantly blocked USP13-induced SGC-7901 cell migration and invasion. In conclusion, USP13 overexpression was frequently detected in GC and contributed to the EMT and metastasis of GC by stabilizing Snail.


Assuntos
Metástase Neoplásica , Fatores de Transcrição da Família Snail/fisiologia , Neoplasias Gástricas/patologia , Proteases Específicas de Ubiquitina/fisiologia , Transição Epitelial-Mesenquimal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
2.
Leukemia ; 36(2): 438-451, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34465865

RESUMO

Ubiquitin-specific peptidase 15 (USP15) is a deubiquitinating enzyme implicated in critical cellular and oncogenic processes. We report that USP15 mRNA and protein are overexpressed in human acute myeloid leukemia (AML) as compared to normal hematopoietic progenitor cells. This high expression of USP15 in AML correlates with KEAP1 protein and suppression of NRF2. Knockdown or deletion of USP15 in human and mouse AML models significantly impairs leukemic progenitor function and viability and de-represses an antioxidant response through the KEAP1-NRF2 axis. Inhibition of USP15 and subsequent activation of NRF2 leads to redox perturbations in AML cells, coincident with impaired leukemic cell function. In contrast, USP15 is dispensable for human and mouse normal hematopoietic cells in vitro and in vivo. A preclinical small-molecule inhibitor of USP15 induced the KEAP1-NRF2 axis and impaired AML cell function, suggesting that targeting USP15 catalytic function can suppress AML. Based on these findings, we report that USP15 drives AML cell function, in part, by suppressing a critical oxidative stress sensor mechanism and permitting an aberrant redox state. Furthermore, we postulate that inhibition of USP15 activity with small molecule inhibitors will selectively impair leukemic progenitor cells by re-engaging homeostatic redox responses while sparing normal hematopoiesis.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Leucemia Mieloide Aguda/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteases Específicas de Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/fisiologia , Animais , Apoptose , Proliferação de Células , Feminino , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Oxirredução , Prognóstico , Transdução de Sinais , Células Tumorais Cultivadas , Proteases Específicas de Ubiquitina/genética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Dis Markers ; 2021: 3771990, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34873426

RESUMO

Gastric cancer (GC) is one of the most common malignant tumors all over the world. And recurrence and metastasis are still the main causes of low survival rate for advanced GC. USP1 has been shown overexpressed in multiple cancers, which indicate its important biomarker in tumorigenesis and development. Our study is aimed at defining the exact role of USP1 on GC metastasis and the underlying mechanism. USP1 was firstly found overexpressed in GC tissues and relatively high-expression levels conferred poor survival rates. Then, real-time cellular analysis (RTCA) showed that USP1 knockdown inhibited GC metastasis both in vitro and in vivo. Mechanically, we demonstrated that USP1 promoted GC metastasis via upregulating ID2 expression and further confirmed that USP1 stabilized ID2 expression through deubiquitinating ID2 in GC. In conclusion, our study showed that USP1 promoted GC metastasis via stabilizing ID2 expression, which provides a potential biomarker and therapy target for GC.


Assuntos
Proteína 2 Inibidora de Diferenciação/metabolismo , Metástase Neoplásica/fisiopatologia , Neoplasias Gástricas/patologia , Proteases Específicas de Ubiquitina/fisiologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Análise de Sobrevida , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitinação , Regulação para Cima/fisiologia
4.
Oxid Med Cell Longev ; 2021: 6955628, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34824671

RESUMO

Oxidative stress and apoptosis contribute to the progression of cerebral ischemia/reperfusion (I/R) injury. Ubiquitin-specific protease 29 (USP29) is abundantly expressed in the brain and plays critical roles in regulating oxidative stress and cell apoptosis. The purpose of the present study is to investigate the role and underlying mechanisms of USP29 in cerebral I/R injury. Neuron-specific USP29 knockout mice were generated and subjected to cerebral I/R surgery. For USP29 overexpression, mice were stereotactically injected with the adenoassociated virus serotype 9 vectors carrying USP29 for 4 weeks before cerebral I/R. And primary cortical neurons were isolated and exposed to oxygen glucose deprivation/reperfusion (OGD/R) stimulation to imitate cerebral I/R injury in vitro. USP29 expression was elevated in the brain and primary cortical neurons upon I/R injury. Neuron-specific USP29 knockout significantly diminished, whereas USP29 overexpression aggravated cerebral I/R-induced oxidative stress, apoptosis, and neurological dysfunction in mice. In addition, OGD/R-induced oxidative stress and neuronal apoptosis were also attenuated by USP29 silence but exacerbated by USP29 overexpression in vitro. Mechanistically, neuronal USP29 enhanced p53/miR-34a-mediated silent information regulator 1 downregulation and then promoted the acetylation and suppression of brain and muscle ARNT-like protein, thereby aggravating oxidative stress and apoptosis upon cerebral I/R injury. Our findings for the first time identify that USP29 upregulation during cerebral I/R may contribute to oxidative stress, neuronal apoptosis, and the progression of cerebral I/R injury and that inhibition of USP29 may help to develop novel therapeutic strategies to treat cerebral I/R injury.


Assuntos
Apoptose , Neurônios/patologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/patologia , Proteases Específicas de Ubiquitina/fisiologia , Animais , Glucose/deficiência , Hipóxia , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais
5.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946990

RESUMO

Ubiquitination and deubiquitination are protein post-translational modification processes that have been recognized as crucial mediators of many complex cellular networks, including maintaining ubiquitin homeostasis, controlling protein stability, and regulating several signaling pathways. Therefore, some of the enzymes involved in ubiquitination and deubiquitination, particularly E3 ligases and deubiquitinases, have attracted attention for drug discovery. Here, we review recent findings on USP15, one of the deubiquitinases, which regulates diverse signaling pathways by deubiquitinating vital target proteins. Even though several basic previous studies have uncovered the versatile roles of USP15 in different signaling networks, those have not yet been systematically and specifically reviewed, which can provide important information about possible disease markers and clinical applications. This review will provide a comprehensive overview of our current understanding of the regulatory mechanisms of USP15 on different signaling pathways for which dynamic reverse ubiquitination is a key regulator.


Assuntos
Processamento de Proteína Pós-Traducional/fisiologia , Transdução de Sinais/fisiologia , Proteases Específicas de Ubiquitina/fisiologia , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Proteínas Morfogenéticas Ósseas/fisiologia , Complexo do Signalossomo COP9/fisiologia , Humanos , Imunidade Inata , Masculino , Camundongos , NF-kappa B/metabolismo , Neoplasias da Próstata/metabolismo , Domínios Proteicos , Isoformas de Proteínas , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Precursores de RNA/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Proteases Específicas de Ubiquitina/química , Proteases Específicas de Ubiquitina/genética , Ubiquitinação , Via de Sinalização Wnt/fisiologia , Proteínas de Xenopus/metabolismo
6.
Cell Rep ; 33(13): 108533, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33378683

RESUMO

Altering ubiquitination by disruption of deubiquitinating enzymes (DUBs) affects hematopoietic stem cell (HSC) maintenance. However, comprehensive knowledge of DUB function during hematopoiesis in vivo is lacking. Here, we systematically inactivate DUBs in mouse hematopoietic progenitors using in vivo small hairpin RNA (shRNA) screens. We find that multiple DUBs may be individually required for hematopoiesis and identify ubiquitin-specific protease 15 (USP15) as essential for HSC maintenance in vitro and in transplantations and Usp15 knockout (KO) mice in vivo. USP15 is highly expressed in human hematopoietic tissues and leukemias. USP15 depletion in murine progenitors and leukemia cells impairs in vitro expansion and increases genotoxic stress. In leukemia cells, USP15 interacts with and stabilizes FUS (fused in sarcoma), a known DNA repair factor, directly linking USP15 to the DNA damage response (DDR). Our study underscores the importance of DUBs in preserving normal hematopoiesis and uncovers USP15 as a critical DUB in safeguarding genome integrity in HSCs and leukemia cells.


Assuntos
Enzimas Desubiquitinantes/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Leucemia/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Proteases Específicas de Ubiquitina/fisiologia , Animais , Linhagem Celular , Proliferação de Células , Dano ao DNA , Reparo do DNA , Hematopoese , Células-Tronco Hematopoéticas/enzimologia , Humanos , Células K562 , Leucemia/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ubiquitinação
7.
BMC Cancer ; 20(1): 583, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32571254

RESUMO

BACKGROUND: P53 pathway inactivation plays an important role in the process of breast cancer tumorigenesis. Post-translational protein modification abnormalities have been confirmed to be an important mechanism underlying inactivation of p53. Numerous deubiquitinating enzymes are aberrantly expressed in breast cancer, and a few deubiquitination enzymes can deubiquitinate and stabilize p53. Here, we report that ovarian tumor (OTU) deubiquitinase 3 (OTUD3) is a deubiquitylase of p53 in breast carcinoma (BC). METHODS: Correlations between the mRNA expression levels of OTUD3, TP53 and PTEN and the prognosis of BC were assessed with the Kaplan-Meier Plotter tool. OTUD3 protein expression in 80 pairs of specimens in our cohort was examined by immunohistochemistry and western blotting. The relationship among OTUD3, p53, and p21 proteins was analyzed. Half-life analysis and ubiquitylation assay were performed to elucidate the molecular mechanism by which OTUD3 stabilizes p53. The interaction between OTUD3 and p53 in BC cells was verified by a co-immunoprecipitation assay and GST pulldown experiments. MTS assay for proliferation detection, detection of apoptosis induced by cisplatin and colony formation assay were employed to investigate the functional effects of OTUD3 on breast cancer cells. RESULTS: OTUD3 downregulation is correlated with a poor prognosis in BC patients. OTUD3 expression is decreased in breast cancer tissues and not associated with the histological grade. OTUD3 also inhibits cell proliferation and clone formation and increases the sensitivity of BC cells to apoptosis induced by chemotherapy drugs. Reduced OTUD3 expression accompanied by decreased p53 abundance is correlated with human breast cancer progression. Ectopic expression of wild-type OTUD3, but not its catalytically inactive mutant, stabilizes and activates p53. Mechanistically, OTUD3 interacts directly with p53 through the amino-terminal OTU region. Finally, OTUD3 protects p53 from murine double minute 2 (Mdm2)-mediated ubiquitination and degradation, enabling the deubiquitination of p53 in BC cells. CONCLUSIONS: In summary, we found that OTUD3 may be a potential therapeutic target for restoring p53 function in breast cancer cells and suggest that the OTUD3-p53 signaling axis may play a critical role in tumor suppression.


Assuntos
Apoptose , Neoplasias da Mama/patologia , Proteína Supressora de Tumor p53/fisiologia , Proteases Específicas de Ubiquitina/fisiologia , Ubiquitinação , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Prognóstico , Transdução de Sinais , Proteína Supressora de Tumor p53/química
8.
J Gene Med ; 22(7): e3184, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32159247

RESUMO

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) has attracted the attention of researchers as a result of its high incidence around the world. This malignancy occurs in the oral cavity, pharynx and larynx in most cases. A number of lncRNAs have been revealed to regulate the malignant neoplasia of several cancers. Nevertheless, the effects of lncRNA LINC00467 in HNSCC have not yet been reported. METHODS: The expression of LINC00467, miR-299-5p and ubiquitin specific protease-48 (USP48) in HNSCC cells was quantified by a quantitative reverse transcriptase-polymerase chain reaction. The influences of LINC00467 deficiency on HNSCC progression were reflected by cell counting kit-8, colony formation, ethynyl-2-deoxyuridine, wound healing and western blot assays. RIP and luciferase reporter assays were conducted to confirm the interaction among LINC00467, miR-299-5p and USP48. RESULTS: LINC00467 was considerably upregulated in HNSCC cells, and an absence of LINC00467 suppressed cell growth, cell migration and the epithelial-mesenchymal process in HNSCC. In addition, miR-299-5p expression was notably downregulated in HNSCC cells, and miR-299-5p could bind with LINC00467. Furthermore, USP48 was conspicuously overexpressed in HNSCC cells and capable of binding with miR-299-5p. LINC00467 could upregulate USP48 expression via sponging miR-299-5p. Finally, rescue assays proved that USP48 overexpression could compensate for the suppressive effects on HNSCC progression mediated by LINC00467 deficiency. CONCLUSIONS: LINC00467 enhances HNSCC progression by serving as a sponge of miR-299-5p to increase USP48 expression.


Assuntos
Transição Epitelial-Mesenquimal , MicroRNAs/fisiologia , RNA Longo não Codificante/fisiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Proteases Específicas de Ubiquitina/fisiologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Regulação para Cima
9.
Oncogene ; 38(37): 6414-6428, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31332287

RESUMO

Increasing evidence demonstrates that ubiquitin specific protease 39 (USP39) plays an oncogenic role in various human tumors. Here, using expression analysis of the publicly available Oncomine database, clinical glioma patient samples, and glioma cells, we found that USP39 was overexpressed in human gliomas. Knockdown of USP39 in glioma cells demonstrated that the protein promoted cell growth, invasion and migration in vitro and in a tumor model in nude mice. To identify mediators of USP39 growth-promoting properties, we used luciferase reporter constructs under transcriptional control of various promoters specific to seven canonical cancer-associated pathways. Luciferase activity from a synthetic TEAD-dependent YAP/TAZ-responsive reporter, as a direct readout of the Hippo signaling pathway, was decreased by 92% in cells with USP39 knockdown, whereas the luciferase activities from the other six cancer pathways, including MAPK/ERK, MAPK/JNK, NFκB, Notch, TGFß, and Wnt, remained unchanged. TAZ protein expression however was decreased independent of canonical Hippo signaling. Immunohistochemistry revealed a positive correlation between USP39 and TAZ proteins in orthotopic xenografts derived from modified glioma cells expressing USP39 shRNAs and primary human glioma samples (p < 0.05). Finally, loss of USP39 decreased TAZ pre-mRNA splicing efficiency in glioma cells in vitro, which led to reduced levels of TAZ protein. In summary, USP39 has oncogenic properties that increase TAZ protein levels by inducing maturation of its mRNA. USP39 therefore provides a novel therapeutic target for the treatment of human glioma.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Splicing de RNA/genética , Transativadores/genética , Proteases Específicas de Ubiquitina/fisiologia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/metabolismo , Transativadores/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteases Específicas de Ubiquitina/genética
10.
Cell Death Dis ; 9(6): 633, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29795372

RESUMO

We have previously reported that FAM188B showed significant differential exon usage in cancers (NCBI GEO GSE30727), but the expression and function of FAM188B is not well characterized. In the present study, we explored the functions of FAM188B by a knockdown strategy, using siRNAs specific for FAM188B in colon cancer cell lines. FAM188B is a novel gene that encodes a protein that is evolutionarily conserved among mammals. Its mRNA has been found to be highly expressed in most solid tumors, including colorectal cancer. FAM188B knockdown induced cell growth inhibition due to an increase in apoptosis in colon cancer cell lines. Interestingly, siFAM188B treatment induced the upregulation and activation of p53, and consequently increased p53-regulated pro-apoptotic proteins, PUMA and BAX. Proteomic analysis of FAM188B immunocomplexes revealed p53 and USP7 as putative FAM188B-interacting proteins. Deletion of the putative USP7-binding motif in FAM188B reduced complex formation of FAM188B with USP7. It is noteworthy that FAM188B knockdown resulted in a decrease in overall ubiquitination in the p53 immunocomplexes, as well as p53 ubiquitination, because USP7 is involved in p53 deubiquitination. FAM188B knockdown inhibited both colony formation and anchorage-independent growth in vitro. In addition, FAM188B knockdown by siRNA reduced tumor growth in xenografted mice, with an increase in p53 proteins. Taken together, our data suggest that FAM188B is a putative oncogene that functions via interaction with USP7. Therefore, control of FAM188B could be a possible target to inhibit tumor growth.


Assuntos
Proteínas Nucleares/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/fisiologia , Animais , Apoptose/genética , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Camundongos Nus , Proteínas Nucleares/genética , Ligação Proteica , Estabilidade Proteica , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Proteases Específicas de Ubiquitina/genética , Ubiquitinação
11.
Oncogene ; 37(17): 2326-2342, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29429988

RESUMO

Ubiquitin-specific protease 15 (USP15) is a widely expressed deubiquitylase that has been implicated in diverse cellular processes in cancer. Here we identify topoisomerase II (TOP2A) as a novel protein that is regulated by USP15. TOP2A accumulates during G2 and functions to decatenate intertwined sister chromatids at prophase, ensuring the replicated genome can be accurately divided into daughter cells at anaphase. We show that USP15 is required for TOP2A accumulation, and that USP15 depletion leads to the formation of anaphase chromosome bridges. These bridges fail to decatenate, and at mitotic exit form micronuclei that are indicative of genome instability. We also describe the cell cycle-dependent behaviour for two major isoforms of USP15, which differ by a short serine-rich insertion that is retained in isoform-1 but not in isoform-2. Although USP15 is predominantly cytoplasmic in interphase, we show that both isoforms move into the nucleus at prophase, but that isoform-1 is phosphorylated on its unique S229 residue at mitotic entry. The micronuclei phenotype we observe on USP15 depletion can be rescued by either USP15 isoform and requires USP15 catalytic activity. Importantly, however, an S229D phospho-mimetic mutant of USP15 isoform-1 cannot rescue either the micronuclei phenotype, or accumulation of TOP2A. Thus, S229 phosphorylation selectively abrogates this role of USP15 in maintaining genome integrity in an isoform-specific manner. Finally, we show that USP15 isoform-1 is preferentially upregulated in a panel of non-small cell lung cancer cell lines, and propose that isoform imbalance may contribute to genome instability in cancer. Our data provide the first example of isoform-specific deubiquitylase phospho-regulation and reveal a novel role for USP15 in guarding genome integrity.


Assuntos
DNA Topoisomerases Tipo II/metabolismo , Instabilidade Genômica , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Processamento de Proteína Pós-Traducional , Proteases Específicas de Ubiquitina/fisiologia , Células A549 , Ciclo Celular/genética , Linhagem Celular Tumoral , Segregação de Cromossomos/genética , Instabilidade Genômica/genética , Humanos , Mitose/genética , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional/genética , Proteases Específicas de Ubiquitina/genética , Ubiquitinação/genética
12.
Genes Dev ; 31(14): 1469-1482, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28860160

RESUMO

Protection of the stalled replication fork is crucial for responding to replication stress and minimizing its impact on chromosome instability, thus preventing diseases, including cancer. We found a new component, Abro1, in the protection of stalled replication fork integrity. Abro1 deficiency results in increased chromosome instability, and Abro1-null mice are tumor-prone. We show that Abro1 protects stalled replication fork stability by inhibiting DNA2 nuclease/WRN helicase-mediated degradation of stalled forks. Depletion of RAD51 prevents the DNA2/WRN-dependent degradation of stalled forks in Abro1-deficient cells. This mechanism is distinct from the BRCA2-dependent fork protection pathway, in which stable RAD51 filament formation prevents MRE11-dependent degradation of the newly synthesized DNA at stalled forks. Thus, our data reveal a new aspect of regulated protection of stalled replication forks that involves Abro1.


Assuntos
Replicação do DNA , Instabilidade Genômica , Proteínas Associadas à Matriz Nuclear/fisiologia , Proteases Específicas de Ubiquitina/fisiologia , Animais , Proteína BRCA2/genética , Linhagem Celular , Células Cultivadas , DNA/biossíntese , DNA Helicases/fisiologia , Endodesoxirribonucleases/fisiologia , Proteína Homóloga a MRE11/fisiologia , Camundongos Knockout , Enzimas Multifuncionais/fisiologia , Neoplasias Experimentais/genética , Proteínas Associadas à Matriz Nuclear/genética , Rad51 Recombinase/genética , Estresse Fisiológico , Proteases Específicas de Ubiquitina/genética
13.
Curr Stem Cell Res Ther ; 12(5): 416-422, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28302046

RESUMO

BACKGROUND: Recently, some studies identified the Basic-Helix-Loop-Helix (bHLH) transcription factor as a significant regulator for the evolution of neoplasms. The binding between bHLH proteins and DNA is restricted by heterodimerization with Inhibitors of DNA binding (ID). IDs prevent cellular differentiation, promote growth and sustain tumor development. The wide presence of stem cells in cancers suggests that genes ID are essential to cancer stem cells (CSC) progress. The enzyme Ubiquitin-specific protease 1 (USP1) is reported to deubiquitinate and stabilize IDs. Considering the action of the proteins ID, USP1 contributes to prevent differentiation mediated by bHLH and, consequently, keep CSC original characteristics. USP1 has its activity potentiated when bound to protein WD repeat-containing protein (WDR48). OBJECTIVE: To identify the influence of the complex USP1/WDR48 during the CSC tumorigenesis process, and whether this complex is a possible therapeutic target. METHODS: A literature search regarding the role of the complex USP1/WDR48 in inhibiting differentiation and increasing proliferation of CSC was performed, and possible selective molecule inhibitors of these deubiquitinase proteins were investigated. RESULTS: There is evidence that USP1/WDR48 complex promotes stem cell conservation and regulation of DNA damage repair. For this reason, inhibitors as Pimozide, GW7647, C527, SJB2-043, ML323 have been studied to inhibit USPs in cases of treatment intervention. CONCLUSION: It is consolidated in the literature the role of USP1/WDR48 during tumorigenesis. However, these studies are not enough to completely clarify the process; but certainly, the researchers are converging towards a promising direction to provide a new treatment option for cancer.


Assuntos
Antineoplásicos/farmacologia , Reparo do DNA , Células-Tronco Neoplásicas/metabolismo , Proteínas/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Antineoplásicos/uso terapêutico , Diferenciação Celular , Proliferação de Células , DNA/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/fisiologia , Proteínas/efeitos dos fármacos , Proteínas/fisiologia , Proteases Específicas de Ubiquitina/efeitos dos fármacos , Proteases Específicas de Ubiquitina/fisiologia
15.
Proc Natl Acad Sci U S A ; 113(1): E51-60, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26699484

RESUMO

Epigenetic mechanisms play important regulatory roles in hematopoiesis and hematopoietic stem cell (HSC) function. Subunits of polycomb repressive complex 1 (PRC1), the major histone H2A ubiquitin ligase, are critical for both normal and pathological hematopoiesis; however, it is unclear which of the several counteracting H2A deubiquitinases functions along with PRC1 to control H2A ubiquitination (ubH2A) level and regulates hematopoiesis in vivo. Here we investigated the function of Usp16 in mouse hematopoiesis. Conditional deletion of Usp16 in bone marrow resulted in a significant increase of global ubH2A level and lethality. Usp16 deletion did not change HSC number but was associated with a dramatic reduction of mature and progenitor cell populations, revealing a role in governing HSC lineage commitment. ChIP- and RNA-sequencing studies in HSC and progenitor cells revealed that Usp16 bound to many important hematopoietic regulators and that Usp16 deletion altered the expression of genes in transcription/chromosome organization, immune response, hematopoietic/lymphoid organ development, and myeloid/leukocyte differentiation. The altered gene expression was partly rescued by knockdown of PRC1 subunits, suggesting that Usp16 and PRC1 counterbalance each other to regulate cellular ubH2A level and gene expression in the hematopoietic system. We further discovered that knocking down Cdkn1a (p21cip1), a Usp16 target and regulated gene, rescued the altered cell cycle profile and differentiation defect of Usp16-deleted HSCs. Collectively, these studies identified Usp16 as one of the histone H2A deubiquitinases, which coordinates with the H2A ubiquitin ligase PRC1 to regulate hematopoiesis, and revealed cell cycle regulation by Usp16 as key for HSC differentiation.


Assuntos
Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Ubiquitina Tiolesterase/fisiologia , Proteases Específicas de Ubiquitina/fisiologia , Animais , Contagem de Células , Inibidor de Quinase Dependente de Ciclina p21/genética , Endopeptidases/genética , Endopeptidases/fisiologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Letais , Hematopoese/genética , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/fisiologia , Transativadores , Ubiquitina Tiolesterase/genética , Proteases Específicas de Ubiquitina/genética
16.
Nat Cell Biol ; 17(9): 1169-81, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26280536

RESUMO

PTEN is one of the most frequently mutated tumour suppressors and reduction in PTEN protein stability also plays a role in tumorigenesis. Although several ubiquitin ligases for PTEN have been identified, the deubiquitylase for de-polyubiquitylation and stabilization of PTEN is less defined. Here, we report OTUD3 as a deubiquitylase of PTEN. OTUD3 interacts with, de-polyubiquitylates and stabilizes PTEN. Depletion of OTUD3 leads to the activation of Akt signalling, induction of cellular transformation and cancer metastasis. OTUD3 transgenic mice exhibit higher levels of the PTEN protein and are less prone to tumorigenesis. Reduction of OTUD3 expression, concomitant with decreased PTEN abundance, correlates with human breast cancer progression. Furthermore, we identified loss-of-function OTUD3 mutations in human cancers, which either abolish OTUD3 catalytic activity or attenuate the interaction with PTEN. These findings demonstrate that OTUD3 is an essential regulator of PTEN and that the OTUD3-PTEN signalling axis plays a critical role in tumour suppression.


Assuntos
Neoplasias da Mama/enzimologia , Carcinogênese/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteases Específicas de Ubiquitina/fisiologia , Ubiquitinação , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos Transgênicos , Mutação , Transplante de Neoplasias , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
17.
Gene ; 572(1): 49-56, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26143114

RESUMO

Ubiquitin-specific protease 22 (USP22) can regulate the cell cycle and apoptosis in many cancer cell types, while it is still unclear whether the deubiquitinating enzyme activity of USP22 is necessary for these processes. As little is known about the impact of USP22 on the growth of HeLa cell, we observed whether USP22 can effectively regulate HeLa cell growth as well as the necessity of deubiquitinating enzyme activity for these processes in HeLa cell. In this study, we demonstrate that USP22 can regulate cell cycle but not apoptosis in HeLa cell. The deubiquitinating enzyme activity of USP22 is necessary for this process as confirmed by an activity-deleted mutant (C185S) and an activity-decreased mutant (Y513C). In addition, the deubiquitinating enzyme activity of USP22 is related to the levels of BMI-1, c-Myc, cyclin D2 and p53. Our findings indicate that the deubiquitinating enzyme activity of USP22 is necessary for regulating HeLa cell growth, and it promotes cell proliferation via the c-Myc/cyclin D2, BMI-1 and p53 pathways in HeLa cell.


Assuntos
Tioléster Hidrolases/fisiologia , Substituição de Aminoácidos , Apoptose/fisiologia , Ciclo Celular/fisiologia , Proliferação de Células/fisiologia , Ciclina D2/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Mutagênese Sítio-Dirigida , Mutação , Oncogenes , Complexo Repressor Polycomb 1/metabolismo , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais , Tioléster Hidrolases/antagonistas & inibidores , Tioléster Hidrolases/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina Tiolesterase , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/fisiologia
18.
Mol Cell Biol ; 35(19): 3301-11, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26169834

RESUMO

Wnt signaling plays important roles in development and tumorigenesis. A central question about the Wnt pathway is the regulation of ß-catenin. Phosphorylation of ß-catenin by CK1α and GSK3 promotes ß-catenin binding to ß-TrCP, leading to ß-catenin degradation through the proteasome. The phosphorylation and ubiquitination of ß-catenin have been well characterized; however, it is unknown whether and how a deubiquitinase is involved. In this study, by screening RNA interference (RNAi) libraries, we identified USP47 as a deubiquitinase that prevents ß-catenin ubiquitination. Inactivation of USP47 by RNAi increased ß-catenin ubiquitination, attenuated Wnt signaling, and repressed cancer cell growth. Furthermore, USP47 deubiquitinates itself, whereas ß-TrCP promotes USP47 ubiquitination through interaction with an atypical motif in USP47. Finally, in vivo studies in the Drosophila wing suggest that UBP64E, the USP47 counterpart in Drosophila, is required for Armadillo stabilization and plays a positive role in regulating Wnt target gene expression.


Assuntos
Proteínas de Drosophila/fisiologia , Ubiquitina Tiolesterase/fisiologia , Proteases Específicas de Ubiquitina/fisiologia , Ubiquitinação , Via de Sinalização Wnt , beta Catenina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Drosophila melanogaster , Células HEK293 , Humanos , Dados de Sequência Molecular , Proteólise , Asas de Animais/enzimologia , Proteínas Contendo Repetições de beta-Transducina/metabolismo
19.
Biochim Biophys Acta ; 1855(1): 83-91, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25481051

RESUMO

The modification of proteins through post-translation and degradation by the ubiquitin-proteasome system plays a pivotal role in a broad array of biological processes. Reversal of this process by deubiquitination is a central step in the maintenance and regulation of cellular homeostasis. It now appears that the regulation of ubiquitin pathways by deubiquitinating enzymes (DUBs) could be used as targets for anticancer therapy. Recent success in inducing apoptosis in cancerous cells by USP17, a cytokine-inducible DUB encoding two hyaluronan binding motifs (HABMs) showing direct interaction with hyaluronan (HA), could prove a promising step in the development of DUBs containing HABMs as agents in anticancer therapeutics. In this review, we summarize the importance of hyaluronan (HA) in cancer, the role played by DUBs in apoptosis, and a possible relationship between DUBs and HA in cancerous cells, suggesting new strategies for applying DUB enzymes as potential anticancer therapeutics.


Assuntos
Ácido Hialurônico/fisiologia , Proteases Específicas de Ubiquitina/fisiologia , Animais , Antineoplásicos/uso terapêutico , Citocinas/farmacologia , Indução Enzimática/efeitos dos fármacos , Humanos , Receptores de Hialuronatos/fisiologia , Ácido Hialurônico/antagonistas & inibidores , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteases Específicas de Ubiquitina/biossíntese
20.
Biochim Biophys Acta ; 1855(1): 50-60, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25481052

RESUMO

Proteasome-mediated degradation is a common mechanism by which cells renew their intracellular proteins and maintain protein homeostasis. In this process, the E3 ubiquitin ligases are responsible for targeting specific substrates (proteins) for ubiquitin-mediated degradation. However, in cancer cells, the stability and the balance between oncoproteins and tumor suppressor proteins are disturbed in part due to deregulated proteasome-mediated degradation. This ultimately leads to either stabilization of oncoprotein(s) or increased degradation of tumor suppressor(s), contributing to tumorigenesis and cancer progression. Therefore, E3 ubiquitin ligases including the SCF types of ubiquitin ligases have recently evolved as promising therapeutic targets for the development of novel anti-cancer drugs. In this review, we highlighted the critical components along the ubiquitin pathway including E1, E2, various E3 enzymes and DUBs that could serve as potential drug targets and also described the available bioactive compounds that target the ubiquitin pathway to control various cancers.


Assuntos
Terapia de Alvo Molecular/métodos , Neoplasias/terapia , Ubiquitina/metabolismo , Animais , Humanos , Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/uso terapêutico , Transdução de Sinais , Ubiquitina/antagonistas & inibidores , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Enzimas Ativadoras de Ubiquitina/fisiologia , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Enzimas de Conjugação de Ubiquitina/fisiologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/fisiologia , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Proteases Específicas de Ubiquitina/fisiologia , Ubiquitinação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA